1 // Copyright 2017 Espressif Systems (Shanghai) PTE LTD
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // Hot It Works
16 // ************
17
18 // 1. Components Overview
19 // ======================
20
21 // Xtensa has useful feature: TRAX debug module. It allows recording program execution flow at run-time without disturbing CPU.
22 // Exectution flow data are written to configurable Trace RAM block. Besides accessing Trace RAM itself TRAX module also allows to read/write
23 // trace memory via its registers by means of JTAG, APB or ERI transactions.
24 // ESP32 has two Xtensa cores with separate TRAX modules on them and provides two special memory regions to be used as trace memory.
25 // Chip allows muxing access to those trace memory blocks in such a way that while one block is accessed by CPUs another one can be accessed by host
26 // by means of reading/writing TRAX registers via JTAG. Blocks muxing is configurable at run-time and allows switching trace memory blocks between
27 // accessors in round-robin fashion so they can read/write separate memory blocks without disturbing each other.
28 // This module implements application tracing feature based on above mechanisms. It allows to transfer arbitrary user data to/from
29 // host via JTAG with minimal impact on system performance. This module is implied to be used in the following tracing scheme.
30
31 // ------>------ ----- (host components) -----
32 // | | | |
33 // ------------------- ----------------------- ----------------------- ---------------- ------ --------- -----------------
34 // |trace data source|-->|target tracing module|<--->|TRAX_MEM0 | TRAX_MEM1|---->|TRAX_DATA_REGS|<-->|JTAG|<--->|OpenOCD|-->|trace data sink|
35 // ------------------- ----------------------- ----------------------- ---------------- ------ --------- -----------------
36 // | | | |
37 // | ------<------ ---------------- |
38 // |<------------------------------------------->|TRAX_CTRL_REGS|<---->|
39 // ----------------
40
41 // In general tracing goes in the following way. User application requests tracing module to send some data by calling esp_apptrace_buffer_get(),
42 // module allocates necessary buffer in current input trace block. Then user fills received buffer with data and calls esp_apptrace_buffer_put().
43 // When current input trace block is filled with app data it is exposed to host and the second block becomes input one and buffer filling restarts.
44 // While target application fills one TRAX block host reads another one via JTAG.
45 // This module also allows communication in the opposite direction: from host to target. As it was said ESP32 and host can access different TRAX blocks
46 // simultaneously, so while target writes trace data to one block host can write its own data (e.g. tracing commands) to another one then when
47 // blocks are switched host receives trace data and target receives data written by host application. Target user application can read host data
48 // by calling esp_apptrace_read() API.
49 // To control buffer switching and for other communication purposes this implementation uses some TRAX registers. It is safe since HW TRAX tracing
50 // can not be used along with application tracing feature so these registers are freely readable/writeable via JTAG from host and via ERI from ESP32 cores.
51 // Overhead of this implementation on target CPU is produced only by allocating/managing buffers and copying of data.
52 // On the host side special OpenOCD command must be used to read trace data.
53
54 // 2. TRAX Registers layout
55 // ========================
56
57 // This module uses two TRAX HW registers to communicate with host SW (OpenOCD).
58 // - Control register uses TRAX_DELAYCNT as storage. Only lower 24 bits of TRAX_DELAYCNT are writable. Control register has the following bitfields:
59 // | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 |
60 // 14..0 bits - actual length of user data in trace memory block. Target updates it every time it fills memory block and exposes it to host.
61 // Host writes zero to this field when it finishes reading exposed block;
62 // 21..15 bits - trace memory block transfer ID. Block counter. It can overflow. Updated by target, host should not modify it. Actually can be 2 bits;
63 // 22 bit - 'host data present' flag. If set to one there is data from host, otherwise - no host data;
64 // 23 bit - 'host connected' flag. If zero then host is not connected and tracing module works in post-mortem mode, otherwise in streaming mode;
65 // - Status register uses TRAX_TRIGGERPC as storage. If this register is not zero then current CPU is changing TRAX registers and
66 // this register holds address of the instruction which application will execute when it finishes with those registers modifications.
67 // See 'Targets Connection' setion for details.
68
69 // 3. Modes of operation
70 // =====================
71
72 // This module supports two modes of operation:
73 // - Post-mortem mode. This is the default mode. In this mode application tracing module does not check whether host has read all the data from block
74 // exposed to it and switches block in any case. The mode does not need host interaction for operation and so can be useful when only the latest
75 // trace data are necessary, e.g. for analyzing crashes. On panic the latest data from current input block are exposed to host and host can read them.
