1 /*
2 * Copyright (c) 2023 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <stdint.h>
8 #include <stdlib.h>
9 #include <string.h>
10
11 #include <zephyr/kernel.h>
12 #include <zephyr/spinlock.h>
13 #include <zephyr/toolchain.h>
14 #include <zephyr/arch/xtensa/arch_inlines.h>
15 #include <zephyr/arch/xtensa/mpu.h>
16 #include <zephyr/linker/linker-defs.h>
17 #include <zephyr/sys/__assert.h>
18 #include <zephyr/sys/util_macro.h>
19
20 #include <xtensa/corebits.h>
21 #include <xtensa/config/core-matmap.h>
22 #include <xtensa/config/core-isa.h>
23 #include <xtensa_mpu_priv.h>
24
25 #ifdef CONFIG_USERSPACE
26 BUILD_ASSERT((CONFIG_PRIVILEGED_STACK_SIZE > 0) &&
27 (CONFIG_PRIVILEGED_STACK_SIZE % XCHAL_MPU_ALIGN) == 0);
28 #endif
29
30 extern char _heap_end[];
31 extern char _heap_start[];
32
33 /** MPU foreground map for kernel mode. */
34 static struct xtensa_mpu_map xtensa_mpu_map_fg_kernel;
35
36 /*
37 * Additional information about the MPU maps: foreground and background
38 * maps.
39 *
40 *
41 * Some things to keep in mind:
42 * - Each MPU region is described by TWO entries:
43 * [entry_a_address, entry_b_address). For contiguous memory regions,
44 * this should not much of an issue. However, disjoint memory regions
45 * "waste" another entry to describe the end of those regions.
46 * We might run out of available entries in the MPU map because of
47 * this.
48 * - The last entry is a special case as there is no more "next"
49 * entry in the map. In this case, the end of memory is
50 * the implicit boundary. In another word, the last entry
51 * describes the region between the start address of this entry
52 * and the end of memory.
53 * - Current implementation has following limitations:
54 * - All enabled entries are grouped towards the end of the map.
55 * - Except the last entry which can be disabled. This is
56 * the end of the last foreground region. With a disabled
57 * entry, memory after this will use the background map
58 * for access control.
59 * - No disabled MPU entries allowed in between.
60 *
61 *
62 * For foreground map to be valid, its entries must follow these rules:
63 * - The start addresses must always be in non-descending order.
64 * - The access rights and memory type fields must contain valid values.
65 * - The segment field needs to be correct for each entry.
66 * - MBZ fields must contain only zeroes.
67 * - Although the start address occupies 27 bits of the register,
68 * it does not mean all 27 bits are usable. The macro
69 * XCHAL_MPU_ALIGN_BITS provided by the toolchain indicates
70 * that only bits of and left of this value are valid. This
71 * corresponds to the minimum segment size (MINSEGMENTSIZE)
72 * definied in the processor configuration.
73 */
74
75 #ifndef CONFIG_XTENSA_MPU_ONLY_SOC_RANGES
76 /**
77 * Static definition of all code and data memory regions of the
78 * current Zephyr image. This information must be available and
79 * need to be processed upon MPU initialization.
80 */
81 static const struct xtensa_mpu_range mpu_zephyr_ranges[] = {
82 /* Region for vector handlers. */
83 {
84 .start = (uintptr_t)XCHAL_VECBASE_RESET_VADDR,
85 /*
86 * There is nothing from the Xtensa overlay about how big
87 * the vector handler region is. So we make an assumption
88 * that vecbase and .text are contiguous.
89 *
90 * SoC can override as needed if this is not the case,
91 * especially if the SoC reset/startup code relocates
92 * vecbase.
93 */
94 .end = (uintptr_t)__text_region_start,
95 .access_rights = XTENSA_MPU_ACCESS_P_RX_U_RX,
96 .memory_type = CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE,
97 },
98 /*
99 * Mark the zephyr execution regions (data, bss, noinit, etc.)
100 * cacheable, read / write and non-executable
101 */
102 {
103 /* This includes .data, .bss and various kobject sections. */
104 .start = (uintptr_t)_image_ram_start,
105 .end = (uintptr_t)_image_ram_end,
106 .access_rights = XTENSA_MPU_ACCESS_P_RW_U_NA,
107 .memory_type = CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE,
108 },
109 #if K_HEAP_MEM_POOL_SIZE > 0
110 /* System heap memory */
111 {
112 .start = (uintptr_t)_heap_start,
113 .end = (uintptr_t)_heap_end,
114 .access_rights = XTENSA_MPU_ACCESS_P_RW_U_NA,
115 .memory_type = CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE,
116 },
117 #endif
118 /* Mark text segment cacheable, read only and executable */
119 {
120 .start = (uintptr_t)__text_region_start,
121 .end = (uintptr_t)__text_region_end,
122 .access_rights = XTENSA_MPU_ACCESS_P_RX_U_RX,
123 .memory_type = CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE,
124 },
125 /* Mark rodata segment cacheable, read only and non-executable */
126 {
127 .start = (uintptr_t)__rodata_region_start,
128 .end = (uintptr_t)__rodata_region_end,
129 .access_rights = XTENSA_MPU_ACCESS_P_RO_U_RO,
130 .memory_type = CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE,
131 },
132 };
133 #endif /* !CONFIG_XTENSA_MPU_ONLY_SOC_RANGES */
134
135 /**
136 * Return the pointer to the entry encompassing @a addr out of an array of MPU entries.
137 *
138 * Returning the entry where @a addr is greater or equal to the entry's start address,
139 * and where @a addr is less than the starting address of the next entry.
140 *
141 * @param[in] entries Array of MPU entries.
