1 /*
2  * Copyright (c) 2015-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2023, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/debug.h>
13 #include <common/interrupt_props.h>
14 #include <drivers/arm/gic600_multichip.h>
15 #include <drivers/arm/gicv3.h>
16 #include <lib/spinlock.h>
17 #include <plat/common/platform.h>
18 
19 #include "gicv3_private.h"
20 
21 const gicv3_driver_data_t *gicv3_driver_data;
22 
23 /*
24  * Spinlock to guard registers needing read-modify-write. APIs protected by this
25  * spinlock are used either at boot time (when only a single CPU is active), or
26  * when the system is fully coherent.
27  */
28 static spinlock_t gic_lock;
29 
30 /*
31  * Redistributor power operations are weakly bound so that they can be
32  * overridden
33  */
34 #pragma weak gicv3_rdistif_off
35 #pragma weak gicv3_rdistif_on
36 
37 /* Check interrupt ID for SGI/(E)PPI and (E)SPIs */
38 static bool is_sgi_ppi(unsigned int id);
39 
40 /*
41  * Helper macros to save and restore GICR and GICD registers
42  * corresponding to their numbers to and from the context
43  */
44 #define RESTORE_GICR_REG(base, ctx, name, i)	\
45 	gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)])
46 
47 #define SAVE_GICR_REG(base, ctx, name, i)	\
48 	(ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i))
49 
50 /* Helper macros to save and restore GICD registers to and from the context */
51 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
52 	do {								\
53 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
54 				int_id += (1U << REG##R_SHIFT)) {	\
55 			gicd_write_##reg((base), int_id,		\
56 				(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
57 							REG##R_SHIFT]);	\
58 		}							\
59 	} while (false)
60 
61 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
62 	do {								\
63 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
64 				int_id += (1U << REG##R_SHIFT)) {	\
65 			(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >>	\
66 			REG##R_SHIFT] = gicd_read_##reg((base), int_id); \
67 		}							\
68 	} while (false)
69 
70 #if GIC_EXT_INTID
71 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)		\
72 	do {								\
73 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
74 				int_id += (1U << REG##R_SHIFT)) {	\
75 			gicd_write_##reg((base), int_id,		\
76 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
77 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
78 						>> REG##R_SHIFT]);	\
79 		}							\
80 	} while (false)
81 
82 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)			\
83 	do {								\
84 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
85 				int_id += (1U << REG##R_SHIFT)) {	\
86 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
87 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
88 			>> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\
89 		}							\
90 	} while (false)
91 #else
92 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)
93 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)
94 #endif /* GIC_EXT_INTID */
95 
96 /*******************************************************************************
97  * This function initialises the ARM GICv3 driver in EL3 with provided platform
98  * inputs.
99  ******************************************************************************/
gicv3_driver_init(const gicv3_driver_data_t * plat_driver_data)100 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
101 {
102 	unsigned int gic_version;
103 	unsigned int gicv2_compat;
104 
105 	assert(plat_driver_data != NULL);
106 	assert(plat_driver_data->gicd_base != 0U);
107 	assert(plat_driver_data->rdistif_num != 0U);
108 	assert(plat_driver_data->rdistif_base_addrs != NULL);
109 
110 	assert(IS_IN_EL3());
111 
112 	assert((plat_driver_data->interrupt_props_num != 0U) ?
113 	       (plat_driver_data->interrupt_props != NULL) : 1);
114 
115 	/* Check for system register support */
116 #ifndef __aarch64__
117 	assert((read_id_pfr1() &
118 			(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
119 #else
120 	assert((read_id_aa64pfr0_el1() &
121 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
122 #endif /* !__aarch64__ */
123 
124 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
125 	gic_version >>= PIDR2_ARCH_REV_SHIFT;
126 	gic_version &= PIDR2_ARCH_REV_MASK;
127 
128 	/* Check GIC version */
129 #if !GIC_ENABLE_V4_EXTN
130 	assert(gic_version == ARCH_REV_GICV3);
131 #endif
132 	/*
133 	 * Find out whether the GIC supports the GICv2 compatibility mode.
134 	 * The ARE_S bit resets to 0 if supported
135 	 */
136 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
137 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
138 	gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
139 
140 	if (plat_driver_data->gicr_base != 0U) {
141 		/*
142 		 * Find the base address of each implemented Redistributor interface.
143 		 * The number of interfaces should be equal to the number of CPUs in the
144 		 * system. The memory for saving these addresses has to be allocated by
145 		 * the platform port
146 		 */
147 		gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
148 						   plat_driver_data->rdistif_num,
149 						   plat_driver_data->gicr_base,
150 						   plat_driver_data->mpidr_to_core_pos);
151 #if !HW_ASSISTED_COHERENCY
152 		/*
153 		 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
154 		 */
155 		flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
156 			plat_driver_data->rdistif_num *
157 			sizeof(*(plat_driver_data->rdistif_base_addrs)));
158 #endif
159 	}
160 	gicv3_driver_data = plat_driver_data;
161 
162 	/*
163 	 * The GIC driver data is initialized by the primary CPU with caches
164 	 * enabled. When the secondary CPU boots up, it initializes the
165 	 * GICC/GICR interface with the caches disabled. Hence flush the
166 	 * driver data to ensure coherency. This is not required if the
167 	 * platform has HW_ASSISTED_COHERENCY enabled.
168 	 */
169 #if !HW_ASSISTED_COHERENCY
170 	flush_dcache_range((uintptr_t)&gicv3_driver_data,
171 		sizeof(gicv3_driver_data));
172 	flush_dcache_range((uintptr_t)gicv3_driver_data,
173 		sizeof(*gicv3_driver_data));
174 #endif
175 	gicv3_check_erratas_applies(plat_driver_data->gicd_base);
176 
177 	INFO("GICv%u with%s legacy support detected.\n", gic_version,
178 				(gicv2_compat == 0U) ? "" : "out");
179 	INFO("ARM GICv%u driver initialized in EL3\n", gic_version);
180 }
181 
182 /*******************************************************************************
183  * This function initialises the GIC distributor interface based upon the data
184  * provided by the platform while initialising the driver.