76 // It can happen that system panic occurs when there are very small amount of data which are not exposed to host yet (e.g. crash just after the
77 // TRAX block switch). In this case the previous 16KB of collected data will be dropped and host will see the latest, but very small piece of trace.
78 // It can be insufficient to diagnose the problem. To avoid such situations there is menuconfig option
79 // CONFIG_APPTRACE_POSTMORTEM_FLUSH_THRESH
80 // which controls the threshold for flushing data in case of panic.
81 // - Streaming mode. Tracing module enters this mode when host connects to target and sets respective bits in control registers (per core).
82 // In this mode before switching the block tracing module waits for the host to read all the data from the previously exposed block.
83 // On panic tracing module also waits (timeout is configured via menuconfig via CONFIG_APPTRACE_ONPANIC_HOST_FLUSH_TMO) for the host to read all data.
84
85 // 4. Communication Protocol
86 // =========================
87
88 // 4.1 Trace Memory Blocks
89 // -----------------------
90
91 // Communication is controlled via special register. Host periodically polls control register on each core to find out if there are any data available.
92 // When current input memory block is filled it is exposed to host and 'block_len' and 'block_id' fields are updated in the control register.
93 // Host reads new register value and according to it's value starts reading data from exposed block. Meanwhile target starts filling another trace block.
94 // When host finishes reading the block it clears 'block_len' field in control register indicating to the target that it is ready to accept the next one.
95 // If the host has some data to transfer to the target it writes them to trace memory block before clearing 'block_len' field. Then it sets
96 // 'host_data_present' bit and clears 'block_len' field in control register. Upon every block switch target checks 'host_data_present' bit and if it is set
97 // reads them to down buffer before writing any trace data to switched TRAX block.
98
99 // 4.2 User Data Chunks Level
100 // --------------------------
101
102 // Since trace memory block is shared between user data chunks and data copying is performed on behalf of the API user (in its normal context) in
103 // multithreading environment it can happen that task/ISR which copies data is preempted by another high prio task/ISR. So it is possible situation
104 // that task/ISR will fail to complete filling its data chunk before the whole trace block is exposed to the host. To handle such conditions tracing
105 // module prepends all user data chunks with header which contains allocated buffer size and actual data length within it. OpenOCD command
106 // which reads application traces reports error when it reads incomplete user data block.
107 // Data which are transffered from host to target are also prepended with a header. Down channel data header is simple and consists of one two bytes field
108 // containing length of host data following the header.
109
110 // 4.3 Data Buffering
111 // ------------------
112
113 // It takes some time for the host to read TRAX memory block via JTAG. In streaming mode it can happen that target has filled its TRAX block, but host
114 // has not completed reading of the previous one yet. So in this case time critical tracing calls (which can not be delayed for too long time due to
115 // the lack of free memory in TRAX block) can be dropped. To avoid such scenarios tracing module implements data buffering. Buffered data will be sent
116 // to the host later when TRAX block switch occurs. The maximum size of the buffered data is controlled by menuconfig option
117 // CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX.
118
119 // 4.4 Target Connection/Disconnection
120 // -----------------------------------
121
122 // When host is going to start tracing in streaming mode it needs to put both ESP32 cores into initial state when 'host connected' bit is set
123 // on both cores. To accomplish this host halts both cores and sets this bit in TRAX registers. But target code can be halted in state when it has read control
124 // register but has not updated its value. To handle such situations target code indicates to the host that it is updating control register by writing
125 // non-zero value to status register. Actually it writes address of the instruction which it will execute when it finishes with
126 // the registers update. When target is halted during control register update host sets breakpoint at the address from status register and resumes CPU.
127 // After target code finishes with register update it is halted on breakpoint, host detects it and safely sets 'host connected' bit. When both cores
128 // are set up they are resumed. Tracing starts without further intrusion into CPUs work.
129 // When host is going to stop tracing in streaming mode it needs to disconnect targets. Disconnection process is done using the same algorithm
130 // as for connecting, but 'host connected' bits are cleared on ESP32 cores.