142 * @param[in] addr Address to be matched to one background entry.
143 * @param[in] first_enabled_idx The index of the first enabled entry.
144 * Use 0 if not sure.
145 * @param[out] exact Set to true if address matches exactly.
146 * NULL if do not care.
147 * @param[out] entry_idx Set to the index of the entry array if entry is found.
148 * NULL if do not care.
149 *
150 * @return Pointer to the map entry encompassing @a addr, or NULL if no such entry found.
151 */
152 static const
check_addr_in_mpu_entries(const struct xtensa_mpu_entry * entries,uintptr_t addr,uint8_t first_enabled_idx,bool * exact,uint8_t * entry_idx)153 struct xtensa_mpu_entry *check_addr_in_mpu_entries(const struct xtensa_mpu_entry *entries,
154 uintptr_t addr, uint8_t first_enabled_idx,
155 bool *exact, uint8_t *entry_idx)
156 {
157 const struct xtensa_mpu_entry *ret = NULL;
158 uintptr_t s_addr, e_addr;
159 uint8_t idx;
160
161 if (first_enabled_idx >= XTENSA_MPU_NUM_ENTRIES) {
162 goto out_null;
163 }
164
165 if (addr < xtensa_mpu_entry_start_address_get(&entries[first_enabled_idx])) {
166 /* Before the start address of very first entry. So no match. */
167 goto out_null;
168 }
169
170 /* Loop through the map except the last entry (which is a special case). */
171 for (idx = first_enabled_idx; idx < (XTENSA_MPU_NUM_ENTRIES - 1); idx++) {
172 s_addr = xtensa_mpu_entry_start_address_get(&entries[idx]);
173 e_addr = xtensa_mpu_entry_start_address_get(&entries[idx + 1]);
174
175 if ((addr >= s_addr) && (addr < e_addr)) {
176 ret = &entries[idx];
177 goto out;
178 }
179 }
180
181 idx = XTENSA_MPU_NUM_ENTRIES - 1;
182 s_addr = xtensa_mpu_entry_start_address_get(&entries[idx]);
183 if (addr >= s_addr) {
184 /* Last entry encompasses the start address to end of memory. */
185 ret = &entries[idx];
186 }
187
188 out:
189 if (ret != NULL) {
190 if (exact != NULL) {
191 if (addr == s_addr) {
192 *exact = true;
193 } else {
194 *exact = false;
195 }
196 }
197
198 if (entry_idx != NULL) {
199 *entry_idx = idx;
200 }
201 }
202
203 out_null:
204 return ret;
205 }
206
207 /**
208 * Find the first enabled MPU entry.
209 *
210 * @param entries Array of MPU entries with XTENSA_MPU_NUM_ENTRIES elements.
211 *
212 * @return Index of the first enabled entry.
213 * @retval XTENSA_MPU_NUM_ENTRIES if no entry is enabled.
214 */
find_first_enabled_entry(const struct xtensa_mpu_entry * entries)215 static inline uint8_t find_first_enabled_entry(const struct xtensa_mpu_entry *entries)
216 {
217 int first_enabled_idx;
218
219 for (first_enabled_idx = 0; first_enabled_idx < XTENSA_MPU_NUM_ENTRIES;
220 first_enabled_idx++) {
221 if (entries[first_enabled_idx].as.p.enable) {
222 break;
223 }
224 }
225
226 return first_enabled_idx;
227 }
228
229 /**
230 * Compare two MPU entries.
231 *
232 * This is used by qsort to compare two MPU entries on their ordering
233 * based on starting address.
234 *
235 * @param a First MPU entry.
236 * @param b Second MPU entry.
237 *
238 * @retval -1 First address is less than second address.
239 * @retval 0 First address is equal to second address.
240 * @retval 1 First address is great than second address.
241 */
compare_entries(const void * a,const void * b)242 static int compare_entries(const void *a, const void *b)
243 {
244 struct xtensa_mpu_entry *e_a = (struct xtensa_mpu_entry *)a;
245 struct xtensa_mpu_entry *e_b = (struct xtensa_mpu_entry *)b;
246
247 uintptr_t addr_a = xtensa_mpu_entry_start_address_get(e_a);
248 uintptr_t addr_b = xtensa_mpu_entry_start_address_get(e_b);
249
250 if (addr_a < addr_b) {
251 return -1;
252 } else if (addr_a == addr_b) {
253 return 0;
254 } else {
255 return 1;
256 }
257 }
258
259 /**
260 * Sort the MPU entries base on starting address.
261 *
262 * This sorts the MPU entries in ascending order of starting address.
263 * After sorting, it rewrites the segment numbers of all entries.
264 */
sort_entries(struct xtensa_mpu_entry * entries)265 static void sort_entries(struct xtensa_mpu_entry *entries)
266 {
267 qsort(entries, XTENSA_MPU_NUM_ENTRIES, sizeof(entries[0]), compare_entries);
268
269 for (uint32_t idx = 0; idx < XTENSA_MPU_NUM_ENTRIES; idx++) {
270 /* Segment value must correspond to the index. */
271 entries[idx].at.p.segment = idx;
272 }
273 }
274
275 /**
276 * Consolidate the MPU entries.
277 *
278 * This removes consecutive entries where the attributes are the same.
279 *
280 * @param entries Array of MPU entries with XTENSA_MPU_NUM_ENTRIES elements.
281 * @param first_enabled_idx Index of first enabled entry.
282 *
283 * @return Index of the first enabled entry after consolidation.