185  ******************************************************************************/
gicv3_distif_init(void)186 void __init gicv3_distif_init(void)
187 {
188 	unsigned int bitmap;
189 
190 	assert(gicv3_driver_data != NULL);
191 	assert(gicv3_driver_data->gicd_base != 0U);
192 
193 	assert(IS_IN_EL3());
194 
195 	/*
196 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
197 	 * the ARE_S bit. The Distributor might generate a system error
198 	 * otherwise.
199 	 */
200 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
201 		      CTLR_ENABLE_G0_BIT |
202 		      CTLR_ENABLE_G1S_BIT |
203 		      CTLR_ENABLE_G1NS_BIT,
204 		      RWP_TRUE);
205 
206 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
207 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
208 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
209 
210 	/* Set the default attribute of all (E)SPIs */
211 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
212 
213 	bitmap = gicv3_secure_spis_config_props(
214 			gicv3_driver_data->gicd_base,
215 			gicv3_driver_data->interrupt_props,
216 			gicv3_driver_data->interrupt_props_num);
217 
218 	/* Enable the secure (E)SPIs now that they have been configured */
219 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
220 }
221 
222 /*******************************************************************************
223  * This function initialises the GIC Redistributor interface of the calling CPU
224  * (identified by the 'proc_num' parameter) based upon the data provided by the
225  * platform while initialising the driver.
226  ******************************************************************************/
gicv3_rdistif_init(unsigned int proc_num)227 void gicv3_rdistif_init(unsigned int proc_num)
228 {
229 	uintptr_t gicr_base;
230 	unsigned int bitmap;
231 	uint32_t ctlr;
232 
233 	assert(gicv3_driver_data != NULL);
234 	assert(proc_num < gicv3_driver_data->rdistif_num);
235 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
236 	assert(gicv3_driver_data->gicd_base != 0U);
237 
238 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
239 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
240 
241 	assert(IS_IN_EL3());
242 
243 	/* Power on redistributor */
244 	gicv3_rdistif_on(proc_num);
245 
246 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
247 	assert(gicr_base != 0U);
248 
249 	/* Set the default attribute of all SGIs and (E)PPIs */
250 	gicv3_ppi_sgi_config_defaults(gicr_base);
251 
252 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
253 			gicv3_driver_data->interrupt_props,
254 			gicv3_driver_data->interrupt_props_num);
255 
256 	/* Enable interrupt groups as required, if not already */
257 	if ((ctlr & bitmap) != bitmap) {
258 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
259 	}
260 }
261 
262 /*******************************************************************************
263  * Functions to perform power operations on GIC Redistributor
264  ******************************************************************************/
gicv3_rdistif_off(unsigned int proc_num)265 void gicv3_rdistif_off(unsigned int proc_num)
266 {
267 }
268 
gicv3_rdistif_on(unsigned int proc_num)269 void gicv3_rdistif_on(unsigned int proc_num)
270 {
271 }
272 
273 /*******************************************************************************
274  * This function enables the GIC CPU interface of the calling CPU using only
275  * system register accesses.
276  ******************************************************************************/
gicv3_cpuif_enable(unsigned int proc_num)277 void gicv3_cpuif_enable(unsigned int proc_num)
278 {
279 	uintptr_t gicr_base;
280 	u_register_t scr_el3;
281 	unsigned int icc_sre_el3;
282 
283 	assert(gicv3_driver_data != NULL);
284 	assert(proc_num < gicv3_driver_data->rdistif_num);
285 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
286 	assert(IS_IN_EL3());
287 
288 	/* Mark the connected core as awake */
289 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
290 	gicv3_rdistif_mark_core_awake(gicr_base);
291 
292 	/* Disable the legacy interrupt bypass */
293 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
294 
295 	/*
296 	 * Enable system register access for EL3 and allow lower exception
297 	 * levels to configure the same for themselves. If the legacy mode is
298 	 * not supported, the SRE bit is RAO/WI
299 	 */
300 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
301 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
302 
303 	scr_el3 = read_scr_el3();
304 
305 	/*
306 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
307 	 * ICC_SRE_EL2 registers.
308 	 */
309 	write_scr_el3(scr_el3 | SCR_NS_BIT);
310 	isb();
311 
312 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
313 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
314 	isb();
315 
316 	/* Switch to secure state. */
317 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
318 	isb();
319 
320 	/* Write the secure ICC_SRE_EL1 register */
321 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
322 	isb();
323 
324 	/* Program the idle priority in the PMR */
325 	write_icc_pmr_el1(GIC_PRI_MASK);
326 
327 	/* Enable Group0 interrupts */
328 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
329 
330 	/* Enable Group1 Secure interrupts */
331 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
332 				IGRPEN1_EL3_ENABLE_G1S_BIT);
333 	/* and restore the original */
334 	write_scr_el3(scr_el3);
335 	isb();
336 	/* Add DSB to ensure visibility of System register writes */
337 	dsb();
338 }
339 
340 /*******************************************************************************
341  * This function disables the GIC CPU interface of the calling CPU using
342  * only system register accesses.