131
132 // 5. Module Access Synchronization
133 // ================================
134
135 // Access to internal module's data is synchronized with custom mutex. Mutex is a wrapper for portMUX_TYPE and uses almost the same sync mechanism as in
136 // vPortCPUAcquireMutex/vPortCPUReleaseMutex. The mechanism uses S32C1I Xtensa instruction to implement exclusive access to module's data from tasks and
137 // ISRs running on both cores. Also custom mutex allows specifying timeout for locking operation. Locking routine checks underlaying mutex in cycle until
138 // it gets its ownership or timeout expires. The differences of application tracing module's mutex implementation from vPortCPUAcquireMutex/vPortCPUReleaseMutex are:
139 // - Support for timeouts.
140 // - Local IRQs for CPU which owns the mutex are disabled till the call to unlocking routine. This is made to avoid possible task's prio inversion.
141 // When low prio task takes mutex and enables local IRQs gets preempted by high prio task which in its turn can try to acquire mutex using infinite timeout.
142 // So no local task switch occurs when mutex is locked. But this does not apply to tasks on another CPU.
143 // WARNING: Priority inversion can happen when low prio task works on one CPU and medium and high prio tasks work on another.
144 // WARNING: Care must be taken when selecting timeout values for trace calls from ISRs. Tracing module does not care about watchdogs when waiting
145 // on internal locks and for host to complete previous block reading, so if timeout value exceeds watchdog's one it can lead to the system reboot.
146
147 // 6. Timeouts
148 // ===========
149
150 // Timeout mechanism is based on xthal_get_ccount() routine and supports timeout values in microseconds.
151 // There are two situations when task/ISR can be delayed by tracing API call. Timeout mechanism takes into account both conditions:
152 // - Trace data are locked by another task/ISR. When wating on trace data lock.
153 // - Current TRAX memory input block is full when working in streaming mode (host is connected). When waiting for host to complete previous block reading.
154 // When wating for any of above conditions xthal_get_ccount() is called periodically to calculate time elapsed from trace API routine entry. When elapsed
155 // time exceeds specified timeout value operation is canceled and ESP_ERR_TIMEOUT code is returned.
156
157 #include <string.h>
158 #include <sys/param.h>
159 #include "sdkconfig.h"
160 #include "soc/soc.h"
161 #include "soc/dport_access.h"
162 #if CONFIG_IDF_TARGET_ESP32
163 #include "soc/dport_reg.h"
164 #elif CONFIG_IDF_TARGET_ESP32S2
165 #include "soc/sensitive_reg.h"
166 #endif
167 #if __XTENSA__
168 #include "eri.h"
169 #include "trax.h"
170 #endif
171 #include "soc/timer_periph.h"
172 #include "freertos/FreeRTOS.h"
173 #include "esp_app_trace.h"
174 #include "esp_rom_sys.h"
175
176 #if CONFIG_APPTRACE_ENABLE
177 #define ESP_APPTRACE_MAX_VPRINTF_ARGS 256
178 #define ESP_APPTRACE_HOST_BUF_SIZE 256
179
180 #define ESP_APPTRACE_PRINT_LOCK 0
181
182 #include "esp_log.h"
183 const static char *TAG = "esp_apptrace";
184
185 #if ESP_APPTRACE_PRINT_LOCK
186 #define ESP_APPTRACE_LOG( format, ... ) \
187 do { \
188 esp_apptrace_log_lock(); \
189 esp_rom_printf(format, ##__VA_ARGS__); \
190 esp_apptrace_log_unlock(); \
191 } while(0)
192 #else
193 #define ESP_APPTRACE_LOG( format, ... ) \
194 do { \
195 esp_rom_printf(format, ##__VA_ARGS__); \