284 */
consolidate_entries(struct xtensa_mpu_entry * entries,uint8_t first_enabled_idx)285 static uint8_t consolidate_entries(struct xtensa_mpu_entry *entries,
286 uint8_t first_enabled_idx)
287 {
288 uint8_t new_first;
289 uint8_t idx_0 = first_enabled_idx;
290 uint8_t idx_1 = first_enabled_idx + 1;
291 bool to_consolidate = false;
292
293 /* For each a pair of entries... */
294 while (idx_1 < XTENSA_MPU_NUM_ENTRIES) {
295 struct xtensa_mpu_entry *entry_0 = &entries[idx_0];
296 struct xtensa_mpu_entry *entry_1 = &entries[idx_1];
297 bool mark_disable_0 = false;
298 bool mark_disable_1 = false;
299
300 if (xtensa_mpu_entries_has_same_attributes(entry_0, entry_1)) {
301 /*
302 * If both entry has same attributes (access_rights and memory type),
303 * they can be consolidated into one by removing the higher indexed
304 * one.
305 */
306 mark_disable_1 = true;
307 } else if (xtensa_mpu_entries_has_same_address(entry_0, entry_1)) {
308 /*
309 * If both entries have the same address, the higher index
310 * one always override the lower one. So remove the lower indexed
311 * one.
312 */
313 mark_disable_0 = true;
314 }
315
316 /*
317 * Marking an entry as disabled here so it can be removed later.
318 *
319 * The MBZ field of the AS register is re-purposed to indicate that
320 * this is an entry to be removed.
321 */
322 if (mark_disable_1) {
323 /* Remove the higher indexed entry. */
324 to_consolidate = true;
325
326 entry_1->as.p.mbz = 1U;
327
328 /* Skip ahead for next comparison. */
329 idx_1++;
330 continue;
331 } else if (mark_disable_0) {
332 /* Remove the lower indexed entry. */
333 to_consolidate = true;
334
335 entry_0->as.p.mbz = 1U;
336 }
337
338 idx_0 = idx_1;
339 idx_1++;
340 }
341
342 if (to_consolidate) {
343 uint8_t read_idx = XTENSA_MPU_NUM_ENTRIES - 1;
344 uint8_t write_idx = XTENSA_MPU_NUM_ENTRIES;
345
346 /* Go through the map from the end and copy enabled entries in place. */
347 while (read_idx >= first_enabled_idx) {
348 struct xtensa_mpu_entry *entry_rd = &entries[read_idx];
349
350 if (entry_rd->as.p.mbz != 1U) {
351 struct xtensa_mpu_entry *entry_wr;
352
353 write_idx--;
354 entry_wr = &entries[write_idx];
355
356 *entry_wr = *entry_rd;
357 entry_wr->at.p.segment = write_idx;
358 }
359
360 read_idx--;
361 }
362
363 /* New first enabled entry is where the last written entry is. */
364 new_first = write_idx;
365
366 for (idx_0 = 0; idx_0 < new_first; idx_0++) {
367 struct xtensa_mpu_entry *e = &entries[idx_0];
368
369 /* Shortcut to zero out address and enabled bit. */
370 e->as.raw = 0U;
371
372 /* Segment value must correspond to the index. */
373 e->at.p.segment = idx_0;
374
375 /* No access at all for both kernel and user modes. */
376 e->at.p.access_rights = XTENSA_MPU_ACCESS_P_NA_U_NA;
377
378 /* Use default memory type for disabled entries. */
379 e->at.p.memory_type = CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE;
380 }
381 } else {
382 /* No need to conlidate entries. Map is same as before. */
383 new_first = first_enabled_idx;
384 }
385
386 return new_first;
387 }
388
389 /**
390 * Add a memory region to the MPU map.
391 *
392 * This adds a memory region to the MPU map, by setting the appropriate
393 * start and end entries. This may re-use existing entries or add new
394 * entries to the map.
395 *
396 * @param[in,out] map Pointer to MPU map.
397 * @param[in] start_addr Start address of the region.
398 * @param[in] end_addr End address of the region.
399 * @param[in] access_rights Access rights of this region.
400 * @param[in] memory_type Memory type of this region.
401 * @param[out] first_idx Return index of first enabled entry if not NULL.
402 *
403 * @retval 0 Successful in adding the region.
404 * @retval -EINVAL Invalid values in function arguments.
405 */
mpu_map_region_add(struct xtensa_mpu_map * map,uintptr_t start_addr,uintptr_t end_addr,uint32_t access_rights,uint32_t memory_type,uint8_t * first_idx)406 static int mpu_map_region_add(struct xtensa_mpu_map *map,
407 uintptr_t start_addr, uintptr_t end_addr,
408 uint32_t access_rights, uint32_t memory_type,
409 uint8_t *first_idx)
410 {
411 int ret;
412 bool exact_s, exact_e;
413 uint8_t idx_s, idx_e, first_enabled_idx;
414 struct xtensa_mpu_entry *entry_slot_s, *entry_slot_e, prev_entry;
415
416 struct xtensa_mpu_entry *entries = map->entries;
417
418 if (start_addr >= end_addr) {
419 ret = -EINVAL;
420 goto out;
421 }
422
423 first_enabled_idx = find_first_enabled_entry(entries);
424 if (first_enabled_idx >= XTENSA_MPU_NUM_ENTRIES) {
425
426 /*
427 * If the last entry in the map is not enabled and the start
428 * address is NULL, we can assume the map has not been populated
429 * at all. This is because we group all enabled entries at
430 * the end of map.
431 */
432 struct xtensa_mpu_entry *last_entry = &entries[XTENSA_MPU_NUM_ENTRIES - 1];
433
434 if (!xtensa_mpu_entry_enable_get(last_entry) &&
435 (xtensa_mpu_entry_start_address_get(last_entry) == 0U)) {
436 /* Empty table, so populate the entries as-is. */
437 if (end_addr == 0xFFFFFFFFU) {
438 /*
439 * Region goes to end of memory, so only need to
440 * program one entry.
