1 /* See LICENSE for license details. */
2 #include <gd32vf103.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
6
7 #include "riscv_encoding.h"
8 #include "n200_func.h"
9
10 /* Configure PMP to make all the address space accesable and executable */
pmp_open_all_space(void)11 void pmp_open_all_space(void){
12 /* Config entry0 addr to all 1s to make the range cover all space */
13 __asm__ volatile ("li x6, 0xffffffff":::"x6");
14 __asm__ volatile ("csrw pmpaddr0, x6":::);
15 /* Config entry0 cfg to make it NAPOT address mode, and R/W/X okay */
16 __asm__ volatile ("li x6, 0x7f":::"x6");
17 __asm__ volatile ("csrw pmpcfg0, x6":::);
18 }
19
switch_m2u_mode(void)20 void switch_m2u_mode(void){
21 #if defined (__ICCRISCV__)
22 clear_csr (CSR_MSTATUS,MSTATUS_MPP);
23 #elif defined ( __GNUC__ )
24 clear_csr (mstatus,MSTATUS_MPP);
25 #endif
26 /* printf("\nIn the m2u function, the mstatus is 0x%x\n", read_csr(mstatus)); */
27 /* printf("\nIn the m2u function, the mepc is 0x%x\n", read_csr(mepc)); */
28 #if defined ( __GNUC__ )
29 __asm__ volatile ("la x6, 1f ":::"x6");
30 #endif
31 __asm__ volatile ("csrw mepc, x6":::);
32 __asm__ volatile ("mret":::);
33 __asm__ volatile ("1:":::);
34 }
35
mtime_lo(void)36 uint32_t mtime_lo(void)
37 {
38 return *(volatile uint32_t *)(TIMER_CTRL_ADDR + TIMER_MTIME);
39 }
40
41
mtime_hi(void)42 uint32_t mtime_hi(void)
43 {
44 return *(volatile uint32_t *)(TIMER_CTRL_ADDR + TIMER_MTIME + 4);
45 }
46
get_timer_value(void)47 uint64_t get_timer_value(void)
48 {
49 while (1) {
50 uint32_t hi = mtime_hi();
51 uint32_t lo = mtime_lo();
52 if (hi == mtime_hi())
53 return ((uint64_t)hi << 32) | lo;
54 }
55 }
56
get_timer_freq(void)57 uint32_t get_timer_freq(void)
58 {
59 return TIMER_FREQ;
60 }
61
get_instret_value(void)62 uint64_t get_instret_value(void)
63 {
64 while (1) {
65 #if defined (__ICCRISCV__)
66 uint32_t hi = read_csr(CSR_MINSTRETH);
67 uint32_t lo = read_csr(CSR_MINSTRETH);
68 if (hi == read_csr(CSR_MINSTRETH))
69 #elif defined ( __GNUC__ )
70 uint32_t hi = read_csr(minstreth);
71 uint32_t lo = read_csr(minstret);
72 if (hi == read_csr(minstreth))
73 #endif
74
75 return ((uint64_t)hi << 32) | lo;
76 }
77 }
78
get_cycle_value(void)79 uint64_t get_cycle_value(void)
80 {
81 while (1) {
82 #if defined (__ICCRISCV__)
83 uint32_t hi = read_csr(CSR_MCYCLEH);
84 uint32_t lo = read_csr(CSR_MCYCLE);
85 if (hi == read_csr(CSR_MCYCLEH))
86 #elif defined ( __GNUC__ )
87 uint32_t hi = read_csr(mcycleh);
88 uint32_t lo = read_csr(mcycle);
89 if (hi == read_csr(mcycleh))
90 #endif
91
92 return ((uint64_t)hi << 32) | lo;
93 }
94 }
95
measure_cpu_freq(size_t n)96 uint32_t __attribute__((noinline)) measure_cpu_freq(size_t n)
97 {
98 uint32_t start_mtime, delta_mtime;
99 uint32_t mtime_freq = get_timer_freq();
100
101 /* Don't start measuruing until we see an mtime tick */
102 uint32_t tmp = mtime_lo();
103 do {
104 start_mtime = mtime_lo();
105 } while (start_mtime == tmp);
106
107 #if defined (__ICCRISCV__)
108 uint32_t start_mcycle = read_csr(CSR_MCYCLE);
109 #elif defined ( __GNUC__ )
110 uint32_t start_mcycle = read_csr(mcycle);
111 #endif
112
113 do {
114 delta_mtime = mtime_lo() - start_mtime;
115 } while (delta_mtime < n);
116
117 #if defined (__ICCRISCV__)
118 uint32_t delta_mcycle = read_csr(CSR_MCYCLE) - start_mcycle;
119 #elif defined ( __GNUC__ )
120 uint32_t delta_mcycle = read_csr(mcycle) - start_mcycle;
121 #endif
122
123 return (delta_mcycle / delta_mtime) * mtime_freq