196 } while(0)
197 #endif
198
199 #define ESP_APPTRACE_LOG_LEV( _L_, level, format, ... ) \
200 do { \
201 if (LOG_LOCAL_LEVEL >= level) { \
202 ESP_APPTRACE_LOG(LOG_FORMAT(_L_, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); \
203 } \
204 } while(0)
205
206 #define ESP_APPTRACE_LOGE( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_ERROR, format, ##__VA_ARGS__)
207 #define ESP_APPTRACE_LOGW( format, ... ) ESP_APPTRACE_LOG_LEV(W, ESP_LOG_WARN, format, ##__VA_ARGS__)
208 #define ESP_APPTRACE_LOGI( format, ... ) ESP_APPTRACE_LOG_LEV(I, ESP_LOG_INFO, format, ##__VA_ARGS__)
209 #define ESP_APPTRACE_LOGD( format, ... ) ESP_APPTRACE_LOG_LEV(D, ESP_LOG_DEBUG, format, ##__VA_ARGS__)
210 #define ESP_APPTRACE_LOGV( format, ... ) ESP_APPTRACE_LOG_LEV(V, ESP_LOG_VERBOSE, format, ##__VA_ARGS__)
211 #define ESP_APPTRACE_LOGO( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_NONE, format, ##__VA_ARGS__)
212
213 // TODO: move these (and same definitions in trax.c to dport_reg.h)
214 #if CONFIG_IDF_TARGET_ESP32
215 #define TRACEMEM_MUX_PROBLK0_APPBLK1 0
216 #define TRACEMEM_MUX_BLK0_ONLY 1
217 #define TRACEMEM_MUX_BLK1_ONLY 2
218 #define TRACEMEM_MUX_PROBLK1_APPBLK0 3
219 #elif CONFIG_IDF_TARGET_ESP32S2
220 #define TRACEMEM_MUX_BLK0_NUM 19
221 #define TRACEMEM_MUX_BLK1_NUM 20
222 #define TRACEMEM_BLK_NUM2ADDR(_n_) (0x3FFB8000UL + 0x4000UL*((_n_)-4))
223 #endif
224
225 // TRAX is disabled, so we use its registers for our own purposes
226 // | 31..XXXXXX..24 | 23 .(host_connect). 23 | 22 .(host_data). 22| 21..(block_id)..15 | 14..(block_len)..0 |
227 #define ESP_APPTRACE_TRAX_CTRL_REG ERI_TRAX_DELAYCNT
228 #define ESP_APPTRACE_TRAX_STAT_REG ERI_TRAX_TRIGGERPC
229
230 #define ESP_APPTRACE_TRAX_BLOCK_LEN_MSK 0x7FFFUL
231 #define ESP_APPTRACE_TRAX_BLOCK_LEN(_l_) ((_l_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
232 #define ESP_APPTRACE_TRAX_BLOCK_LEN_GET(_v_) ((_v_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
233 #define ESP_APPTRACE_TRAX_BLOCK_ID_MSK 0x7FUL
234 #define ESP_APPTRACE_TRAX_BLOCK_ID(_id_) (((_id_) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK) << 15)
235 #define ESP_APPTRACE_TRAX_BLOCK_ID_GET(_v_) (((_v_) >> 15) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)
236 #define ESP_APPTRACE_TRAX_HOST_DATA (1 << 22)
237 #define ESP_APPTRACE_TRAX_HOST_CONNECT (1 << 23)
238
239 #if CONFIG_SYSVIEW_ENABLE
240 #define ESP_APPTRACE_USR_BLOCK_CORE(_cid_) (0)
241 #define ESP_APPTRACE_USR_BLOCK_LEN(_v_) (_v_)
242 #else
243 #define ESP_APPTRACE_USR_BLOCK_CORE(_cid_) ((_cid_) << 15)
244 #define ESP_APPTRACE_USR_BLOCK_LEN(_v_) (~(1 << 15) & (_v_))
245 #endif
246 #define ESP_APPTRACE_USR_BLOCK_RAW_SZ(_s_) ((_s_) + sizeof(esp_tracedata_hdr_t))
247
248 #if CONFIG_IDF_TARGET_ESP32
249 static volatile uint8_t *s_trax_blocks[] = {
250 (volatile uint8_t *) 0x3FFFC000,
251 (volatile uint8_t *) 0x3FFF8000
252 };
253 #elif CONFIG_IDF_TARGET_ESP32S2
254 static volatile uint8_t *s_trax_blocks[] = {
255 (volatile uint8_t *)TRACEMEM_BLK_NUM2ADDR(TRACEMEM_MUX_BLK0_NUM),
256 (volatile uint8_t *)TRACEMEM_BLK_NUM2ADDR(TRACEMEM_MUX_BLK1_NUM)
257 };
258 #endif
259
260 #define ESP_APPTRACE_TRAX_BLOCKS_NUM (sizeof(s_trax_blocks)/sizeof(s_trax_blocks[0]))
261
262 #define ESP_APPTRACE_TRAX_INBLOCK_START 0
263
264 #define ESP_APPTRACE_TRAX_INBLOCK_MARKER() (s_trace_buf.trax.state.markers[s_trace_buf.trax.state.in_block % 2])
