1 /*
2 * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
3 * Portions copyright (c) 2021-2022, ProvenRun S.A.S. All rights reserved.
4 *
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8 #include <assert.h>
9 #include <stdbool.h>
10
11 #include <arch.h>
12 #include <arch_helpers.h>
13 #include <common/debug.h>
14 #include <common/interrupt_props.h>
15 #include <drivers/arm/gic_common.h>
16 #include <drivers/arm/gicv2.h>
17 #include <lib/spinlock.h>
18
19 #include "../common/gic_common_private.h"
20 #include "gicv2_private.h"
21
22 static const gicv2_driver_data_t *driver_data;
23
24 /*
25 * Spinlock to guard registers needing read-modify-write. APIs protected by this
26 * spinlock are used either at boot time (when only a single CPU is active), or
27 * when the system is fully coherent.
28 */
29 static spinlock_t gic_lock;
30
31 /*******************************************************************************
32 * Enable secure interrupts and use FIQs to route them. Disable legacy bypass
33 * and set the priority mask register to allow all interrupts to trickle in.
34 ******************************************************************************/
gicv2_cpuif_enable(void)35 void gicv2_cpuif_enable(void)
36 {
37 unsigned int val;
38
39 assert(driver_data != NULL);
40 assert(driver_data->gicc_base != 0U);
41
42 /*
43 * Enable the Group 0 interrupts, FIQEn and disable Group 0/1
44 * bypass.
45 */
46 val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0;
47 val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
48
49 /* Program the idle priority in the PMR */
50 gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK);
51 gicc_write_ctlr(driver_data->gicc_base, val);
52 }
53
54 /*******************************************************************************
55 * Place the cpu interface in a state where it can never make a cpu exit wfi as
56 * as result of an asserted interrupt. This is critical for powering down a cpu
57 ******************************************************************************/
gicv2_cpuif_disable(void)58 void gicv2_cpuif_disable(void)
59 {
60 unsigned int val;
61
62 assert(driver_data != NULL);
63 assert(driver_data->gicc_base != 0U);
64
65 /* Disable secure, non-secure interrupts and disable their bypass */
66 val = gicc_read_ctlr(driver_data->gicc_base);
67 val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT);
68 val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
69 val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
70 gicc_write_ctlr(driver_data->gicc_base, val);
71 }
72
73 /*******************************************************************************
74 * Per cpu gic distributor setup which will be done by all cpus after a cold
75 * boot/hotplug. This marks out the secure SPIs and PPIs & enables them.
76 ******************************************************************************/
gicv2_pcpu_distif_init(void)77 void gicv2_pcpu_distif_init(void)
78 {
79 unsigned int ctlr;
80
81 assert(driver_data != NULL);
82 assert(driver_data->gicd_base != 0U);
83
84 gicv2_secure_ppi_sgi_setup_props(driver_data->gicd_base,
85 driver_data->interrupt_props,
86 driver_data->interrupt_props_num);
87
88 /* Enable G0 interrupts if not already */
89 ctlr = gicd_read_ctlr(driver_data->gicd_base);
90 if ((ctlr & CTLR_ENABLE_G0_BIT) == 0U) {
91 gicd_write_ctlr(driver_data->gicd_base,
92 ctlr | CTLR_ENABLE_G0_BIT);
93 }
94 }
95
96 /*******************************************************************************
97 * Global gic distributor init which will be done by the primary cpu after a
98 * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
99 * then enables the secure GIC distributor interface.