441 */
442 entry_slot_s = &entries[XTENSA_MPU_NUM_ENTRIES - 1];
443
444 xtensa_mpu_entry_set(entry_slot_s, start_addr, true,
445 access_rights, memory_type);
446 first_enabled_idx = XTENSA_MPU_NUM_ENTRIES - 1;
447 goto end;
448 } else {
449 /*
450 * Populate the last two entries to indicate
451 * a memory region. Notice that the second entry
452 * is not enabled as it is merely marking the end of
453 * a region and is not the starting of another
454 * enabled MPU region.
455 */
456 entry_slot_s = &entries[XTENSA_MPU_NUM_ENTRIES - 2];
457 entry_slot_e = &entries[XTENSA_MPU_NUM_ENTRIES - 1];
458
459 xtensa_mpu_entry_set(entry_slot_s, start_addr, true,
460 access_rights, memory_type);
461 xtensa_mpu_entry_set(entry_slot_e, end_addr, false,
462 XTENSA_MPU_ACCESS_P_NA_U_NA,
463 CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE);
464 first_enabled_idx = XTENSA_MPU_NUM_ENTRIES - 2;
465 goto end;
466 }
467
468 ret = 0;
469 goto out;
470 }
471
472 first_enabled_idx = consolidate_entries(entries, first_enabled_idx);
473
474 if (first_enabled_idx >= XTENSA_MPU_NUM_ENTRIES) {
475 ret = -EINVAL;
476 goto out;
477 }
478 }
479
480 entry_slot_s = (struct xtensa_mpu_entry *)
481 check_addr_in_mpu_entries(entries, start_addr, first_enabled_idx,
482 &exact_s, &idx_s);
483 entry_slot_e = (struct xtensa_mpu_entry *)
484 check_addr_in_mpu_entries(entries, end_addr, first_enabled_idx,
485 &exact_e, &idx_e);
486
487 __ASSERT_NO_MSG(entry_slot_s != NULL);
488 __ASSERT_NO_MSG(entry_slot_e != NULL);
489 __ASSERT_NO_MSG(start_addr < end_addr);
490
491 if ((entry_slot_s == NULL) || (entry_slot_e == NULL)) {
492 ret = -EINVAL;
493 goto out;
494 }
495
496 /*
497 * Figure out if we need to add new slots for either addresses.
498 * If the addresses match exactly the addresses current in map,
499 * we can reuse those entries without adding new one.
500 */
501 if (!exact_s || !exact_e) {
502 uint8_t needed = (exact_s ? 0 : 1) + (exact_e ? 0 : 1);
503
504 /* Check if there are enough empty slots. */
505 if (first_enabled_idx < needed) {
506 ret = -ENOMEM;
507 goto out;
508 }
509 }
510
511 /*
512 * Need to keep track of the attributes of the memory region before
513 * we start adding entries, as we will need to apply the same
514 * attributes to the "ending address" entry to preseve the attributes
515 * of existing map.
516 */
517 prev_entry = *entry_slot_e;
518
519 /*
520 * Entry for beginning of new region.
521 *
522 * - Use existing entry if start addresses are the same for existing
523 * and incoming region. We can simply reuse the entry.
524 * - Add an entry if incoming region is within existing region.
525 */
526 if (!exact_s) {
527 /*
528 * Put a new entry before the first enabled entry.
529 * We will sort the entries later.
530 */
531 first_enabled_idx--;
532
533 entry_slot_s = &entries[first_enabled_idx];
534 }
535
536 xtensa_mpu_entry_set(entry_slot_s, start_addr, true, access_rights, memory_type);
537
538 /*
539 * Entry for ending of region.
540 *
541 * - Add an entry if incoming region is within existing region.
542 * - If the end address matches exactly to existing entry, there is
543 * no need to do anything.
544 */
545 if (!exact_e) {
546 /*
547 * Put a new entry before the first enabled entry.
548 * We will sort the entries later.
549 */
550 first_enabled_idx--;
551
552 entry_slot_e = &entries[first_enabled_idx];
553
554 /*
555 * Since we are going to punch a hole in the map,
556 * we need to preserve the attribute of existing region
557 * between the end address and next entry.
558 */
559 *entry_slot_e = prev_entry;
560 xtensa_mpu_entry_start_address_set(entry_slot_e, end_addr);
561 }
562
563 /* Sort the entries in ascending order of starting address */
564 sort_entries(entries);
565
566 /*
567 * Need to figure out where the start and end entries are as sorting
568 * may change their positions.
569 */
570 entry_slot_s = (struct xtensa_mpu_entry *)
571 check_addr_in_mpu_entries(entries, start_addr, first_enabled_idx,
572 &exact_s, &idx_s);
573 entry_slot_e = (struct xtensa_mpu_entry *)
574 check_addr_in_mpu_entries(entries, end_addr, first_enabled_idx,
575 &exact_e, &idx_e);
576
577 /* Both must be exact match. */
578 __ASSERT_NO_MSG(exact_s);
579 __ASSERT_NO_MSG(exact_e);
580
581 if (end_addr == 0xFFFFFFFFU) {
582 /*
583 * If end_addr = 0xFFFFFFFFU, entry_slot_e and idx_e both
584 * point to the last slot. Because the incoming region goes
585 * to the end of memory, we simply cheat by including
586 * the last entry by incrementing idx_e so the loop to
587 * update entries will change the attribute of last entry
588 * in map.
589 */
590 idx_e++;
591 }
592
593 /*
594 * Any existing entries between the "newly" popluated start and
595 * end entries must bear the same attributes. So modify them
596 * here.
