1 /*
2 * Copyright (c) 2016-2023, Arm Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10
11 #include <platform_def.h>
12
13 #include <arch.h>
14 #include <arch_features.h>
15 #include <arch_helpers.h>
16 #include <common/bl_common.h>
17 #include <context.h>
18 #include <lib/el3_runtime/context_mgmt.h>
19 #include <lib/extensions/amu.h>
20 #include <lib/extensions/pmuv3.h>
21 #include <lib/extensions/sys_reg_trace.h>
22 #include <lib/extensions/trf.h>
23 #include <lib/utils.h>
24
25 /*******************************************************************************
26 * Context management library initialisation routine. This library is used by
27 * runtime services to share pointers to 'cpu_context' structures for the secure
28 * and non-secure states. Management of the structures and their associated
29 * memory is not done by the context management library e.g. the PSCI service
30 * manages the cpu context used for entry from and exit to the non-secure state.
31 * The Secure payload manages the context(s) corresponding to the secure state.
32 * It also uses this library to get access to the non-secure
33 * state cpu context pointers.
34 ******************************************************************************/
cm_init(void)35 void cm_init(void)
36 {
37 /*
38 * The context management library has only global data to initialize, but
39 * that will be done when the BSS is zeroed out
40 */
41 }
42
43 /*******************************************************************************
44 * The following function initializes the cpu_context 'ctx' for
45 * first use, and sets the initial entrypoint state as specified by the
46 * entry_point_info structure.
47 *
48 * The security state to initialize is determined by the SECURE attribute
49 * of the entry_point_info.
50 *
51 * The EE and ST attributes are used to configure the endianness and secure
52 * timer availability for the new execution context.
53 *
54 * To prepare the register state for entry call cm_prepare_el3_exit() and
55 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
56 * cm_el1_sysregs_context_restore().
57 ******************************************************************************/
cm_setup_context(cpu_context_t * ctx,const entry_point_info_t * ep)58 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
59 {
60 unsigned int security_state;
61 uint32_t scr, sctlr;
62 regs_t *reg_ctx;
63
64 assert(ctx != NULL);
65
66 security_state = GET_SECURITY_STATE(ep->h.attr);
67
68 /* Clear any residual register values from the context */
69 zeromem(ctx, sizeof(*ctx));
70
71 reg_ctx = get_regs_ctx(ctx);
72
73 /*
74 * Base the context SCR on the current value, adjust for entry point
75 * specific requirements
76 */
77 scr = read_scr();
78 scr &= ~(SCR_NS_BIT | SCR_HCE_BIT);
79
80 if (security_state != SECURE)
81 scr |= SCR_NS_BIT;
82
83 if (security_state != SECURE) {
84 /*
85 * Set up SCTLR for the Non-secure context.
86 *
87 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
88 *
89 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
90 * required by PSCI specification)
91 *
92 * Set remaining SCTLR fields to their architecturally defined
93 * values. Some fields reset to an IMPLEMENTATION DEFINED value:
94 *
95 * SCTLR.TE: Set to zero so that exceptions to an Exception
96 * Level executing at PL1 are taken to A32 state.
97 *
98 * SCTLR.V: Set to zero to select the normal exception vectors
99 * with base address held in VBAR.
100 */
101 assert(((ep->spsr >> SPSR_E_SHIFT) & SPSR_E_MASK) ==
102 (EP_GET_EE(ep->h.attr) >> EP_EE_SHIFT));
103
104 sctlr = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
105 sctlr |= (SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_V_BIT));
106 write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr);
107 }
108
109 /*
110 * The target exception level is based on the spsr mode requested. If
111 * execution is requested to hyp mode, HVC is enabled via SCR.HCE.
112 */
113 if (GET_M32(ep->spsr) == MODE32_hyp)
114 scr |= SCR_HCE_BIT;
115
116 /*
117 * Store the initialised values for SCTLR and SCR in the cpu_context.
118 * The Hyp mode registers are not part of the saved context and are
119 * set-up in cm_prepare_el3_exit().
