1 /*
2 * SPDX-FileCopyrightText: 2017-2022 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include "esp_efuse_utility.h"
8 #include "soc/efuse_periph.h"
9 #include "hal/efuse_hal.h"
10 #include "esp_private/esp_clk.h"
11 #include "esp_log.h"
12 #include "assert.h"
13 #include "sdkconfig.h"
14 #include <sys/param.h>
15
16 static const char *TAG = "efuse";
17
18 #ifdef CONFIG_EFUSE_VIRTUAL
19 extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
20 #endif // CONFIG_EFUSE_VIRTUAL
21
22 /*Range addresses to read blocks*/
23 const esp_efuse_range_addr_t range_read_addr_blocks[] = {
24 {EFUSE_BLK0_RDATA0_REG, EFUSE_BLK0_RDATA6_REG}, // range address of EFUSE_BLK0
25 {EFUSE_BLK1_RDATA0_REG, EFUSE_BLK1_RDATA7_REG}, // range address of EFUSE_BLK1
26 {EFUSE_BLK2_RDATA0_REG, EFUSE_BLK2_RDATA7_REG}, // range address of EFUSE_BLK2
27 {EFUSE_BLK3_RDATA0_REG, EFUSE_BLK3_RDATA7_REG} // range address of EFUSE_BLK3
28 };
29
30 static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
31
32 /*Range addresses to write blocks (it is not real regs, it is a buffer) */
33 const esp_efuse_range_addr_t range_write_addr_blocks[] = {
34 {(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][6]},
35 {(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][7]},
36 {(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
37 {(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
38 };
39
40 #ifndef CONFIG_EFUSE_VIRTUAL
41 /* Addresses to write blocks*/
42 const uint32_t start_write_addr[] = {
43 EFUSE_BLK0_WDATA0_REG,
44 EFUSE_BLK1_WDATA0_REG,
45 EFUSE_BLK2_WDATA0_REG,
46 EFUSE_BLK3_WDATA0_REG,
47 };
48
49 static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len);
50
51 // Update Efuse timing configuration
esp_efuse_set_timing(void)52 static esp_err_t esp_efuse_set_timing(void)
53 {
54 uint32_t apb_freq_mhz = esp_clk_apb_freq() / 1000000;
55 efuse_hal_set_timing(apb_freq_mhz);
56 return ESP_OK;
57 }
58 #endif // ifndef CONFIG_EFUSE_VIRTUAL
59
60 // Efuse read operation: copies data from physical efuses to efuse read registers.
esp_efuse_utility_clear_program_registers(void)61 void esp_efuse_utility_clear_program_registers(void)
62 {
63 efuse_hal_clear_program_registers();
64 }
65
esp_efuse_utility_check_errors(void)66 esp_err_t esp_efuse_utility_check_errors(void)
67 {
68 return ESP_OK;
69 }
70
71 // Burn values written to the efuse write registers
esp_efuse_utility_burn_chip(void)72 esp_err_t esp_efuse_utility_burn_chip(void)
73 {
74 esp_err_t error = ESP_OK;
75 #ifdef CONFIG_EFUSE_VIRTUAL
76 ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
77 for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
78 int subblock = 0;
79 for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
80 virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
81 }
82 }
83 #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
84 esp_efuse_utility_write_efuses_to_flash();
85 #endif
86 #else // CONFIG_EFUSE_VIRTUAL
87 if (esp_efuse_set_timing() != ESP_OK) {
88 ESP_LOGE(TAG, "Efuse fields are not burnt");
89 } else {
90 // Permanently update values written to the efuse write registers
91 // It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
92 for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
93 esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
94 bool need_burn_block = false;
95 for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
96 if (REG_READ(addr_wr_block) != 0) {
97 need_burn_block = true;
98 break;
99 }
100 }
101 if (!need_burn_block) {
102 continue;
103 }
104 if (error) {
105 // It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
106 // in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
107 ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
108 continue;
109 }
110 efuse_hal_clear_program_registers();
111 unsigned w_data_len;
112 unsigned r_data_len;
113 if (scheme == EFUSE_CODING_SCHEME_3_4) {
114 esp_efuse_utility_apply_34_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES);
115 r_data_len = ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES;
116 w_data_len = 32;
117 } else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
118 apply_repeat_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], 16);
119 r_data_len = ESP_EFUSE_LEN_OF_REPEAT_BLOCK_IN_BYTES;
120 w_data_len = 32;
121 } else {
122 r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
123 w_data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
124 memcpy((void *)start_write_addr[num_block], (void *)range_write_addr_blocks[num_block].start, w_data_len);