343  ******************************************************************************/
gicv3_cpuif_disable(unsigned int proc_num)344 void gicv3_cpuif_disable(unsigned int proc_num)
345 {
346 	uintptr_t gicr_base;
347 
348 	assert(gicv3_driver_data != NULL);
349 	assert(proc_num < gicv3_driver_data->rdistif_num);
350 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
351 
352 	assert(IS_IN_EL3());
353 
354 	/* Disable legacy interrupt bypass */
355 	write_icc_sre_el3(read_icc_sre_el3() |
356 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
357 
358 	/* Disable Group0 interrupts */
359 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
360 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
361 
362 	/* Disable Group1 Secure and Non-Secure interrupts */
363 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
364 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
365 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
366 
367 	/* Synchronise accesses to group enable registers */
368 	isb();
369 	/* Add DSB to ensure visibility of System register writes */
370 	dsb();
371 
372 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
373 	assert(gicr_base != 0UL);
374 
375 	/*
376 	 * dsb() already issued previously after clearing the CPU group
377 	 * enabled, apply below workaround to toggle the "DPG*"
378 	 * bits of GICR_CTLR register for unblocking event.
379 	 */
380 	gicv3_apply_errata_wa_2384374(gicr_base);
381 
382 	/* Mark the connected core as asleep */
383 	gicv3_rdistif_mark_core_asleep(gicr_base);
384 }
385 
386 /*******************************************************************************
387  * This function returns the id of the highest priority pending interrupt at
388  * the GIC cpu interface.
389  ******************************************************************************/
gicv3_get_pending_interrupt_id(void)390 unsigned int gicv3_get_pending_interrupt_id(void)
391 {
392 	unsigned int id;
393 
394 	assert(IS_IN_EL3());
395 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
396 
397 	/*
398 	 * If the ID is special identifier corresponding to G1S or G1NS
399 	 * interrupt, then read the highest pending group 1 interrupt.
400 	 */
401 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) {
402 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
403 	}
404 
405 	return id;
406 }
407 
408 /*******************************************************************************
409  * This function returns the type of the highest priority pending interrupt at
410  * the GIC cpu interface. The return values can be one of the following :
411  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
412  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
413  *   0 - 1019           : The interrupt type is secure Group 0.
414  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
415  *                            sufficient priority to be signaled
416  ******************************************************************************/
gicv3_get_pending_interrupt_type(void)417 unsigned int gicv3_get_pending_interrupt_type(void)
418 {
419 	assert(IS_IN_EL3());
420 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
421 }
422 
423 /*******************************************************************************
424  * This function returns the group that has been configured under by the
425  * interrupt controller for the given interrupt id i.e. either group0 or group1
426  * Secure / Non Secure. The return value can be one of the following :
427  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
428  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
429  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
430  *                   interrupt.
431  ******************************************************************************/
gicv3_get_interrupt_group(unsigned int id,unsigned int proc_num)432 unsigned int gicv3_get_interrupt_group(unsigned int id, unsigned int proc_num)
433 {
434 	unsigned int igroup, grpmodr;
435 	uintptr_t gicr_base;
436 	uintptr_t gicd_base;
437 
438 	assert(IS_IN_EL3());
439 	assert(gicv3_driver_data != NULL);
440 
441 	/* Ensure the parameters are valid */
442 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
443 	assert(proc_num < gicv3_driver_data->rdistif_num);
444 
445 	/* All LPI interrupts are Group 1 non secure */
446 	if (id >= MIN_LPI_ID) {
447 		return INTR_GROUP1NS;
448 	}
449 
450 	/* Check interrupt ID */
451 	if (is_sgi_ppi(id)) {
452 		/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
453 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
454 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
455 		igroup = gicr_get_igroupr(gicr_base, id);
456 		grpmodr = gicr_get_igrpmodr(gicr_base, id);
457 	} else {
458 		/* SPIs: 32-1019, ESPIs: 4096-5119 */
459 		assert(gicv3_driver_data->gicd_base != 0U);
460 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
461 		igroup = gicd_get_igroupr(gicd_base, id);
462 		grpmodr = gicd_get_igrpmodr(gicd_base, id);
463 	}
464 
465 	/*
466 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
467 	 * interrupt
468 	 */
469 	if (igroup != 0U) {
470 		return INTR_GROUP1NS;
471 	}
472 
473 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
474 	if (grpmodr != 0U) {
475 		return INTR_GROUP1S;
476 	}
477 
478 	/* Else it is a Group 0 Secure interrupt */
479 	return INTR_GROUP0;
480 }
481 
482 /*****************************************************************************
483  * Function to save and disable the GIC ITS register context. The power
484  * management of GIC ITS is implementation-defined and this function doesn't
485  * save any memory structures required to support ITS. As the sequence to save
486  * this state is implementation defined, it should be executed in platform
487  * specific code. Calling this function alone and then powering down the GIC and
488  * ITS without implementing the aforementioned platform specific code will
489  * corrupt the ITS state.
490  *
491  * This function must be invoked after the GIC CPU interface is disabled.
492  *****************************************************************************/
gicv3_its_save_disable(uintptr_t gits_base,gicv3_its_ctx_t * const its_ctx)493 void gicv3_its_save_disable(uintptr_t gits_base,
494 				gicv3_its_ctx_t * const its_ctx)
495 {
496 	unsigned int i;
497 
498 	assert(gicv3_driver_data != NULL);
499 	assert(IS_IN_EL3());
500 	assert(its_ctx != NULL);
501 	assert(gits_base != 0U);
502 
503 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
504 
505 	/* Disable the ITS */
506 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
507 
508 	/* Wait for quiescent state */
509 	gits_wait_for_quiescent_bit(gits_base);
510 
511 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
512 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
513 
514 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
515 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
516 	}
517 }
518 
519 /*****************************************************************************
520  * Function to restore the GIC ITS register context. The power
521  * management of GIC ITS is implementation defined and this function doesn't
522  * restore any memory structures required to support ITS. The assumption is
523  * that these structures are in memory and are retained during system suspend.