120 */
121 write_ctx_reg(reg_ctx, CTX_SCR, scr);
122 write_ctx_reg(reg_ctx, CTX_LR, ep->pc);
123 write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr);
124
125 /*
126 * Store the r0-r3 value from the entrypoint into the context
127 * Use memcpy as we are in control of the layout of the structures
128 */
129 memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t));
130 }
131
132 /*******************************************************************************
133 * Enable architecture extensions on first entry to Non-secure world.
134 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
135 * it is zero.
136 ******************************************************************************/
enable_extensions_nonsecure(bool el2_unused)137 static void enable_extensions_nonsecure(bool el2_unused)
138 {
139 #if IMAGE_BL32
140 if (is_feat_amu_supported()) {
141 amu_enable(el2_unused);
142 }
143
144 if (is_feat_sys_reg_trace_supported()) {
145 sys_reg_trace_init_el3();
146 }
147
148 if (is_feat_trf_supported()) {
149 trf_init_el3();
150 }
151
152 if (read_feat_pmuv3_id_field() >= 3U) {
153 pmuv3_init_el3();
154 }
155 #endif /* IMAGE_BL32 */
156 }
157
158 /*******************************************************************************
159 * The following function initializes the cpu_context for a CPU specified by
160 * its `cpu_idx` for first use, and sets the initial entrypoint state as
161 * specified by the entry_point_info structure.
162 ******************************************************************************/
cm_init_context_by_index(unsigned int cpu_idx,const entry_point_info_t * ep)163 void cm_init_context_by_index(unsigned int cpu_idx,
164 const entry_point_info_t *ep)
165 {
166 cpu_context_t *ctx;
167 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
168 cm_setup_context(ctx, ep);
169 }
170
171 /*******************************************************************************
172 * The following function initializes the cpu_context for the current CPU
173 * for first use, and sets the initial entrypoint state as specified by the
174 * entry_point_info structure.
175 ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)176 void cm_init_my_context(const entry_point_info_t *ep)
177 {
178 cpu_context_t *ctx;
179 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
180 cm_setup_context(ctx, ep);
181 }
182
183 /*******************************************************************************
184 * Prepare the CPU system registers for first entry into secure or normal world
185 *
186 * If execution is requested to hyp mode, HSCTLR is initialized
187 * If execution is requested to non-secure PL1, and the CPU supports
188 * HYP mode then HYP mode is disabled by configuring all necessary HYP mode
189 * registers.
190 ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)191 void cm_prepare_el3_exit(uint32_t security_state)
192 {
193 uint32_t hsctlr, scr;
194 cpu_context_t *ctx = cm_get_context(security_state);
195 bool el2_unused = false;
196
197 assert(ctx != NULL);
198
199 if (security_state == NON_SECURE) {
200 scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR);
201 if ((scr & SCR_HCE_BIT) != 0U) {
202 /* Use SCTLR value to initialize HSCTLR */
203 hsctlr = read_ctx_reg(get_regs_ctx(ctx),
204 CTX_NS_SCTLR);
205 hsctlr |= HSCTLR_RES1;
206 /* Temporarily set the NS bit to access HSCTLR */
207 write_scr(read_scr() | SCR_NS_BIT);
208 /*
209 * Make sure the write to SCR is complete so that
210 * we can access HSCTLR
211 */
212 isb();
213 write_hsctlr(hsctlr);
214 isb();
215
216 write_scr(read_scr() & ~SCR_NS_BIT);
217 isb();
218 } else if ((read_id_pfr1() &
219 (ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) != 0U) {
220 el2_unused = true;
221
222 /*
223 * Set the NS bit to access NS copies of certain banked
224 * registers
225 */
226 write_scr(read_scr() | SCR_NS_BIT);
227 isb();
228
229 /*
230 * Hyp / PL2 present but unused, need to disable safely.
231 * HSCTLR can be ignored in this case.
232 *
233 * Set HCR to its architectural reset value so that
234 * Non-secure operations do not trap to Hyp mode.
235 */
236 write_hcr(HCR_RESET_VAL);
237
238 /*
239 * Set HCPTR to its architectural reset value so that
240 * Non-secure access from EL1 or EL0 to trace and to
241 * Advanced SIMD and floating point functionality does
242 * not trap to Hyp mode.