125 }
126
127 uint32_t backup_write_data[8];
128 memcpy(backup_write_data, (void *)start_write_addr[num_block], w_data_len);
129 int repeat_burn_op = 1;
130 bool correct_written_data;
131 bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
132 if (coding_error_before) {
133 ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
134 }
135 bool coding_error_occurred;
136
137 do {
138 ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
139 efuse_hal_program(0); // BURN a block
140
141 bool coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
142 coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
143 if (coding_error_occurred) {
144 ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
145 }
146
147 correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
148 if (!correct_written_data || coding_error_occurred) {
149 ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
150 memcpy((void *)start_write_addr[num_block], (void *)backup_write_data, w_data_len);
151 }
152
153 } while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
154
155 if (coding_error_occurred) {
156 ESP_LOGW(TAG, "Coding error was not fixed");
157 }
158 if (!correct_written_data) {
159 ESP_LOGE(TAG, "Written data are incorrect");
160 error = ESP_FAIL;
161 }
162 }
163 }
164 #endif // CONFIG_EFUSE_VIRTUAL
165 esp_efuse_utility_reset();
166 return error;
167 }
168
esp_efuse_utility_apply_34_encoding(const uint8_t * in_bytes,uint32_t * out_words,size_t in_bytes_len)169 esp_err_t esp_efuse_utility_apply_34_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
170 {
171 if (in_bytes == NULL || out_words == NULL || in_bytes_len % 6 != 0) {
172 return ESP_ERR_INVALID_ARG;
173 }
174
175 while (in_bytes_len > 0) {
176 uint8_t out[8];
177 uint8_t xor = 0;
178 uint8_t mul = 0;
179 for (int i = 0; i < 6; i++) {
180 xor ^= in_bytes[i];
181 mul += (i + 1) * __builtin_popcount(in_bytes[i]);
182 }
183
184 memcpy(out, in_bytes, 6); // Data bytes
185 out[6] = xor;
186 out[7] = mul;
187
188 memcpy(out_words, out, 8);
189
190 in_bytes_len -= 6;
191 in_bytes += 6;
192 out_words += 2;
193 }
194
195 return ESP_OK;
196 }
197
198 #ifndef CONFIG_EFUSE_VIRTUAL
199
apply_repeat_encoding(const uint8_t * in_bytes,uint32_t * out_words,size_t in_bytes_len)200 static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
201 {
202 for (unsigned i = 0; i < 2; i++) {
203 memcpy(&out_words[i * 4], (uint32_t *)in_bytes, in_bytes_len);
204 }
205 }
206 #endif // CONFIG_EFUSE_VIRTUAL
207
read_r_data(esp_efuse_block_t num_block,uint32_t * buf_r_data)208 static void read_r_data(esp_efuse_block_t num_block, uint32_t* buf_r_data)
209 {
210 int i = 0;
211 for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++i) {
212 buf_r_data[i] = esp_efuse_utility_read_reg(num_block, i);
213 }
214 }
215
216 // This function just checkes that given data for blocks will not rise a coding issue during the burn operation.
217 // Encoded data will be set during the burn operation.
esp_efuse_utility_apply_new_coding_scheme()218 esp_err_t esp_efuse_utility_apply_new_coding_scheme()
219 {
220 uint8_t buf_r_data[COUNT_EFUSE_REG_PER_BLOCK * 4];
221 // start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
222 for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
223 esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
224 if (scheme != EFUSE_CODING_SCHEME_NONE) {
225 bool is_write_data = false;
226 for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
227 if (REG_READ(addr_wr_block)) {
228 is_write_data = true;
229 break;
230 }
231 }
232 if (is_write_data) {
233 read_r_data(num_block, (uint32_t*)buf_r_data);
234 uint8_t* buf_w_data = (uint8_t*)range_write_addr_blocks[num_block].start;
235 if (scheme == EFUSE_CODING_SCHEME_3_4) {
236 if (*((uint32_t*)buf_w_data + 6) != 0 || *((uint32_t*)buf_w_data + 7) != 0) {
237 return ESP_ERR_CODING;
238 }
239 for (int i = 0; i < ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES; ++i) {
240 if (buf_w_data[i] != 0) {
241 int st_offset_buf = (i / 6) * 6;
242 // check that place is free.
243 for (int n = st_offset_buf; n < st_offset_buf + 6; ++n) {
244 if (buf_r_data[n] != 0) {
245 ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden.");
246 return ESP_ERR_CODING;
247 }
248 }
249 }
250 }
251 } else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
252 for (int i = 4; i < 8; ++i) {
253 if (*((uint32_t*)buf_w_data + i) != 0) {
254 return ESP_ERR_CODING;
255 }
256 }
257 }
258 }
259 }
260 }
261 return ESP_OK;
262 }
263