124 + ((delta_mcycle % delta_mtime) * mtime_freq) / delta_mtime;
125 }
126
get_cpu_freq(void)127 uint32_t get_cpu_freq(void)
128 {
129 uint32_t cpu_freq;
130
131 /* warm up */
132 measure_cpu_freq(1);
133 /* measure for real */
134 cpu_freq = measure_cpu_freq(100);
135
136 return cpu_freq;
137 }
138
139 /* Note that there are no assertions or bounds checking on these */
140 /* parameter values. */
eclic_init(uint32_t num_irq)141 void eclic_init ( uint32_t num_irq )
142 {
143
144 typedef volatile uint32_t vuint32_t;
145
146 /* clear cfg register */
147 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_CFG_OFFSET)=0;
148
149 /* clear minthresh register */
150 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_MTH_OFFSET)=0;
151
152 /* clear all IP/IE/ATTR/CTRL bits for all interrupt sources */
153 vuint32_t * ptr;
154
155 vuint32_t * base = (vuint32_t*)(ECLIC_ADDR_BASE + ECLIC_INT_IP_OFFSET);
156 vuint32_t * upper = (vuint32_t*)(base + num_irq*4);
157
158 for (ptr = base; ptr < upper; ptr=ptr+4){
159 *ptr = 0;
160 }
161 }
162
eclic_enable_interrupt(uint32_t source)163 void eclic_enable_interrupt (uint32_t source) {
164 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_IE_OFFSET+source*4) = 1;
165 }
166
eclic_disable_interrupt(uint32_t source)167 void eclic_disable_interrupt (uint32_t source){
168 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_IE_OFFSET+source*4) = 0;
169 }
170
eclic_set_pending(uint32_t source)171 void eclic_set_pending(uint32_t source){
172 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_IP_OFFSET+source*4) = 1;
173 }
174
eclic_clear_pending(uint32_t source)175 void eclic_clear_pending(uint32_t source){
176 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_IP_OFFSET+source*4) = 0;
177 }
178
eclic_set_intctrl(uint32_t source,uint8_t intctrl)179 void eclic_set_intctrl (uint32_t source, uint8_t intctrl){
180 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_CTRL_OFFSET+source*4) = intctrl;
181 }
182
eclic_get_intctrl(uint32_t source)183 uint8_t eclic_get_intctrl (uint32_t source){
184 return *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_CTRL_OFFSET+source*4);
185 }
186
eclic_set_intattr(uint32_t source,uint8_t intattr)187 void eclic_set_intattr (uint32_t source, uint8_t intattr){
188 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_ATTR_OFFSET+source*4) = intattr;
189 }
190
eclic_get_intattr(uint32_t source)191 uint8_t eclic_get_intattr (uint32_t source){
192 return *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_ATTR_OFFSET+source*4);
193 }
194
eclic_set_cliccfg(uint8_t cliccfg)195 void eclic_set_cliccfg (uint8_t cliccfg){
196 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_CFG_OFFSET) = cliccfg;
197 }
198
eclic_get_cliccfg(void)199 uint8_t eclic_get_cliccfg (void){
200 return *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_CFG_OFFSET);
201 }
202
eclic_set_mth(uint8_t mth)203 void eclic_set_mth (uint8_t mth){
204 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_MTH_OFFSET) = mth;
205 }
206
eclic_get_mth(void)207 uint8_t eclic_get_mth (void){
208 return *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_MTH_OFFSET);
209 }
210
211 /* sets nlbits */
eclic_set_nlbits(uint8_t nlbits)212 void eclic_set_nlbits(uint8_t nlbits) {
213 /* shift nlbits to correct position */
214 uint8_t nlbits_shifted = nlbits << ECLIC_CFG_NLBITS_LSB;
215
216 /* read the current cliccfg */
217 uint8_t old_cliccfg = eclic_get_cliccfg();