100 ******************************************************************************/
gicv2_distif_init(void)101 void gicv2_distif_init(void)
102 {
103 unsigned int ctlr;
104
105 assert(driver_data != NULL);
106 assert(driver_data->gicd_base != 0U);
107
108 /* Disable the distributor before going further */
109 ctlr = gicd_read_ctlr(driver_data->gicd_base);
110 gicd_write_ctlr(driver_data->gicd_base,
111 ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT));
112
113 /* Set the default attribute of all SPIs */
114 gicv2_spis_configure_defaults(driver_data->gicd_base);
115
116 gicv2_secure_spis_configure_props(driver_data->gicd_base,
117 driver_data->interrupt_props,
118 driver_data->interrupt_props_num);
119
120
121 /* Re-enable the secure SPIs now that they have been configured */
122 gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT);
123 }
124
125 /*******************************************************************************
126 * Initialize the ARM GICv2 driver with the provided platform inputs
127 ******************************************************************************/
gicv2_driver_init(const gicv2_driver_data_t * plat_driver_data)128 void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data)
129 {
130 unsigned int gic_version;
131
132 assert(plat_driver_data != NULL);
133 assert(plat_driver_data->gicd_base != 0U);
134 assert(plat_driver_data->gicc_base != 0U);
135
136 assert(plat_driver_data->interrupt_props_num > 0 ?
137 plat_driver_data->interrupt_props != NULL : 1);
138
139 /* Ensure that this is a GICv2 system */
140 gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
141 gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT)
142 & PIDR2_ARCH_REV_MASK;
143
144 /*
145 * GICv1 with security extension complies with trusted firmware
146 * GICv2 driver as far as virtualization and few tricky power
147 * features are not used. GICv2 features that are not supported
148 * by GICv1 with Security Extensions are:
149 * - virtual interrupt support.
150 * - wake up events.
151 * - writeable GIC state register (for power sequences)
152 * - interrupt priority drop.
153 * - interrupt signal bypass.
154 */
155 assert((gic_version == ARCH_REV_GICV2) ||
156 (gic_version == ARCH_REV_GICV1));
157
158 driver_data = plat_driver_data;
159
160 /*
161 * The GIC driver data is initialized by the primary CPU with caches
162 * enabled. When the secondary CPU boots up, it initializes the
163 * GICC/GICR interface with the caches disabled. Hence flush the
164 * driver_data to ensure coherency. This is not required if the
165 * platform has HW_ASSISTED_COHERENCY or WARMBOOT_ENABLE_DCACHE_EARLY
166 * enabled.
167 */
168 #if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
169 flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
170 flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
171 #endif
172 INFO("ARM GICv2 driver initialized\n");
173 }
174
175 /******************************************************************************
176 * This function returns whether FIQ is enabled in the GIC CPU interface.
177 *****************************************************************************/
gicv2_is_fiq_enabled(void)178 unsigned int gicv2_is_fiq_enabled(void)
179 {
180 unsigned int gicc_ctlr;
181
182 assert(driver_data != NULL);
183 assert(driver_data->gicc_base != 0U);
184
185 gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base);
186 return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1U;
187 }
188
189 /*******************************************************************************
190 * This function returns the type of the highest priority pending interrupt at
191 * the GIC cpu interface. The return values can be one of the following :
192 * PENDING_G1_INTID : The interrupt type is non secure Group 1.
193 * 0 - 1019 : The interrupt type is secure Group 0.
194 * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
195 * sufficient priority to be signaled
196 ******************************************************************************/
gicv2_get_pending_interrupt_type(void)197 unsigned int gicv2_get_pending_interrupt_type(void)
198 {
199 assert(driver_data != NULL);
200 assert(driver_data->gicc_base != 0U);
201
202 return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
203 }
204
205 /*******************************************************************************
206 * This function returns the id of the highest priority pending interrupt at
207 * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no
208 * interrupt pending.
209 ******************************************************************************/
gicv2_get_pending_interrupt_id(void)210 unsigned int gicv2_get_pending_interrupt_id(void)
211 {
212 unsigned int id;
213
214 assert(driver_data != NULL);
215 assert(driver_data->gicc_base != 0U);
216
217 id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
218
219 /*
220 * Find out which non-secure interrupt it is under the assumption that
221 * the GICC_CTLR.AckCtl bit is 0.
222 */
223 if (id == PENDING_G1_INTID)
224 id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK;
225
226 return id;
227 }
228
229 /*******************************************************************************
230 * This functions reads the GIC cpu interface Interrupt Acknowledge register
231 * to start handling the pending secure 0 interrupt. It returns the
232 * contents of the IAR.