265 #define ESP_APPTRACE_TRAX_INBLOCK_MARKER_UPD(_v_) do {s_trace_buf.trax.state.markers[s_trace_buf.trax.state.in_block % 2] += (_v_);}while(0)
266 #define ESP_APPTRACE_TRAX_INBLOCK_GET() (&s_trace_buf.trax.blocks[s_trace_buf.trax.state.in_block % 2])
267
268 #define ESP_APPTRACE_TRAX_BLOCK_SIZE (0x4000UL)
269 #if CONFIG_SYSVIEW_ENABLE
270 #define ESP_APPTRACE_USR_DATA_LEN_MAX 255UL
271 #else
272 #define ESP_APPTRACE_USR_DATA_LEN_MAX (ESP_APPTRACE_TRAX_BLOCK_SIZE - sizeof(esp_tracedata_hdr_t))
273 #endif
274
275 #define ESP_APPTRACE_HW_TRAX 0
276 #define ESP_APPTRACE_HW_MAX 1
277 #define ESP_APPTRACE_HW(_i_) (&s_trace_hw[_i_])
278
279 /** Trace data header. Every user data chunk is prepended with this header.
280 * User allocates block with esp_apptrace_buffer_get and then fills it with data,
281 * in multithreading environment it can happen that tasks gets buffer and then gets interrupted,
282 * so it is possible that user data are incomplete when TRAX memory block is exposed to the host.
283 * In this case host SW will see that wr_sz < block_sz and will report error.
284 */
285 typedef struct {
286 #if CONFIG_SYSVIEW_ENABLE
287 uint8_t block_sz; // size of allocated block for user data
288 uint8_t wr_sz; // size of actually written data
289 #else
290 uint16_t block_sz; // size of allocated block for user data
291 uint16_t wr_sz; // size of actually written data
292 #endif
293 } esp_tracedata_hdr_t;
294
295 /** TODO: docs
296 */
297 typedef struct {
298 uint16_t block_sz; // size of allocated block for user data
299 } esp_hostdata_hdr_t;
300
301 /** TRAX HW transport state */
302 typedef struct {
303 uint32_t in_block; // input block ID
304 // TODO: change to uint16_t
305 uint32_t markers[ESP_APPTRACE_TRAX_BLOCKS_NUM]; // block filling level markers
306 } esp_apptrace_trax_state_t;
307
308 /** memory block parameters */
309 typedef struct {
310 uint8_t *start; // start address
311 uint16_t sz; // size
312 } esp_apptrace_mem_block_t;
313
314 /** TRAX HW transport data */
315 typedef struct {
316 volatile esp_apptrace_trax_state_t state; // state
317 esp_apptrace_mem_block_t blocks[ESP_APPTRACE_TRAX_BLOCKS_NUM]; // memory blocks
318 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
319 // ring buffer control struct for pending user blocks
320 esp_apptrace_rb_t rb_pend;
321 // storage for pending user blocks
322 uint8_t pending_data[CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX + 1];
323 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE
324 // ring buffer control struct for pending user data chunks sizes,
325 // every chunk contains whole number of user blocks and fit into TRAX memory block
326 esp_apptrace_rb_t rb_pend_chunk_sz;
327 // storage for above ring buffer data
328 uint16_t pending_chunk_sz[CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX/ESP_APPTRACE_TRAX_BLOCK_SIZE + 2];
329 // current (accumulated) pending user data chunk size
330 uint16_t cur_pending_chunk_sz;
331 #endif
332 #endif
333 } esp_apptrace_trax_data_t;
334
335 /** tracing module internal data */
336 typedef struct {
337 esp_apptrace_lock_t lock; // sync lock
338 uint8_t inited; // module initialization state flag
339 // ring buffer control struct for data from host (down buffer)
340 esp_apptrace_rb_t rb_down;
341 // storage for above ring buffer data
342 esp_apptrace_trax_data_t trax; // TRAX HW transport data
343 } esp_apptrace_buffer_t;
344
345 static esp_apptrace_buffer_t s_trace_buf;
346
347 #if ESP_APPTRACE_PRINT_LOCK