218 uint8_t new_cliccfg = (old_cliccfg & (~ECLIC_CFG_NLBITS_MASK)) | (ECLIC_CFG_NLBITS_MASK & nlbits_shifted);
219
220 eclic_set_cliccfg(new_cliccfg);
221 }
222
223 /* get nlbits */
eclic_get_nlbits(void)224 uint8_t eclic_get_nlbits(void) {
225 /* extract nlbits */
226 uint8_t nlbits = eclic_get_cliccfg();
227 nlbits = (nlbits & ECLIC_CFG_NLBITS_MASK) >> ECLIC_CFG_NLBITS_LSB;
228 return nlbits;
229 }
230
231 /* sets an interrupt level based encoding of nlbits and ECLICINTCTLBITS */
eclic_set_irq_lvl(uint32_t source,uint8_t lvl)232 void eclic_set_irq_lvl(uint32_t source, uint8_t lvl) {
233 /* extract nlbits */
234 uint8_t nlbits = eclic_get_nlbits();
235 if (nlbits > ECLICINTCTLBITS) {
236 nlbits = ECLICINTCTLBITS;
237 }
238
239 /* shift lvl right to mask off unused bits */
240 lvl = lvl >> (8-nlbits);
241 /* shift lvl into correct bit position */
242 lvl = lvl << (8-nlbits);
243
244 /* write to clicintctrl */
245 uint8_t current_intctrl = eclic_get_intctrl(source);
246 /* shift intctrl left to mask off unused bits */
247 current_intctrl = current_intctrl << nlbits;
248 /* shift intctrl into correct bit position */
249 current_intctrl = current_intctrl >> nlbits;
250
251 eclic_set_intctrl(source, (current_intctrl | lvl));
252 }
253
254 /* gets an interrupt level based encoding of nlbits */
eclic_get_irq_lvl(uint32_t source)255 uint8_t eclic_get_irq_lvl(uint32_t source) {
256 /* extract nlbits */
257 uint8_t nlbits = eclic_get_nlbits();
258 if (nlbits > ECLICINTCTLBITS) {
259 nlbits = ECLICINTCTLBITS;
260 }
261
262 uint8_t intctrl = eclic_get_intctrl(source);
263
264 /* shift intctrl */
265 intctrl = intctrl >> (8-nlbits);
266 /* shift intctrl */
267 uint8_t lvl = intctrl << (8-nlbits);
268
269 return lvl;
270 }
271
eclic_set_irq_lvl_abs(uint32_t source,uint8_t lvl_abs)272 void eclic_set_irq_lvl_abs(uint32_t source, uint8_t lvl_abs) {
273 /* extract nlbits */
274 uint8_t nlbits = eclic_get_nlbits();
275 if (nlbits > ECLICINTCTLBITS) {
276 nlbits = ECLICINTCTLBITS;
277 }
278
279 /* shift lvl_abs into correct bit position */
280 uint8_t lvl = lvl_abs << (8-nlbits);
281
282 /* write to clicintctrl */
283 uint8_t current_intctrl = eclic_get_intctrl(source);
284 /* shift intctrl left to mask off unused bits */
285 current_intctrl = current_intctrl << nlbits;
286 /* shift intctrl into correct bit position */
287 current_intctrl = current_intctrl >> nlbits;
288
289 eclic_set_intctrl(source, (current_intctrl | lvl));
290 }
291
eclic_get_irq_lvl_abs(uint32_t source)292 uint8_t eclic_get_irq_lvl_abs(uint32_t source) {
293 /* extract nlbits */
294 uint8_t nlbits = eclic_get_nlbits();
295 if (nlbits > ECLICINTCTLBITS) {
296 nlbits = ECLICINTCTLBITS;
297 }
298
299 uint8_t intctrl = eclic_get_intctrl(source);
300
301 /* shift intctrl */
302 intctrl = intctrl >> (8-nlbits);
303 /* shift intctrl */
304 uint8_t lvl_abs = intctrl;
305
306 return lvl_abs;
307 }
308
309 /* sets an interrupt priority based encoding of nlbits and ECLICINTCTLBITS */
eclic_set_irq_priority(uint32_t source,uint8_t priority)310 uint8_t eclic_set_irq_priority(uint32_t source, uint8_t priority) {
311 /* extract nlbits */
312 uint8_t nlbits = eclic_get_nlbits();
313 if (nlbits >= ECLICINTCTLBITS) {
314 nlbits = ECLICINTCTLBITS;
315 return 0;
316 }
317
318 /* shift priority into correct bit position */
319 priority = priority << (8 - ECLICINTCTLBITS);
320
321 /* write to eclicintctrl */
322 uint8_t current_intctrl = eclic_get_intctrl(source);