233 ******************************************************************************/
gicv2_acknowledge_interrupt(void)234 unsigned int gicv2_acknowledge_interrupt(void)
235 {
236 assert(driver_data != NULL);
237 assert(driver_data->gicc_base != 0U);
238
239 return gicc_read_IAR(driver_data->gicc_base);
240 }
241
242 /*******************************************************************************
243 * This functions writes the GIC cpu interface End Of Interrupt register with
244 * the passed value to finish handling the active secure group 0 interrupt.
245 ******************************************************************************/
gicv2_end_of_interrupt(unsigned int id)246 void gicv2_end_of_interrupt(unsigned int id)
247 {
248 assert(driver_data != NULL);
249 assert(driver_data->gicc_base != 0U);
250
251 /*
252 * Ensure the write to peripheral registers are *complete* before the write
253 * to GIC_EOIR.
254 *
255 * Note: The completion guarantee depends on various factors of system design
256 * and the barrier is the best core can do by which execution of further
257 * instructions waits till the barrier is alive.
258 */
259 dsbishst();
260 gicc_write_EOIR(driver_data->gicc_base, id);
261 }
262
263 /*******************************************************************************
264 * This function returns the type of the interrupt id depending upon the group
265 * this interrupt has been configured under by the interrupt controller i.e.
266 * group0 secure or group1 non secure. It returns zero for Group 0 secure and
267 * one for Group 1 non secure interrupt.
268 ******************************************************************************/
gicv2_get_interrupt_group(unsigned int id)269 unsigned int gicv2_get_interrupt_group(unsigned int id)
270 {
271 assert(driver_data != NULL);
272 assert(driver_data->gicd_base != 0U);
273
274 return gicd_get_igroupr(driver_data->gicd_base, id);
275 }
276
277 /*******************************************************************************
278 * This function returns the priority of the interrupt the processor is
279 * currently servicing.
280 ******************************************************************************/
gicv2_get_running_priority(void)281 unsigned int gicv2_get_running_priority(void)
282 {
283 assert(driver_data != NULL);
284 assert(driver_data->gicc_base != 0U);
285
286 return gicc_read_rpr(driver_data->gicc_base);
287 }
288
289 /*******************************************************************************
290 * This function sets the GICv2 target mask pattern for the current PE. The PE
291 * target mask is used to translate linear PE index (returned by platform core
292 * position) to a bit mask used when targeting interrupts to a PE (for example
293 * when raising SGIs and routing SPIs).
294 ******************************************************************************/
gicv2_set_pe_target_mask(unsigned int proc_num)295 void gicv2_set_pe_target_mask(unsigned int proc_num)
296 {
297 assert(driver_data != NULL);
298 assert(driver_data->gicd_base != 0U);
299 assert(driver_data->target_masks != NULL);
300 assert(proc_num < GICV2_MAX_TARGET_PE);
301 assert(proc_num < driver_data->target_masks_num);
302
303 /* Return if the target mask is already populated */
304 if (driver_data->target_masks[proc_num] != 0U)
305 return;
306
307 /*
308 * Update target register corresponding to this CPU and flush for it to
309 * be visible to other CPUs.
310 */
311 if (driver_data->target_masks[proc_num] == 0U) {
312 driver_data->target_masks[proc_num] =
313 gicv2_get_cpuif_id(driver_data->gicd_base);
314 #if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
315 /*
316 * PEs only update their own masks. Primary updates it with
317 * caches on. But because secondaries does it with caches off,
318 * all updates go to memory directly, and there's no danger of
319 * secondaries overwriting each others' mask, despite
320 * target_masks[] not being cache line aligned.
321 */
322 flush_dcache_range((uintptr_t)
323 &driver_data->target_masks[proc_num],
324 sizeof(driver_data->target_masks[proc_num]));
325 #endif
326 }
327 }
328
329 /*******************************************************************************
330 * This function returns the active status of the interrupt (either because the
331 * state is active, or active and pending).
332 ******************************************************************************/
gicv2_get_interrupt_active(unsigned int id)333 unsigned int gicv2_get_interrupt_active(unsigned int id)
334 {
335 assert(driver_data != NULL);
336 assert(driver_data->gicd_base != 0U);
337 assert(id <= MAX_SPI_ID);
338
339 return gicd_get_isactiver(driver_data->gicd_base, id);
340 }
341
342 /*******************************************************************************
343 * This function enables the interrupt identified by id.