524  *
525  * This must be invoked before the GIC CPU interface is enabled.
526  *****************************************************************************/
gicv3_its_restore(uintptr_t gits_base,const gicv3_its_ctx_t * const its_ctx)527 void gicv3_its_restore(uintptr_t gits_base,
528 			const gicv3_its_ctx_t * const its_ctx)
529 {
530 	unsigned int i;
531 
532 	assert(gicv3_driver_data != NULL);
533 	assert(IS_IN_EL3());
534 	assert(its_ctx != NULL);
535 	assert(gits_base != 0U);
536 
537 	/* Assert that the GITS is disabled and quiescent */
538 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
539 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
540 
541 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
542 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
543 
544 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
545 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
546 	}
547 
548 	/* Restore the ITS CTLR but leave the ITS disabled */
549 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
550 }
551 
552 /*****************************************************************************
553  * Function to save the GIC Redistributor register context. This function
554  * must be invoked after CPU interface disable and prior to Distributor save.
555  *****************************************************************************/
gicv3_rdistif_save(unsigned int proc_num,gicv3_redist_ctx_t * const rdist_ctx)556 void gicv3_rdistif_save(unsigned int proc_num,
557 			gicv3_redist_ctx_t * const rdist_ctx)
558 {
559 	uintptr_t gicr_base;
560 	unsigned int i, ppi_regs_num, regs_num;
561 
562 	assert(gicv3_driver_data != NULL);
563 	assert(proc_num < gicv3_driver_data->rdistif_num);
564 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
565 	assert(IS_IN_EL3());
566 	assert(rdist_ctx != NULL);
567 
568 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
569 
570 #if GIC_EXT_INTID
571 	/* Calculate number of PPI registers */
572 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
573 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
574 	/* All other values except PPInum [0-2] are reserved */
575 	if (ppi_regs_num > 3U) {
576 		ppi_regs_num = 1U;
577 	}
578 #else
579 	ppi_regs_num = 1U;
580 #endif
581 	/*
582 	 * Wait for any write to GICR_CTLR to complete before trying to save any
583 	 * state.
584 	 */
585 	gicr_wait_for_pending_write(gicr_base);
586 
587 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
588 
589 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
590 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
591 
592 	/* 32 interrupt IDs per register */
593 	for (i = 0U; i < ppi_regs_num; ++i) {
594 		SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
595 		SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
596 		SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
597 		SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
598 		SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
599 	}
600 
601 	/* 16 interrupt IDs per GICR_ICFGR register */
602 	regs_num = ppi_regs_num << 1;
603 	for (i = 0U; i < regs_num; ++i) {
604 		SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
605 	}
606 
607 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
608 
609 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
610 	regs_num = ppi_regs_num << 3;
611 	for (i = 0U; i < regs_num; ++i) {
612 		rdist_ctx->gicr_ipriorityr[i] =
613 		gicr_ipriorityr_read(gicr_base, i);
614 	}
615 
616 	/*
617 	 * Call the pre-save hook that implements the IMP DEF sequence that may
618 	 * be required on some GIC implementations. As this may need to access
619 	 * the Redistributor registers, we pass it proc_num.
620 	 */
621 	gicv3_distif_pre_save(proc_num);
622 }
623 
624 /*****************************************************************************
625  * Function to restore the GIC Redistributor register context. We disable
626  * LPI and per-cpu interrupts before we start restore of the Redistributor.
627  * This function must be invoked after Distributor restore but prior to
628  * CPU interface enable. The pending and active interrupts are restored
629  * after the interrupts are fully configured and enabled.
630  *****************************************************************************/
gicv3_rdistif_init_restore(unsigned int proc_num,const gicv3_redist_ctx_t * const rdist_ctx)631 void gicv3_rdistif_init_restore(unsigned int proc_num,
632 				const gicv3_redist_ctx_t * const rdist_ctx)
633 {
634 	uintptr_t gicr_base;
635 	unsigned int i, ppi_regs_num, regs_num;
636 
637 	assert(gicv3_driver_data != NULL);
638 	assert(proc_num < gicv3_driver_data->rdistif_num);
639 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
640 	assert(IS_IN_EL3());
641 	assert(rdist_ctx != NULL);
642 
643 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
644 
645 #if GIC_EXT_INTID
646 	/* Calculate number of PPI registers */
647 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
648 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
649 	/* All other values except PPInum [0-2] are reserved */
650 	if (ppi_regs_num > 3U) {
651 		ppi_regs_num = 1U;
652 	}
653 #else
654 	ppi_regs_num = 1U;
655 #endif
656 	/* Power on redistributor */
657 	gicv3_rdistif_on(proc_num);
658 
659 	/*
660 	 * Call the post-restore hook that implements the IMP DEF sequence that
661 	 * may be required on some GIC implementations. As this may need to
662 	 * access the Redistributor registers, we pass it proc_num.
663 	 */
664 	gicv3_distif_post_restore(proc_num);
665 
666 	/*
667 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
668 	 * This is a more scalable approach as it avoids clearing the enable
669 	 * bits in the GICD_CTLR.
670 	 */
671 	for (i = 0U; i < ppi_regs_num; ++i) {
672 		gicr_write_icenabler(gicr_base, i, ~0U);
673 	}
674 
675 	/* Wait for pending writes to GICR_ICENABLER */
676 	gicr_wait_for_pending_write(gicr_base);
677 
678 	/*
679 	 * Disable the LPIs to avoid unpredictable behavior when writing to
680 	 * GICR_PROPBASER and GICR_PENDBASER.