348 static esp_apptrace_lock_t s_log_lock = {.irq_stat = 0, .portmux = portMUX_INITIALIZER_UNLOCKED};
349 #endif
350
351 typedef struct {
352 uint8_t *(*get_up_buffer)(uint32_t, esp_apptrace_tmo_t *);
353 esp_err_t (*put_up_buffer)(uint8_t *, esp_apptrace_tmo_t *);
354 esp_err_t (*flush_up_buffer)(uint32_t, esp_apptrace_tmo_t *);
355 uint8_t *(*get_down_buffer)(uint32_t *, esp_apptrace_tmo_t *);
356 esp_err_t (*put_down_buffer)(uint8_t *, esp_apptrace_tmo_t *);
357 bool (*host_is_connected)(void);
358 esp_err_t (*status_reg_set)(uint32_t val);
359 esp_err_t (*status_reg_get)(uint32_t *val);
360 } esp_apptrace_hw_t;
361
362 static uint32_t esp_apptrace_trax_down_buffer_write_nolock(uint8_t *data, uint32_t size);
363 static esp_err_t esp_apptrace_trax_flush(uint32_t min_sz, esp_apptrace_tmo_t *tmo);
364 static uint8_t *esp_apptrace_trax_get_buffer(uint32_t size, esp_apptrace_tmo_t *tmo);
365 static esp_err_t esp_apptrace_trax_put_buffer(uint8_t *ptr, esp_apptrace_tmo_t *tmo);
366 static bool esp_apptrace_trax_host_is_connected(void);
367 static uint8_t *esp_apptrace_trax_down_buffer_get(uint32_t *size, esp_apptrace_tmo_t *tmo);
368 static esp_err_t esp_apptrace_trax_down_buffer_put(uint8_t *ptr, esp_apptrace_tmo_t *tmo);
369 static esp_err_t esp_apptrace_trax_status_reg_set(uint32_t val);
370 static esp_err_t esp_apptrace_trax_status_reg_get(uint32_t *val);
371
372 static esp_apptrace_hw_t s_trace_hw[ESP_APPTRACE_HW_MAX] = {
373 {
374 .get_up_buffer = esp_apptrace_trax_get_buffer,
375 .put_up_buffer = esp_apptrace_trax_put_buffer,
376 .flush_up_buffer = esp_apptrace_trax_flush,
377 .get_down_buffer = esp_apptrace_trax_down_buffer_get,
378 .put_down_buffer = esp_apptrace_trax_down_buffer_put,
379 .host_is_connected = esp_apptrace_trax_host_is_connected,
380 .status_reg_set = esp_apptrace_trax_status_reg_set,
381 .status_reg_get = esp_apptrace_trax_status_reg_get
382 }
383 };
384
esp_apptrace_log_lock(void)385 static inline int esp_apptrace_log_lock(void)
386 {
387 #if ESP_APPTRACE_PRINT_LOCK
388 esp_apptrace_tmo_t tmo;
389 esp_apptrace_tmo_init(&tmo, ESP_APPTRACE_TMO_INFINITE);
390 int ret = esp_apptrace_lock_take(&s_log_lock, &tmo);
391 return ret;
392 #else
393 return 0;
394 #endif
395 }
396
esp_apptrace_log_unlock(void)397 static inline void esp_apptrace_log_unlock(void)
398 {
399 #if ESP_APPTRACE_PRINT_LOCK
400 esp_apptrace_lock_give(&s_log_lock);
401 #endif
402 }
403
esp_apptrace_lock_initialize(esp_apptrace_lock_t * lock)404 static inline esp_err_t esp_apptrace_lock_initialize(esp_apptrace_lock_t *lock)
405 {
406 #if CONFIG_APPTRACE_LOCK_ENABLE
407 esp_apptrace_lock_init(lock);
408 #endif
409 return ESP_OK;
410 }
411
esp_apptrace_lock_cleanup(void)412 static inline esp_err_t esp_apptrace_lock_cleanup(void)
413 {
414 return ESP_OK;
415 }
416
esp_apptrace_lock(esp_apptrace_tmo_t * tmo)417 esp_err_t esp_apptrace_lock(esp_apptrace_tmo_t *tmo)
418 {
419 #if CONFIG_APPTRACE_LOCK_ENABLE
420 esp_err_t ret = esp_apptrace_lock_take(&s_trace_buf.lock, tmo);
421 if (ret != ESP_OK) {
422 return ESP_FAIL;
423 }
424 #endif
425 return ESP_OK;
426 }
427
esp_apptrace_unlock(void)428 esp_err_t esp_apptrace_unlock(void)
429 {
430 esp_err_t ret = ESP_OK;
431 #if CONFIG_APPTRACE_LOCK_ENABLE
432 ret = esp_apptrace_lock_give(&s_trace_buf.lock);
433 #endif
434 return ret;
435 }
436
437 #if CONFIG_APPTRACE_DEST_TRAX
438
esp_apptrace_trax_select_memory_block(int block_num)439 static inline void esp_apptrace_trax_select_memory_block(int block_num)