597 */
598 for (int idx = idx_s + 1; idx < idx_e; idx++) {
599 xtensa_mpu_entry_attributes_set(&entries[idx], access_rights, memory_type);
600 }
601
602 end:
603 if (first_idx != NULL) {
604 *first_idx = first_enabled_idx;
605 }
606
607 ret = 0;
608
609 out:
610 return ret;
611 }
612
613 /**
614 * Write the MPU map to hardware.
615 *
616 * @param map Pointer to foreground MPU map.
617 */
618 #ifdef CONFIG_USERSPACE
619 /* With userspace enabled, the pointer to per memory domain MPU map is stashed
620 * inside the thread struct. If we still only take struct xtensa_mpu_map as
621 * argument, a wrapper function is needed. To avoid the cost associated with
622 * calling that wrapper function, takes thread pointer directly as argument
623 * when userspace is enabled. Not to mention that writing the map to hardware
624 * is already a costly operation per context switch. So every little bit helps.
625 */
xtensa_mpu_map_write(struct k_thread * thread)626 void xtensa_mpu_map_write(struct k_thread *thread)
627 #else
628 void xtensa_mpu_map_write(struct xtensa_mpu_map *map)
629 #endif
630 {
631 int entry;
632
633 #ifdef CONFIG_USERSPACE
634 struct xtensa_mpu_map *map = thread->arch.mpu_map;
635 #endif
636
637 /*
638 * Clear MPU entries first, then write MPU entries in reverse order.
639 *
640 * Remember that the boundary of each memory region is marked by
641 * two consecutive entries, and that the addresses of all entries
642 * must not be in descending order (i.e. equal or increasing).
643 * To ensure this, we clear out the entries first then write them
644 * in reverse order. This avoids any intermediate invalid
645 * configuration with regard to ordering.
646 */
647 for (entry = 0; entry < XTENSA_MPU_NUM_ENTRIES; entry++) {
648 __asm__ volatile("wptlb %0, %1\n\t" : : "a"(entry), "a"(0));
649 }
650
651 for (entry = XTENSA_MPU_NUM_ENTRIES - 1; entry >= 0; entry--) {
652 __asm__ volatile("wptlb %0, %1\n\t"
653 : : "a"(map->entries[entry].at), "a"(map->entries[entry].as));
654 }
655 }
656
657 /**
658 * Perform necessary steps to enable MPU.
659 */
xtensa_mpu_init(void)660 void xtensa_mpu_init(void)
661 {
662 unsigned int entry;
663 uint8_t first_enabled_idx;
664
665 /* Disable all foreground segments before we start configuration. */
666 xtensa_mpu_mpuenb_write(0);
667
668 /*
669 * Clear the foreground MPU map so we can populate it later with valid entries.
670 * Note that we still need to make sure the map is valid, and cannot be totally
671 * zeroed.
672 */
673 for (entry = 0; entry < XTENSA_MPU_NUM_ENTRIES; entry++) {
674 /* Make sure to zero out everything as a start, especially the MBZ fields. */
675 struct xtensa_mpu_entry ent = {0};
676
677 /* Segment value must correspond to the index. */
678 ent.at.p.segment = entry;
679
680 /* No access at all for both kernel and user modes. */
681 ent.at.p.access_rights = XTENSA_MPU_ACCESS_P_NA_U_NA;
682
683 /* Use default memory type for disabled entries. */
684 ent.at.p.memory_type = CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE;
685
686 xtensa_mpu_map_fg_kernel.entries[entry] = ent;
687 }
688
689 #ifndef CONFIG_XTENSA_MPU_ONLY_SOC_RANGES
690 /*
691 * Add necessary MPU entries for the memory regions of base Zephyr image.
692 */
693 for (entry = 0; entry < ARRAY_SIZE(mpu_zephyr_ranges); entry++) {
694 const struct xtensa_mpu_range *range = &mpu_zephyr_ranges[entry];
695
696 int ret = mpu_map_region_add(&xtensa_mpu_map_fg_kernel,
697 range->start, range->end,
698 range->access_rights, range->memory_type,
699 &first_enabled_idx);
700
701 ARG_UNUSED(ret);
702 __ASSERT(ret == 0, "Unable to add region [0x%08x, 0x%08x): %d",
703 (unsigned int)range->start,
704 (unsigned int)range->end,
705 ret);
706 }
707 #endif /* !CONFIG_XTENSA_MPU_ONLY_SOC_RANGES */
708
709 /*
710 * Now for the entries for memory regions needed by SoC.
711 */
712 for (entry = 0; entry < xtensa_soc_mpu_ranges_num; entry++) {
713 const struct xtensa_mpu_range *range = &xtensa_soc_mpu_ranges[entry];
714
715 int ret = mpu_map_region_add(&xtensa_mpu_map_fg_kernel,
716 range->start, range->end,
717 range->access_rights, range->memory_type,
718 &first_enabled_idx);
719
720 ARG_UNUSED(ret);
721 __ASSERT(ret == 0, "Unable to add region [0x%08x, 0x%08x): %d",
722 (unsigned int)range->start,
723 (unsigned int)range->end,
724 ret);
725 }
726
727 /* Consolidate entries so we have a compact map at boot. */
728 consolidate_entries(xtensa_mpu_map_fg_kernel.entries, first_enabled_idx);
729
730 /* Write the map into hardware. There is no turning back now. */
731 #ifdef CONFIG_USERSPACE
732 struct k_thread dummy_map_thread;
733
734 dummy_map_thread.arch.mpu_map = &xtensa_mpu_map_fg_kernel;
735 xtensa_mpu_map_write(&dummy_map_thread);
736 #else
737 xtensa_mpu_map_write(&xtensa_mpu_map_fg_kernel);
738 #endif
739 }
740
741 #ifdef CONFIG_USERSPACE
arch_mem_domain_init(struct k_mem_domain * domain)742 int arch_mem_domain_init(struct k_mem_domain *domain)
743 {
744 domain->arch.mpu_map = xtensa_mpu_map_fg_kernel;
745
746 return 0;
747 }
748
arch_mem_domain_max_partitions_get(void)749 int arch_mem_domain_max_partitions_get(void)
750 {
751 /*
752 * Due to each memory region requiring 2 MPU entries to describe,
753 * it is hard to figure out how many partitions are available.