681 	 */
682 	gicr_write_ctlr(gicr_base,
683 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
684 
685 	/* Restore registers' content */
686 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
687 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
688 
689 	/* 32 interrupt IDs per register */
690 	for (i = 0U; i < ppi_regs_num; ++i) {
691 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
692 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
693 	}
694 
695 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
696 	regs_num = ppi_regs_num << 3;
697 	for (i = 0U; i < regs_num; ++i) {
698 		gicr_ipriorityr_write(gicr_base, i,
699 					rdist_ctx->gicr_ipriorityr[i]);
700 	}
701 
702 	/* 16 interrupt IDs per GICR_ICFGR register */
703 	regs_num = ppi_regs_num << 1;
704 	for (i = 0U; i < regs_num; ++i) {
705 		RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
706 	}
707 
708 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
709 
710 	/* Restore after group and priorities are set.
711 	 * 32 interrupt IDs per register
712 	 */
713 	for (i = 0U; i < ppi_regs_num; ++i) {
714 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
715 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
716 	}
717 
718 	/*
719 	 * Wait for all writes to the Distributor to complete before enabling
720 	 * the SGI and (E)PPIs.
721 	 */
722 	gicr_wait_for_upstream_pending_write(gicr_base);
723 
724 	/* 32 interrupt IDs per GICR_ISENABLER register */
725 	for (i = 0U; i < ppi_regs_num; ++i) {
726 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
727 	}
728 
729 	/*
730 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
731 	 * the first write to GICR_CTLR was still in flight (this write only
732 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
733 	 * bit).
734 	 */
735 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
736 	gicr_wait_for_pending_write(gicr_base);
737 }
738 
739 /*****************************************************************************
740  * Function to save the GIC Distributor register context. This function
741  * must be invoked after CPU interface disable and Redistributor save.
742  *****************************************************************************/
gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)743 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
744 {
745 	assert(gicv3_driver_data != NULL);
746 	assert(gicv3_driver_data->gicd_base != 0U);
747 	assert(IS_IN_EL3());
748 	assert(dist_ctx != NULL);
749 
750 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
751 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
752 #if GIC_EXT_INTID
753 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
754 #endif
755 
756 	/* Wait for pending write to complete */
757 	gicd_wait_for_pending_write(gicd_base);
758 
759 	/* Save the GICD_CTLR */
760 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
761 
762 	/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
763 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
764 
765 	/* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */
766 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
767 
768 	/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
769 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
770 
771 	/* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */
772 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
773 
774 	/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
775 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
776 
777 	/* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */
778 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints,	ispendr, ISPEND);
779 
780 	/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
781 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
782 
783 	/* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */
784 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
785 
786 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
787 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
788 
789 	/* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
790 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
791 
792 	/* Save GICD_ICFGR for INTIDs 32 - 1019 */
793 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
794 
795 	/* Save GICD_ICFGRE for INTIDs 4096 - 5119 */
796 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
797 
798 	/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
799 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
800 
801 	/* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */
802 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
803 
804 	/* Save GICD_NSACR for INTIDs 32 - 1019 */
805 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
806 
807 	/* Save GICD_NSACRE for INTIDs 4096 - 5119 */
808 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
809 
810 	/* Save GICD_IROUTER for INTIDs 32 - 1019 */
811 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
812 
813 	/* Save GICD_IROUTERE for INTIDs 4096 - 5119 */
814 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
815 
816 	/*
817 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
818 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
819 	 * driver.
820 	 */
821 }
822 
823 /*****************************************************************************
824  * Function to restore the GIC Distributor register context. We disable G0, G1S
825  * and G1NS interrupt groups before we start restore of the Distributor. This
826  * function must be invoked prior to Redistributor restore and CPU interface
827  * enable. The pending and active interrupts are restored after the interrupts
828  * are fully configured and enabled.
829  *****************************************************************************/
gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)830 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
831 {
832 	assert(gicv3_driver_data != NULL);
833 	assert(gicv3_driver_data->gicd_base != 0U);
834 	assert(IS_IN_EL3());
835 	assert(dist_ctx != NULL);
836 
837 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
838 
839 	/*
840 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
841 	 * the ARE_S bit. The Distributor might generate a system error
842 	 * otherwise.
843 	 */
844 	gicd_clr_ctlr(gicd_base,
845 		      CTLR_ENABLE_G0_BIT |
846 		      CTLR_ENABLE_G1S_BIT |
847 		      CTLR_ENABLE_G1NS_BIT,
848 		      RWP_TRUE);
849 
850 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
851 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
852 
853 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
854 #if GIC_EXT_INTID
855 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
856 #endif
857 	/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
858 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
859 
860 	/* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */
861 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
862 
863 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
864 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
865 
866 	/* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
867 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
868 
869 	/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
870 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
871 
872 	/* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */
873 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
874 
875 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
876 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
877 
878 	/* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */
879 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
880 
881 	/* Restore GICD_NSACR for INTIDs 32 - 1019 */
882 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
883 
884 	/* Restore GICD_NSACRE for INTIDs 4096 - 5119 */
885 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
886 
887 	/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
888 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
889 
890 	/* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */
891 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
892 
893 	/*
894 	 * Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after
895 	 * the interrupts are configured.
896 	 */
897 
898 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
899 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
900 
901 	/* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */
902 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
903 
904 	/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
905 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
906 
907 	/* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */
908 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
909 
910 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
911 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
912 
913 	/* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */
914 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
915 
916 	/* Restore the GICD_CTLR */
917 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
918 	gicd_wait_for_pending_write(gicd_base);
919 }
920 
921 /*******************************************************************************
922  * This function gets the priority of the interrupt the processor is currently
923  * servicing.
924  ******************************************************************************/
gicv3_get_running_priority(void)925 unsigned int gicv3_get_running_priority(void)
926 {
927 	return (unsigned int)read_icc_rpr_el1();
928 }
929 
930 /*******************************************************************************
931  * This function checks if the interrupt identified by id is active (whether the
932  * state is either active, or active and pending). The proc_num is used if the
933  * interrupt is SGI or (E)PPI and programs the corresponding Redistributor
934  * interface.