344 ******************************************************************************/
gicv2_enable_interrupt(unsigned int id)345 void gicv2_enable_interrupt(unsigned int id)
346 {
347 assert(driver_data != NULL);
348 assert(driver_data->gicd_base != 0U);
349 assert(id <= MAX_SPI_ID);
350
351 /*
352 * Ensure that any shared variable updates depending on out of band
353 * interrupt trigger are observed before enabling interrupt.
354 */
355 dsbishst();
356 gicd_set_isenabler(driver_data->gicd_base, id);
357 }
358
359 /*******************************************************************************
360 * This function disables the interrupt identified by id.
361 ******************************************************************************/
gicv2_disable_interrupt(unsigned int id)362 void gicv2_disable_interrupt(unsigned int id)
363 {
364 assert(driver_data != NULL);
365 assert(driver_data->gicd_base != 0U);
366 assert(id <= MAX_SPI_ID);
367
368 /*
369 * Disable interrupt, and ensure that any shared variable updates
370 * depending on out of band interrupt trigger are observed afterwards.
371 */
372 gicd_set_icenabler(driver_data->gicd_base, id);
373 dsbishst();
374 }
375
376 /*******************************************************************************
377 * This function sets the interrupt priority as supplied for the given interrupt
378 * id.
379 ******************************************************************************/
gicv2_set_interrupt_priority(unsigned int id,unsigned int priority)380 void gicv2_set_interrupt_priority(unsigned int id, unsigned int priority)
381 {
382 assert(driver_data != NULL);
383 assert(driver_data->gicd_base != 0U);
384 assert(id <= MAX_SPI_ID);
385
386 gicd_set_ipriorityr(driver_data->gicd_base, id, priority);
387 }
388
389 /*******************************************************************************
390 * This function assigns group for the interrupt identified by id. The group can
391 * be any of GICV2_INTR_GROUP*
392 ******************************************************************************/
gicv2_set_interrupt_type(unsigned int id,unsigned int type)393 void gicv2_set_interrupt_type(unsigned int id, unsigned int type)
394 {
395 assert(driver_data != NULL);
396 assert(driver_data->gicd_base != 0U);
397 assert(id <= MAX_SPI_ID);
398
399 /* Serialize read-modify-write to Distributor registers */
400 spin_lock(&gic_lock);
401 switch (type) {
402 case GICV2_INTR_GROUP1:
403 gicd_set_igroupr(driver_data->gicd_base, id);
404 break;
405 case GICV2_INTR_GROUP0:
406 gicd_clr_igroupr(driver_data->gicd_base, id);
407 break;
408 default:
409 assert(false);
410 break;
411 }
412 spin_unlock(&gic_lock);
413 }
414
415 /*******************************************************************************
416 * This function raises the specified SGI to requested targets.
417 *
418 * The proc_num parameter must be the linear index of the target PE in the
419 * system.
420 ******************************************************************************/
gicv2_raise_sgi(int sgi_num,bool ns,int proc_num)421 void gicv2_raise_sgi(int sgi_num, bool ns, int proc_num)
422 {
423 unsigned int sgir_val, target;
424
425 assert(driver_data != NULL);
426 assert(proc_num >= 0);
427 assert(proc_num < (int)GICV2_MAX_TARGET_PE);
428 assert(driver_data->gicd_base != 0U);
429
430 /*
431 * Target masks array must have been supplied, and the core position
432 * should be valid.
433 */
434 assert(driver_data->target_masks != NULL);
435 assert(proc_num < (int)driver_data->target_masks_num);
436
437 /* Don't raise SGI if the mask hasn't been populated */
438 target = driver_data->target_masks[proc_num];
439 assert(target != 0U);
440
441 sgir_val = GICV2_SGIR_VALUE(SGIR_TGT_SPECIFIC, target, ns, sgi_num);
442
443 /*
444 * Ensure that any shared variable updates depending on out of band
445 * interrupt trigger are observed before raising SGI.