323 /* shift intctrl right to mask off unused bits */
324 current_intctrl = current_intctrl >> (8-nlbits);
325 /* shift intctrl into correct bit position */
326 current_intctrl = current_intctrl << (8-nlbits);
327
328 eclic_set_intctrl(source, (current_intctrl | priority));
329
330 return priority;
331 }
332
333 /* gets an interrupt priority based encoding of nlbits */
eclic_get_irq_priority(uint32_t source)334 uint8_t eclic_get_irq_priority(uint32_t source) {
335 /* extract nlbits */
336 uint8_t nlbits = eclic_get_nlbits();
337 if (nlbits > ECLICINTCTLBITS) {
338 nlbits = ECLICINTCTLBITS;
339 }
340
341 uint8_t intctrl = eclic_get_intctrl(source);
342
343 /* shift intctrl */
344 intctrl = intctrl << nlbits;
345 /* shift intctrl */
346 uint8_t priority = intctrl >> (nlbits+(8 - ECLICINTCTLBITS));
347
348 return priority;
349 }
350
eclic_mode_enable()351 void eclic_mode_enable() {
352 #if defined (__ICCRISCV__)
353 uint32_t mtvec_value = read_csr(CSR_MTVEC);
354 mtvec_value = mtvec_value & 0xFFFFFFC0;
355 mtvec_value = mtvec_value | 0x00000003;
356 write_csr(CSR_MTVEC,mtvec_value);
357 #elif defined ( __GNUC__ )
358 uint32_t mtvec_value = read_csr(mtvec);
359 mtvec_value = mtvec_value & 0xFFFFFFC0;
360 mtvec_value = mtvec_value | 0x00000003;
361 write_csr(mtvec,mtvec_value);
362 #endif
363
364 }
365
366 /* sets vector-mode or non-vector mode */
eclic_set_vmode(uint32_t source)367 void eclic_set_vmode(uint32_t source) {
368 /* read the current attr */
369 uint8_t old_intattr = eclic_get_intattr(source);
370 /* Keep other bits unchanged and only set the LSB bit */
371 uint8_t new_intattr = (old_intattr | 0x1);
372
373 eclic_set_intattr(source,new_intattr);
374 }
375
eclic_set_nonvmode(uint32_t source)376 void eclic_set_nonvmode(uint32_t source) {
377 /* read the current attr */
378 uint8_t old_intattr = eclic_get_intattr(source);
379 /* Keep other bits unchanged and only clear the LSB bit*/
380 uint8_t new_intattr = (old_intattr & (~0x1));
381
382 eclic_set_intattr(source,new_intattr);
383 }
384
385 /* sets interrupt as level sensitive
386 Bit 1, trig[0], is defined as "edge-triggered" (0: level-triggered, 1: edge-triggered);
387 Bit 2, trig[1], is defined as "negative-edge" (0: positive-edge, 1: negative-edge).*/
388
eclic_set_level_trig(uint32_t source)389 void eclic_set_level_trig(uint32_t source) {
390 /* read the current attr */
391 uint8_t old_intattr = eclic_get_intattr(source);
392 /* Keep other bits unchanged and only clear the bit 1 */
393 uint8_t new_intattr = (old_intattr & (~0x2));
394
395 eclic_set_intattr(source,new_intattr);
396 }
397
eclic_set_posedge_trig(uint32_t source)398 void eclic_set_posedge_trig(uint32_t source) {
399 /* read the current attr */
400 uint8_t old_intattr = eclic_get_intattr(source);
401 /* Keep other bits unchanged and only set the bit 1 */
402 uint8_t new_intattr = (old_intattr | 0x2);
403 /* Keep other bits unchanged and only clear the bit 2 */
404 new_intattr = (old_intattr & (~0x4));
405
406 eclic_set_intattr(source,new_intattr);
407 }
408
eclic_set_negedge_trig(uint32_t source)409 void eclic_set_negedge_trig(uint32_t source) {
410 /*read the current attr */
411 uint8_t old_intattr = eclic_get_intattr(source);
412 /* Keep other bits unchanged and only set the bit 1*/
413 uint8_t new_intattr = (old_intattr | 0x2);
414 /* Keep other bits unchanged and only set the bit 2*/
415 new_intattr = (old_intattr | 0x4);
416
417 eclic_set_intattr(source,new_intattr);
418 }
419