243 */
244 write_hcptr(HCPTR_RESET_VAL);
245
246 /*
247 * Initialise CNTHCTL. All fields are architecturally
248 * UNKNOWN on reset and are set to zero except for
249 * field(s) listed below.
250 *
251 * CNTHCTL.PL1PCEN: Disable traps to Hyp mode of
252 * Non-secure EL0 and EL1 accessed to the physical
253 * timer registers.
254 *
255 * CNTHCTL.PL1PCTEN: Disable traps to Hyp mode of
256 * Non-secure EL0 and EL1 accessed to the physical
257 * counter registers.
258 */
259 write_cnthctl(CNTHCTL_RESET_VAL |
260 PL1PCEN_BIT | PL1PCTEN_BIT);
261
262 /*
263 * Initialise CNTVOFF to zero as it resets to an
264 * IMPLEMENTATION DEFINED value.
265 */
266 write64_cntvoff(0);
267
268 /*
269 * Set VPIDR and VMPIDR to match MIDR_EL1 and MPIDR
270 * respectively.
271 */
272 write_vpidr(read_midr());
273 write_vmpidr(read_mpidr());
274
275 /*
276 * Initialise VTTBR, setting all fields rather than
277 * relying on the hw. Some fields are architecturally
278 * UNKNOWN at reset.
279 *
280 * VTTBR.VMID: Set to zero which is the architecturally
281 * defined reset value. Even though EL1&0 stage 2
282 * address translation is disabled, cache maintenance
283 * operations depend on the VMID.
284 *
285 * VTTBR.BADDR: Set to zero as EL1&0 stage 2 address
286 * translation is disabled.
287 */
288 write64_vttbr(VTTBR_RESET_VAL &
289 ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
290 | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
291
292 /*
293 * Initialise HDCR, setting all the fields rather than
294 * relying on hw.
295 *
296 * HDCR.HPMN: Set to value of PMCR.N which is the
297 * architecturally-defined reset value.
298 *
299 * HDCR.HLP: Set to one so that event counter
300 * overflow, that is recorded in PMOVSCLR[0-30],
301 * occurs on the increment that changes
302 * PMEVCNTR<n>[63] from 1 to 0, when ARMv8.5-PMU is
303 * implemented. This bit is RES0 in versions of the
304 * architecture earlier than ARMv8.5, setting it to 1
305 * doesn't have any effect on them.
306 * This bit is Reserved, UNK/SBZP in ARMv7.
307 *
308 * HDCR.HPME: Set to zero to disable EL2 Event
309 * counters.
310 */
311 #if (ARM_ARCH_MAJOR > 7)
312 write_hdcr((HDCR_RESET_VAL | HDCR_HLP_BIT |
313 ((read_pmcr() & PMCR_N_BITS) >>
314 PMCR_N_SHIFT)) & ~HDCR_HPME_BIT);
315 #else
316 write_hdcr((HDCR_RESET_VAL |
317 ((read_pmcr() & PMCR_N_BITS) >>
318 PMCR_N_SHIFT)) & ~HDCR_HPME_BIT);
319 #endif
320 /*
321 * Set HSTR to its architectural reset value so that
322 * access to system registers in the cproc=1111
323 * encoding space do not trap to Hyp mode.
324 */
325 write_hstr(HSTR_RESET_VAL);
326 /*
327 * Set CNTHP_CTL to its architectural reset value to
328 * disable the EL2 physical timer and prevent timer
329 * interrupts. Some fields are architecturally UNKNOWN
330 * on reset and are set to zero.
331 */
332 write_cnthp_ctl(CNTHP_CTL_RESET_VAL);
333 isb();
334
335 write_scr(read_scr() & ~SCR_NS_BIT);
336 isb();
337 }
338 enable_extensions_nonsecure(el2_unused);
339 }
340 }
341
342 /*******************************************************************************
343 * This function is used to exit to Non-secure world. It simply calls the
344 * cm_prepare_el3_exit function for AArch32.
345 ******************************************************************************/
cm_prepare_el3_exit_ns(void)346 void cm_prepare_el3_exit_ns(void)
347 {
348 cm_prepare_el3_exit(NON_SECURE);
349 }
350