935  ******************************************************************************/
gicv3_get_interrupt_active(unsigned int id,unsigned int proc_num)936 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
937 {
938 	uintptr_t gicd_base;
939 
940 	assert(gicv3_driver_data != NULL);
941 	assert(gicv3_driver_data->gicd_base != 0U);
942 	assert(proc_num < gicv3_driver_data->rdistif_num);
943 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
944 
945 	/* Check interrupt ID */
946 	if (is_sgi_ppi(id)) {
947 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
948 		return gicr_get_isactiver(
949 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
950 	}
951 
952 	/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
953 	gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
954 	return gicd_get_isactiver(gicd_base, id);
955 }
956 
957 /*******************************************************************************
958  * This function enables the interrupt identified by id. The proc_num
959  * is used if the interrupt is SGI or PPI, and programs the corresponding
960  * Redistributor interface.
961  ******************************************************************************/
gicv3_enable_interrupt(unsigned int id,unsigned int proc_num)962 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
963 {
964 	uintptr_t gicd_base;
965 
966 	assert(gicv3_driver_data != NULL);
967 	assert(gicv3_driver_data->gicd_base != 0U);
968 	assert(proc_num < gicv3_driver_data->rdistif_num);
969 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
970 
971 	/*
972 	 * Ensure that any shared variable updates depending on out of band
973 	 * interrupt trigger are observed before enabling interrupt.
974 	 */
975 	dsbishst();
976 
977 	/* Check interrupt ID */
978 	if (is_sgi_ppi(id)) {
979 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
980 		gicr_set_isenabler(
981 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
982 	} else {
983 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
984 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
985 		gicd_set_isenabler(gicd_base, id);
986 	}
987 }
988 
989 /*******************************************************************************
990  * This function disables the interrupt identified by id. The proc_num
991  * is used if the interrupt is SGI or PPI, and programs the corresponding
992  * Redistributor interface.
993  ******************************************************************************/
gicv3_disable_interrupt(unsigned int id,unsigned int proc_num)994 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
995 {
996 	uintptr_t gicd_base;
997 
998 	assert(gicv3_driver_data != NULL);
999 	assert(gicv3_driver_data->gicd_base != 0U);
1000 	assert(proc_num < gicv3_driver_data->rdistif_num);
1001 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1002 
1003 	/*
1004 	 * Disable interrupt, and ensure that any shared variable updates
1005 	 * depending on out of band interrupt trigger are observed afterwards.
1006 	 */
1007 
1008 	/* Check interrupt ID */
1009 	if (is_sgi_ppi(id)) {
1010 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1011 		gicr_set_icenabler(
1012 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1013 
1014 		/* Write to clear enable requires waiting for pending writes */
1015 		gicr_wait_for_pending_write(
1016 			gicv3_driver_data->rdistif_base_addrs[proc_num]);
1017 	} else {
1018 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1019 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1020 		gicd_set_icenabler(gicd_base, id);
1021 
1022 		/* Write to clear enable requires waiting for pending writes */
1023 		gicd_wait_for_pending_write(gicd_base);
1024 	}
1025 
1026 	dsbishst();
1027 }
1028 
1029 /*******************************************************************************
1030  * This function sets the interrupt priority as supplied for the given interrupt
1031  * id.
1032  ******************************************************************************/
gicv3_set_interrupt_priority(unsigned int id,unsigned int proc_num,unsigned int priority)1033 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
1034 		unsigned int priority)
1035 {
1036 	uintptr_t gicr_base;
1037 	uintptr_t gicd_base;
1038 
1039 	assert(gicv3_driver_data != NULL);
1040 	assert(gicv3_driver_data->gicd_base != 0U);
1041 	assert(proc_num < gicv3_driver_data->rdistif_num);
1042 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1043 
1044 	/* Check interrupt ID */
1045 	if (is_sgi_ppi(id)) {
1046 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1047 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1048 		gicr_set_ipriorityr(gicr_base, id, priority);
1049 	} else {
1050 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1051 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1052 		gicd_set_ipriorityr(gicd_base, id, priority);
1053 	}
1054 }
1055 
1056 /*******************************************************************************
1057  * This function assigns group for the interrupt identified by id. The proc_num
1058  * is used if the interrupt is SGI or (E)PPI, and programs the corresponding
1059  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
1060  ******************************************************************************/
gicv3_set_interrupt_group(unsigned int id,unsigned int proc_num,unsigned int group)1061 void gicv3_set_interrupt_group(unsigned int id, unsigned int proc_num,
1062 		unsigned int group)
1063 {
1064 	bool igroup = false, grpmod = false;
1065 	uintptr_t gicr_base;
1066 	uintptr_t gicd_base;
1067 
1068 	assert(gicv3_driver_data != NULL);
1069 	assert(gicv3_driver_data->gicd_base != 0U);
1070 	assert(proc_num < gicv3_driver_data->rdistif_num);
1071 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1072 
1073 	switch (group) {
1074 	case INTR_GROUP1S:
1075 		igroup = false;
1076 		grpmod = true;
1077 		break;
1078 	case INTR_GROUP0:
1079 		igroup = false;
1080 		grpmod = false;
1081 		break;
1082 	case INTR_GROUP1NS:
1083 		igroup = true;
1084 		grpmod = false;
1085 		break;
1086 	default:
1087 		assert(false);
1088 		break;
1089 	}
1090 
1091 	/* Check interrupt ID */
1092 	if (is_sgi_ppi(id)) {
1093 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1094 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1095 
1096 		igroup ? gicr_set_igroupr(gicr_base, id) :
1097 			 gicr_clr_igroupr(gicr_base, id);
1098 		grpmod ? gicr_set_igrpmodr(gicr_base, id) :
1099 			 gicr_clr_igrpmodr(gicr_base, id);
1100 	} else {
1101 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1102 
1103 		/* Serialize read-modify-write to Distributor registers */
1104 		spin_lock(&gic_lock);
1105 
1106 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1107 
1108 		igroup ? gicd_set_igroupr(gicd_base, id) :
1109 			 gicd_clr_igroupr(gicd_base, id);
1110 		grpmod ? gicd_set_igrpmodr(gicd_base, id) :
1111 			 gicd_clr_igrpmodr(gicd_base, id);
1112 
1113 		spin_unlock(&gic_lock);
1114 	}
1115 }
1116 
1117 /*******************************************************************************
1118  * This function raises the specified SGI of the specified group.