440 {
441 // select memory block to be exposed to the TRAX module (accessed by host)
442 #if CONFIG_IDF_TARGET_ESP32
443 DPORT_WRITE_PERI_REG(DPORT_TRACEMEM_MUX_MODE_REG, block_num ? TRACEMEM_MUX_BLK0_ONLY : TRACEMEM_MUX_BLK1_ONLY);
444 #elif CONFIG_IDF_TARGET_ESP32S2
445 DPORT_WRITE_PERI_REG(DPORT_PMS_OCCUPY_3_REG, block_num ? BIT(TRACEMEM_MUX_BLK0_NUM-4) : BIT(TRACEMEM_MUX_BLK1_NUM-4));
446 #endif
447 }
448
esp_apptrace_trax_init(void)449 static void esp_apptrace_trax_init(void)
450 {
451 // Stop trace, if any (on the current CPU)
452 eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TRSTP);
453 eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TMEN);
454 eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(ESP_APPTRACE_TRAX_INBLOCK_START));
455 // this is for OpenOCD to let him know where stub entries vector is resided
456 // must be read by host before any transfer using TRAX
457 eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0);
458
459 ESP_APPTRACE_LOGI("Initialized TRAX on CPU%d", xPortGetCoreID());
460 }
461
462 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE
463 // keep the size of buffered data for copying to TRAX mem block.
464 // Only whole user blocks should be copied from buffer to TRAX block upon the switch
esp_apptrace_trax_pend_chunk_sz_update(uint16_t size)465 static void esp_apptrace_trax_pend_chunk_sz_update(uint16_t size)
466 {
467 ESP_APPTRACE_LOGD("Update chunk enter %d/%d w-r-s %d-%d-%d", s_trace_buf.trax.cur_pending_chunk_sz, size,
468 s_trace_buf.trax.rb_pend_chunk_sz.wr, s_trace_buf.trax.rb_pend_chunk_sz.rd, s_trace_buf.trax.rb_pend_chunk_sz.cur_size);
469
470 if ((uint32_t)s_trace_buf.trax.cur_pending_chunk_sz + (uint32_t)size <= ESP_APPTRACE_TRAX_BLOCK_SIZE) {
471 ESP_APPTRACE_LOGD("Update chunk %d/%d", s_trace_buf.trax.cur_pending_chunk_sz, size);
472 s_trace_buf.trax.cur_pending_chunk_sz += size;
473 } else {
474 uint16_t *chunk_sz = (uint16_t *)esp_apptrace_rb_produce(&s_trace_buf.trax.rb_pend_chunk_sz, sizeof(uint16_t));
475 if (!chunk_sz) {
476 assert(false && "Failed to alloc pended chunk sz slot!");
477 } else {
478 ESP_APPTRACE_LOGD("Update new chunk %d/%d", s_trace_buf.trax.cur_pending_chunk_sz, size);
479 *chunk_sz = s_trace_buf.trax.cur_pending_chunk_sz;
480 s_trace_buf.trax.cur_pending_chunk_sz = size;
481 }
482 }
483 }
484
esp_apptrace_trax_pend_chunk_sz_get(void)485 static uint16_t esp_apptrace_trax_pend_chunk_sz_get(void)
486 {
487 uint16_t ch_sz;
488 ESP_APPTRACE_LOGD("Get chunk enter %d w-r-s %d-%d-%d", s_trace_buf.trax.cur_pending_chunk_sz,
489 s_trace_buf.trax.rb_pend_chunk_sz.wr, s_trace_buf.trax.rb_pend_chunk_sz.rd, s_trace_buf.trax.rb_pend_chunk_sz.cur_size);
490
491 uint16_t *chunk_sz = (uint16_t *)esp_apptrace_rb_consume(&s_trace_buf.trax.rb_pend_chunk_sz, sizeof(uint16_t));
492 if (!chunk_sz) {
493 ch_sz = s_trace_buf.trax.cur_pending_chunk_sz;
494 s_trace_buf.trax.cur_pending_chunk_sz = 0;
495 } else {
496 ch_sz = *chunk_sz;
497 }
498 return ch_sz;
499 }
500 #endif
501
502 // assumed to be protected by caller from multi-core/thread access
esp_apptrace_trax_block_switch(void)503 static __attribute__((noinline)) esp_err_t esp_apptrace_trax_block_switch(void)
504 {
505 int prev_block_num = s_trace_buf.trax.state.in_block % 2;
506 int new_block_num = prev_block_num ? (0) : (1);
507 int res = ESP_OK;
508 extern uint32_t __esp_apptrace_trax_eri_updated;
509
510 // indicate to host that we are about to update.