754 * For example, if all those partitions are contiguous, it only
755 * needs 2 entries (1 if the end of region already has an entry).
756 * If they are all disjoint, it will need (2 * n) entries to
757 * describe all of them. So just use CONFIG_MAX_DOMAIN_PARTITIONS
758 * here and let the application set this instead.
759 */
760 return CONFIG_MAX_DOMAIN_PARTITIONS;
761 }
762
arch_mem_domain_partition_remove(struct k_mem_domain * domain,uint32_t partition_id)763 int arch_mem_domain_partition_remove(struct k_mem_domain *domain,
764 uint32_t partition_id)
765 {
766 int ret;
767 uint32_t perm;
768 struct xtensa_mpu_map *map = &domain->arch.mpu_map;
769 struct k_mem_partition *partition = &domain->partitions[partition_id];
770 uintptr_t end_addr = partition->start + partition->size;
771
772 if (end_addr <= partition->start) {
773 ret = -EINVAL;
774 goto out;
775 }
776
777 /*
778 * This is simply to get rid of the user permissions and retain
779 * whatever the kernel permissions are. So that we won't be
780 * setting the memory region permission incorrectly, for example,
781 * marking read only region writable.
782 *
783 * Note that Zephyr does not do RWX partitions so we can treat it
784 * as invalid.
785 */
786 switch (partition->attr) {
787 case XTENSA_MPU_ACCESS_P_RO_U_NA:
788 __fallthrough;
789 case XTENSA_MPU_ACCESS_P_RX_U_NA:
790 __fallthrough;
791 case XTENSA_MPU_ACCESS_P_RO_U_RO:
792 __fallthrough;
793 case XTENSA_MPU_ACCESS_P_RX_U_RX:
794 perm = XTENSA_MPU_ACCESS_P_RO_U_NA;
795 break;
796
797 case XTENSA_MPU_ACCESS_P_RW_U_NA:
798 __fallthrough;
799 case XTENSA_MPU_ACCESS_P_RWX_U_NA:
800 __fallthrough;
801 case XTENSA_MPU_ACCESS_P_RW_U_RWX:
802 __fallthrough;
803 case XTENSA_MPU_ACCESS_P_RW_U_RO:
804 __fallthrough;
805 case XTENSA_MPU_ACCESS_P_RWX_U_RX:
806 __fallthrough;
807 case XTENSA_MPU_ACCESS_P_RW_U_RW:
808 __fallthrough;
809 case XTENSA_MPU_ACCESS_P_RWX_U_RWX:
810 perm = XTENSA_MPU_ACCESS_P_RW_U_NA;
811 break;
812
813 default:
814 /* _P_X_U_NA is not a valid permission for userspace, so ignore.
815 * _P_NA_U_X becomes _P_NA_U_NA when removing user permissions.
816 * _P_WO_U_WO has not kernel only counterpart so just force no access.
817 * If we get here with _P_NA_P_NA, there is something seriously
818 * wrong with the userspace and/or application code.
819 */
820 perm = XTENSA_MPU_ACCESS_P_NA_U_NA;
821 break;
822 }
823
824 /*
825 * Reset the memory region attributes by simply "adding"
826 * a region with default attributes. If entries already
827 * exist for the region, the corresponding entries will
828 * be updated with the default attributes. Or new entries
829 * will be added to carve a hole in existing regions.
830 */
831 ret = mpu_map_region_add(map, partition->start, end_addr,
832 perm,
833 CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE,
834 NULL);
835
836 out:
837 return ret;
838 }
839
arch_mem_domain_partition_add(struct k_mem_domain * domain,uint32_t partition_id)840 int arch_mem_domain_partition_add(struct k_mem_domain *domain,
841 uint32_t partition_id)
842 {
843 int ret;
844 struct xtensa_mpu_map *map = &domain->arch.mpu_map;
845 struct k_mem_partition *partition = &domain->partitions[partition_id];
846 uintptr_t end_addr = partition->start + partition->size;
847
848 if (end_addr <= partition->start) {
849 ret = -EINVAL;
850 goto out;
851 }
852
853 ret = mpu_map_region_add(map, partition->start, end_addr,
854 (uint8_t)partition->attr,
855 CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE,
856 NULL);
857
858 out:
859 return ret;
860 }
861
arch_mem_domain_thread_add(struct k_thread * thread)862 int arch_mem_domain_thread_add(struct k_thread *thread)
863 {
864 int ret = 0;
865
866 /* New memory domain we are being added to */
867 struct k_mem_domain *domain = thread->mem_domain_info.mem_domain;
868
869 /*
870 * this is only set for threads that were migrating from some other
871 * memory domain; new threads this is NULL.