1119  *
1120  * The target parameter must be a valid MPIDR in the system.
1121  ******************************************************************************/
gicv3_raise_sgi(unsigned int sgi_num,gicv3_irq_group_t group,u_register_t target)1122 void gicv3_raise_sgi(unsigned int sgi_num, gicv3_irq_group_t group,
1123 		u_register_t target)
1124 {
1125 	unsigned int tgt, aff3, aff2, aff1, aff0;
1126 	uint64_t sgi_val;
1127 
1128 	/* Verify interrupt number is in the SGI range */
1129 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1130 
1131 	/* Extract affinity fields from target */
1132 	aff0 = MPIDR_AFFLVL0_VAL(target);
1133 	aff1 = MPIDR_AFFLVL1_VAL(target);
1134 	aff2 = MPIDR_AFFLVL2_VAL(target);
1135 	aff3 = MPIDR_AFFLVL3_VAL(target);
1136 
1137 	/*
1138 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1139 	 * this PE.
1140 	 */
1141 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1142 	tgt = BIT_32(aff0);
1143 
1144 	/* Raise SGI to PE specified by its affinity */
1145 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1146 			tgt);
1147 
1148 	/*
1149 	 * Ensure that any shared variable updates depending on out of band
1150 	 * interrupt trigger are observed before raising SGI.
1151 	 */
1152 	dsbishst();
1153 
1154 	switch (group) {
1155 	case GICV3_G0:
1156 		write_icc_sgi0r_el1(sgi_val);
1157 		break;
1158 	case GICV3_G1NS:
1159 		write_icc_asgi1r(sgi_val);
1160 		break;
1161 	case GICV3_G1S:
1162 		write_icc_sgi1r(sgi_val);
1163 		break;
1164 	default:
1165 		assert(false);
1166 		break;
1167 	}
1168 
1169 	isb();
1170 }
1171 
1172 /*******************************************************************************
1173  * This function sets the interrupt routing for the given (E)SPI interrupt id.
1174  * The interrupt routing is specified in routing mode and mpidr.
1175  *
1176  * The routing mode can be either of:
1177  *  - GICV3_IRM_ANY
1178  *  - GICV3_IRM_PE
1179  *
1180  * The mpidr is the affinity of the PE to which the interrupt will be routed,
1181  * and is ignored for routing mode GICV3_IRM_ANY.
1182  ******************************************************************************/
gicv3_set_spi_routing(unsigned int id,unsigned int irm,u_register_t mpidr)1183 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1184 {
1185 	unsigned long long aff;
1186 	uint64_t router;
1187 	uintptr_t gicd_base;
1188 
1189 	assert(gicv3_driver_data != NULL);
1190 	assert(gicv3_driver_data->gicd_base != 0U);
1191 
1192 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1193 
1194 	assert(IS_SPI(id));
1195 
1196 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1197 	gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1198 	gicd_write_irouter(gicd_base, id, aff);
1199 
1200 	/*
1201 	 * In implementations that do not require 1 of N distribution of SPIs,
1202 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1203 	 */
1204 	if (irm == GICV3_IRM_ANY) {
1205 		router = gicd_read_irouter(gicd_base, id);
1206 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1207 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1208 			panic();
1209 		}
1210 	}
1211 }
1212 
1213 /*******************************************************************************
1214  * This function clears the pending status of an interrupt identified by id.
1215  * The proc_num is used if the interrupt is SGI or (E)PPI, and programs the
1216  * corresponding Redistributor interface.
1217  ******************************************************************************/
gicv3_clear_interrupt_pending(unsigned int id,unsigned int proc_num)1218 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1219 {
1220 	uintptr_t gicd_base;
1221 
1222 	assert(gicv3_driver_data != NULL);
1223 	assert(gicv3_driver_data->gicd_base != 0U);
1224 	assert(proc_num < gicv3_driver_data->rdistif_num);
1225 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1226 
1227 	/*
1228 	 * Clear pending interrupt, and ensure that any shared variable updates
1229 	 * depending on out of band interrupt trigger are observed afterwards.
1230 	 */
1231 
1232 	/* Check interrupt ID */
1233 	if (is_sgi_ppi(id)) {
1234 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1235 		gicr_set_icpendr(
1236 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1237 	} else {
1238 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1239 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1240 		gicd_set_icpendr(gicd_base, id);
1241 	}
1242 
1243 	dsbishst();
1244 }
1245 
1246 /*******************************************************************************
1247  * This function sets the pending status of an interrupt identified by id.
1248  * The proc_num is used if the interrupt is SGI or PPI and programs the
1249  * corresponding Redistributor interface.