446 */
447 dsbishst();
448 gicd_write_sgir(driver_data->gicd_base, sgir_val);
449 }
450
451 /*******************************************************************************
452 * This function sets the interrupt routing for the given SPI interrupt id.
453 * The interrupt routing is specified in routing mode. The proc_num parameter is
454 * linear index of the PE to target SPI. When proc_num < 0, the SPI may target
455 * all PEs.
456 ******************************************************************************/
gicv2_set_spi_routing(unsigned int id,int proc_num)457 void gicv2_set_spi_routing(unsigned int id, int proc_num)
458 {
459 unsigned int target;
460
461 assert(driver_data != NULL);
462 assert(driver_data->gicd_base != 0U);
463
464 assert((id >= MIN_SPI_ID) && (id <= MAX_SPI_ID));
465
466 /*
467 * Target masks array must have been supplied, and the core position
468 * should be valid.
469 */
470 assert(driver_data->target_masks != NULL);
471 assert(proc_num < (int)GICV2_MAX_TARGET_PE);
472 assert(driver_data->target_masks_num < INT_MAX);
473 assert(proc_num < (int)driver_data->target_masks_num);
474
475 if (proc_num < 0) {
476 /* Target all PEs */
477 target = GIC_TARGET_CPU_MASK;
478 } else {
479 /* Don't route interrupt if the mask hasn't been populated */
480 target = driver_data->target_masks[proc_num];
481 assert(target != 0U);
482 }
483
484 gicd_set_itargetsr(driver_data->gicd_base, id, target);
485 }
486
487 /*******************************************************************************
488 * This function clears the pending status of an interrupt identified by id.
489 ******************************************************************************/
gicv2_clear_interrupt_pending(unsigned int id)490 void gicv2_clear_interrupt_pending(unsigned int id)
491 {
492 assert(driver_data != NULL);
493 assert(driver_data->gicd_base != 0U);
494
495 /* SGIs can't be cleared pending */
496 assert(id >= MIN_PPI_ID);
497
498 /*
499 * Clear pending interrupt, and ensure that any shared variable updates
500 * depending on out of band interrupt trigger are observed afterwards.
501 */
502 gicd_set_icpendr(driver_data->gicd_base, id);
503 dsbishst();
504 }
505
506 /*******************************************************************************
507 * This function sets the pending status of an interrupt identified by id.
508 ******************************************************************************/
gicv2_set_interrupt_pending(unsigned int id)509 void gicv2_set_interrupt_pending(unsigned int id)
510 {
511 assert(driver_data != NULL);
512 assert(driver_data->gicd_base != 0U);
513
514 /* SGIs can't be cleared pending */
515 assert(id >= MIN_PPI_ID);
516
517 /*
518 * Ensure that any shared variable updates depending on out of band
519 * interrupt trigger are observed before setting interrupt pending.
520 */
521 dsbishst();
522 gicd_set_ispendr(driver_data->gicd_base, id);
523 }
524
525 /*******************************************************************************
526 * This function sets the PMR register with the supplied value. Returns the
527 * original PMR.
528 ******************************************************************************/
gicv2_set_pmr(unsigned int mask)529 unsigned int gicv2_set_pmr(unsigned int mask)
530 {
531 unsigned int old_mask;
532
533 assert(driver_data != NULL);
534 assert(driver_data->gicc_base != 0U);
535
536 old_mask = gicc_read_pmr(driver_data->gicc_base);
537
538 /*
539 * Order memory updates w.r.t. PMR write, and ensure they're visible
540 * before potential out of band interrupt trigger because of PMR update.
541 */
542 dmbishst();
543 gicc_write_pmr(driver_data->gicc_base, mask);
544 dsbishst();
545
546 return old_mask;
547 }
548
549 /*******************************************************************************
550 * This function updates single interrupt configuration to be level/edge
551 * triggered
552 ******************************************************************************/
gicv2_interrupt_set_cfg(unsigned int id,unsigned int cfg)553 void gicv2_interrupt_set_cfg(unsigned int id, unsigned int cfg)
554 {
555 gicd_set_icfgr(driver_data->gicd_base, id, cfg);
556 }
557