872 */
873 struct xtensa_mpu_map *old_map = thread->arch.mpu_map;
874
875 bool is_user = (thread->base.user_options & K_USER) != 0;
876 bool is_migration = (old_map != NULL) && is_user;
877
878 uintptr_t stack_end_addr = thread->stack_info.start + thread->stack_info.size;
879
880 if (stack_end_addr < thread->stack_info.start) {
881 /* Account for wrapping around back to 0. */
882 stack_end_addr = 0xFFFFFFFFU;
883 }
884
885 /*
886 * Allow USER access to the thread's stack in its new domain if
887 * we are migrating. If we are not migrating this is done in
888 * xtensa_user_stack_perms().
889 */
890 if (is_migration) {
891 /* Add stack to new domain's MPU map. */
892 ret = mpu_map_region_add(&domain->arch.mpu_map,
893 thread->stack_info.start, stack_end_addr,
894 XTENSA_MPU_ACCESS_P_RW_U_RW,
895 CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE,
896 NULL);
897
898 /* Probably this fails due to no more available slots in MPU map. */
899 __ASSERT_NO_MSG(ret == 0);
900 }
901
902 thread->arch.mpu_map = &domain->arch.mpu_map;
903
904 /*
905 * Remove thread stack from old memory domain if we are
906 * migrating away from old memory domain. This is done
907 * by simply remove USER access from the region.
908 */
909 if (is_migration) {
910 /*
911 * Remove stack from old MPU map by...
912 * "adding" a new memory region to the map
913 * as this carves a hole in the existing map.
914 */
915 ret = mpu_map_region_add(old_map,
916 thread->stack_info.start, stack_end_addr,
917 XTENSA_MPU_ACCESS_P_RW_U_NA,
918 CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE,
919 NULL);
920 }
921
922 /*
923 * Need to switch to new MPU map if this is the current
924 * running thread.
925 */
926 if (thread == _current_cpu->current) {
927 xtensa_mpu_map_write(thread);
928 }
929
930 return ret;
931 }
932
arch_mem_domain_thread_remove(struct k_thread * thread)933 int arch_mem_domain_thread_remove(struct k_thread *thread)
934 {
935 uintptr_t stack_end_addr;
936 int ret;
937
938 struct k_mem_domain *domain = thread->mem_domain_info.mem_domain;
939
940 if ((thread->base.user_options & K_USER) == 0) {
941 ret = 0;
942 goto out;
943 }
944
945 if ((thread->base.thread_state & _THREAD_DEAD) == 0) {
946 /* Thread is migrating to another memory domain and not
947 * exiting for good; we weren't called from
948 * z_thread_abort(). Resetting the stack region will
949 * take place in the forthcoming thread_add() call.
950 */
951 ret = 0;
952 goto out;
953 }
954
955 stack_end_addr = thread->stack_info.start + thread->stack_info.size;
956 if (stack_end_addr < thread->stack_info.start) {
957 /* Account for wrapping around back to 0. */
958 stack_end_addr = 0xFFFFFFFFU;
959 }
960
961 /*
962 * Restore permissions on the thread's stack area since it is no
963 * longer a member of the domain.
964 */
965 ret = mpu_map_region_add(&domain->arch.mpu_map,
966 thread->stack_info.start, stack_end_addr,
967 XTENSA_MPU_ACCESS_P_RW_U_NA,
968 CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE,
969 NULL);
970
971 xtensa_mpu_map_write(thread);
972
973 out:
974 return ret;
975 }
976
arch_buffer_validate(const void * addr,size_t size,int write)977 int arch_buffer_validate(const void *addr, size_t size, int write)
978 {
979 uintptr_t aligned_addr;
980 size_t aligned_size, addr_offset;
981 int ret = 0;
982
983 /* addr/size arbitrary, fix this up into an aligned region */
984 aligned_addr = ROUND_DOWN((uintptr_t)addr, XCHAL_MPU_ALIGN);
985 addr_offset = (uintptr_t)addr - aligned_addr;
986 aligned_size = ROUND_UP(size + addr_offset, XCHAL_MPU_ALIGN);
987
988 for (size_t offset = 0; offset < aligned_size;
989 offset += XCHAL_MPU_ALIGN) {
990 uint32_t probed = xtensa_pptlb_probe(aligned_addr + offset);
991
992 if ((probed & XTENSA_MPU_PROBE_VALID_ENTRY_MASK) == 0U) {
993 /* There is no foreground or background entry associated
994 * with the region.
995 */
996 ret = -EPERM;
997 goto out;
998 }
999
1000 uint8_t access_rights = (probed & XTENSA_MPU_PPTLB_ACCESS_RIGHTS_MASK)
1001 >> XTENSA_MPU_PPTLB_ACCESS_RIGHTS_SHIFT;
1002
1003 if (write) {
1004 /* Need to check write permission. */
1005 switch (access_rights) {
1006 case XTENSA_MPU_ACCESS_P_WO_U_WO:
1007 __fallthrough;
1008 case XTENSA_MPU_ACCESS_P_RW_U_RWX:
1009 __fallthrough;
1010 case XTENSA_MPU_ACCESS_P_RW_U_RW:
1011 __fallthrough;
1012 case XTENSA_MPU_ACCESS_P_RWX_U_RWX:
1013 /* These permissions are okay. */
1014 break;
1015 default:
1016 ret = -EPERM;
1017 goto out;
1018 }
1019 } else {
1020 /* Only check read permission. */
1021 switch (access_rights) {
1022 case XTENSA_MPU_ACCESS_P_RW_U_RWX:
1023 __fallthrough;
1024 case XTENSA_MPU_ACCESS_P_RW_U_RO:
1025 __fallthrough;
1026 case XTENSA_MPU_ACCESS_P_RWX_U_RX:
1027 __fallthrough;
1028 case XTENSA_MPU_ACCESS_P_RO_U_RO:
1029 __fallthrough;
1030 case XTENSA_MPU_ACCESS_P_RX_U_RX:
1031 __fallthrough;
1032 case XTENSA_MPU_ACCESS_P_RW_U_RW:
1033 __fallthrough;
1034 case XTENSA_MPU_ACCESS_P_RWX_U_RWX:
1035 /* These permissions are okay. */
1036 break;
1037 default:
1038 ret = -EPERM;
1039 goto out;
1040 }
1041 }
1042 }
1043
1044 out:
1045 return ret;
1046 }
1047
xtensa_mem_kernel_has_access(void * addr,size_t size,int write)1048 bool xtensa_mem_kernel_has_access(void *addr, size_t size, int write)
1049 {
1050 uintptr_t aligned_addr;
1051 size_t aligned_size, addr_offset;
1052 bool ret = true;
1053
1054 /* addr/size arbitrary, fix this up into an aligned region */
1055 aligned_addr = ROUND_DOWN((uintptr_t)addr, XCHAL_MPU_ALIGN);
1056 addr_offset = (uintptr_t)addr - aligned_addr;
1057 aligned_size = ROUND_UP(size + addr_offset, XCHAL_MPU_ALIGN);
1058
1059 for (size_t offset = 0; offset < aligned_size;
1060 offset += XCHAL_MPU_ALIGN) {
1061 uint32_t probed = xtensa_pptlb_probe(aligned_addr + offset);
1062
1063 if ((probed & XTENSA_MPU_PROBE_VALID_ENTRY_MASK) == 0U) {
1064 /* There is no foreground or background entry associated
1065 * with the region.