1250  ******************************************************************************/
gicv3_set_interrupt_pending(unsigned int id,unsigned int proc_num)1251 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1252 {
1253 	uintptr_t gicd_base;
1254 
1255 	assert(gicv3_driver_data != NULL);
1256 	assert(gicv3_driver_data->gicd_base != 0U);
1257 	assert(proc_num < gicv3_driver_data->rdistif_num);
1258 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1259 
1260 	/*
1261 	 * Ensure that any shared variable updates depending on out of band
1262 	 * interrupt trigger are observed before setting interrupt pending.
1263 	 */
1264 	dsbishst();
1265 
1266 	/* Check interrupt ID */
1267 	if (is_sgi_ppi(id)) {
1268 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1269 		gicr_set_ispendr(
1270 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1271 	} else {
1272 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1273 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1274 		gicd_set_ispendr(gicd_base, id);
1275 	}
1276 }
1277 
1278 /*******************************************************************************
1279  * This function sets the PMR register with the supplied value. Returns the
1280  * original PMR.
1281  ******************************************************************************/
gicv3_set_pmr(unsigned int mask)1282 unsigned int gicv3_set_pmr(unsigned int mask)
1283 {
1284 	unsigned int old_mask;
1285 
1286 	old_mask = (unsigned int)read_icc_pmr_el1();
1287 
1288 	/*
1289 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1290 	 * before potential out of band interrupt trigger because of PMR update.
1291 	 * PMR system register writes are self-synchronizing, so no ISB required
1292 	 * thereafter.
1293 	 */
1294 	dsbishst();
1295 	write_icc_pmr_el1(mask);
1296 
1297 	return old_mask;
1298 }
1299 
1300 /*******************************************************************************
1301  * This function restores the PMR register to old value and also triggers
1302  * gicv3_apply_errata_wa_2384374() that flushes the GIC buffer allowing any
1303  * pending interrupts to processed. Returns the original PMR.
1304  ******************************************************************************/
gicv3_deactivate_priority(unsigned int mask)1305 unsigned int gicv3_deactivate_priority(unsigned int mask)
1306 {
1307 
1308 	unsigned int old_mask, proc_num;
1309 	uintptr_t gicr_base;
1310 
1311 	old_mask = gicv3_set_pmr(mask);
1312 
1313 	proc_num = plat_my_core_pos();
1314 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1315 	assert(gicr_base != 0UL);
1316 
1317 	/* Add DSB to ensure visibility of System register writes */
1318 	dsb();
1319 
1320 	gicv3_apply_errata_wa_2384374(gicr_base);
1321 
1322 	return old_mask;
1323 }
1324 
1325 /*******************************************************************************
1326  * This function delegates the responsibility of discovering the corresponding
1327  * Redistributor frames to each CPU itself. It is a modified version of
1328  * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
1329  * unlike the previous way in which only the Primary CPU did the discovery of
1330  * all the Redistributor frames for every CPU. It also handles the scenario in
1331  * which the frames of various CPUs are not contiguous in physical memory.
1332  ******************************************************************************/
gicv3_rdistif_probe(const uintptr_t gicr_frame)1333 int gicv3_rdistif_probe(const uintptr_t gicr_frame)
1334 {
1335 	u_register_t mpidr, mpidr_self;
1336 	unsigned int proc_num;
1337 	uint64_t typer_val;
1338 	uintptr_t rdistif_base;
1339 	bool gicr_frame_found = false;
1340 
1341 	assert(gicv3_driver_data->gicr_base == 0U);
1342 
1343 	if (plat_can_cmo()) {
1344 	/* Ensure this function is called with Data Cache enabled */
1345 #ifndef __aarch64__
1346 		assert((read_sctlr() & SCTLR_C_BIT) != 0U);
1347 #else
1348 		assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1349 #endif /* !__aarch64__ */
1350 	}
1351 
1352 	mpidr_self = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
1353 	rdistif_base = gicr_frame;
1354 	do {
1355 		typer_val = gicr_read_typer(rdistif_base);
1356 		mpidr = mpidr_from_gicr_typer(typer_val);
1357 		if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
1358 			proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
1359 		} else {
1360 			proc_num = (unsigned int)(typer_val >>
1361 				TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK;
1362 		}
1363 		if (mpidr == mpidr_self) {
1364 			/* The base address doesn't need to be initialized on
1365 			 * every warm boot.
1366 			 */
1367 			if (gicv3_driver_data->rdistif_base_addrs[proc_num]
1368 								!= 0U) {
1369 				return 0;
1370 			}
1371 			gicv3_driver_data->rdistif_base_addrs[proc_num] =
1372 			rdistif_base;
1373 			gicr_frame_found = true;
1374 			break;
1375 		}
1376 		rdistif_base += gicv3_redist_size(typer_val);
1377 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
1378 
1379 	if (!gicr_frame_found) {
1380 		return -1;
1381 	}
1382 
1383 	/*
1384 	 * Flush the driver data to ensure coherency. This is
1385 	 * not required if platform has HW_ASSISTED_COHERENCY
1386 	 * enabled.
1387 	 */
1388 #if !HW_ASSISTED_COHERENCY
1389 	/*
1390 	 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
1391 	 */
1392 	flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
1393 		sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
1394 #endif
1395 	return 0; /* Found matching GICR frame */
1396 }
1397 
1398 /******************************************************************************
1399  * This function checks the interrupt ID and returns true for SGIs and (E)PPIs
1400  * and false for (E)SPIs IDs.
1401  *****************************************************************************/
is_sgi_ppi(unsigned int id)1402 static bool is_sgi_ppi(unsigned int id)
1403 {
1404 	/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
1405 	if (IS_SGI_PPI(id)) {
1406 		return true;
1407 	}
1408 
1409 	/* SPIs: 32-1019, ESPIs: 4096-5119 */
1410 	if (IS_SPI(id)) {
1411 		return false;
1412 	}
1413 
1414 	assert(false);
1415 	panic();
1416 }
1417