1066 */
1067 ret = false;
1068 goto out;
1069 }
1070
1071 uint8_t access_rights = (probed & XTENSA_MPU_PPTLB_ACCESS_RIGHTS_MASK)
1072 >> XTENSA_MPU_PPTLB_ACCESS_RIGHTS_SHIFT;
1073
1074
1075 if (write != 0) {
1076 /* Need to check write permission. */
1077 switch (access_rights) {
1078 case XTENSA_MPU_ACCESS_P_RW_U_NA:
1079 __fallthrough;
1080 case XTENSA_MPU_ACCESS_P_RWX_U_NA:
1081 __fallthrough;
1082 case XTENSA_MPU_ACCESS_P_WO_U_WO:
1083 __fallthrough;
1084 case XTENSA_MPU_ACCESS_P_RW_U_RWX:
1085 __fallthrough;
1086 case XTENSA_MPU_ACCESS_P_RW_U_RO:
1087 __fallthrough;
1088 case XTENSA_MPU_ACCESS_P_RWX_U_RX:
1089 __fallthrough;
1090 case XTENSA_MPU_ACCESS_P_RW_U_RW:
1091 __fallthrough;
1092 case XTENSA_MPU_ACCESS_P_RWX_U_RWX:
1093 /* These permissions are okay. */
1094 break;
1095 default:
1096 ret = false;
1097 goto out;
1098 }
1099 } else {
1100 /* Only check read permission. */
1101 switch (access_rights) {
1102 case XTENSA_MPU_ACCESS_P_RO_U_NA:
1103 __fallthrough;
1104 case XTENSA_MPU_ACCESS_P_RX_U_NA:
1105 __fallthrough;
1106 case XTENSA_MPU_ACCESS_P_RW_U_NA:
1107 __fallthrough;
1108 case XTENSA_MPU_ACCESS_P_RWX_U_NA:
1109 __fallthrough;
1110 case XTENSA_MPU_ACCESS_P_RW_U_RWX:
1111 __fallthrough;
1112 case XTENSA_MPU_ACCESS_P_RW_U_RO:
1113 __fallthrough;
1114 case XTENSA_MPU_ACCESS_P_RWX_U_RX:
1115 __fallthrough;
1116 case XTENSA_MPU_ACCESS_P_RO_U_RO:
1117 __fallthrough;
1118 case XTENSA_MPU_ACCESS_P_RX_U_RX:
1119 __fallthrough;
1120 case XTENSA_MPU_ACCESS_P_RW_U_RW:
1121 __fallthrough;
1122 case XTENSA_MPU_ACCESS_P_RWX_U_RWX:
1123 /* These permissions are okay. */
1124 break;
1125 default:
1126 ret = false;
1127 goto out;
1128 }
1129 }
1130 }
1131
1132 out:
1133 return ret;
1134 }
1135
1136
xtensa_user_stack_perms(struct k_thread * thread)1137 void xtensa_user_stack_perms(struct k_thread *thread)
1138 {
1139 int ret;
1140
1141 uintptr_t stack_end_addr = thread->stack_info.start + thread->stack_info.size;
1142
1143 if (stack_end_addr < thread->stack_info.start) {
1144 /* Account for wrapping around back to 0. */
1145 stack_end_addr = 0xFFFFFFFFU;
1146 }
1147
1148 (void)memset((void *)thread->stack_info.start,
1149 (IS_ENABLED(CONFIG_INIT_STACKS)) ? 0xAA : 0x00,
1150 thread->stack_info.size - thread->stack_info.delta);
1151
1152 /* Add stack to new domain's MPU map. */
1153 ret = mpu_map_region_add(thread->arch.mpu_map,
1154 thread->stack_info.start, stack_end_addr,
1155 XTENSA_MPU_ACCESS_P_RW_U_RW,
1156 CONFIG_XTENSA_MPU_DEFAULT_MEM_TYPE,
1157 NULL);
1158
1159 xtensa_mpu_map_write(thread);
1160
1161 /* Probably this fails due to no more available slots in MPU map. */
1162 ARG_UNUSED(ret);
1163 __ASSERT_NO_MSG(ret == 0);
1164 }
1165
1166 #endif /* CONFIG_USERSPACE */
1167