511 // this is used only to place CPU into streaming mode at tracing startup
512 // before starting streaming host can halt us after we read ESP_APPTRACE_TRAX_CTRL_REG and before we updated it
513 // HACK: in this case host will set breakpoint just after ESP_APPTRACE_TRAX_CTRL_REG update,
514 // here we set address to set bp at
515 // enter ERI update critical section
516 eri_write(ESP_APPTRACE_TRAX_STAT_REG, (uint32_t)&__esp_apptrace_trax_eri_updated);
517
518 uint32_t ctrl_reg = eri_read(ESP_APPTRACE_TRAX_CTRL_REG);
519 uint32_t host_connected = ESP_APPTRACE_TRAX_HOST_CONNECT & ctrl_reg;
520 if (host_connected) {
521 uint32_t acked_block = ESP_APPTRACE_TRAX_BLOCK_ID_GET(ctrl_reg);
522 uint32_t host_to_read = ESP_APPTRACE_TRAX_BLOCK_LEN_GET(ctrl_reg);
523 if (host_to_read != 0 || acked_block != (s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)) {
524 ESP_APPTRACE_LOGD("HC[%d]: Can not switch %x %d %x %x/%lx, m %d", xPortGetCoreID(), ctrl_reg, host_to_read, acked_block,
525 s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK, s_trace_buf.trax.state.in_block,
526 s_trace_buf.trax.state.markers[prev_block_num]);
527 res = ESP_ERR_NO_MEM;
528 goto _on_func_exit;
529 }
530 }
531 s_trace_buf.trax.state.markers[new_block_num] = 0;
532 // switch to new block
533 s_trace_buf.trax.state.in_block++;
534
535 esp_apptrace_trax_select_memory_block(new_block_num);
536 // handle data from host
537 esp_hostdata_hdr_t *hdr = (esp_hostdata_hdr_t *)s_trace_buf.trax.blocks[new_block_num].start;
538 if (ctrl_reg & ESP_APPTRACE_TRAX_HOST_DATA && hdr->block_sz > 0) {
539 // TODO: add support for multiple blocks from host, currently there is no need for that
540 uint8_t *p = s_trace_buf.trax.blocks[new_block_num].start + s_trace_buf.trax.blocks[new_block_num].sz;
541 ESP_APPTRACE_LOGD("Recvd %d bytes from host [%x %x %x %x %x %x %x %x .. %x %x %x %x %x %x %x %x]", hdr->block_sz,
542 *(s_trace_buf.trax.blocks[new_block_num].start+0), *(s_trace_buf.trax.blocks[new_block_num].start+1),
543 *(s_trace_buf.trax.blocks[new_block_num].start+2), *(s_trace_buf.trax.blocks[new_block_num].start+3),
544 *(s_trace_buf.trax.blocks[new_block_num].start+4), *(s_trace_buf.trax.blocks[new_block_num].start+5),
545 *(s_trace_buf.trax.blocks[new_block_num].start+6), *(s_trace_buf.trax.blocks[new_block_num].start+7),
546 *(p-8), *(p-7), *(p-6), *(p-5), *(p-4), *(p-3), *(p-2), *(p-1));
547 uint32_t sz = esp_apptrace_trax_down_buffer_write_nolock((uint8_t *)(hdr+1), hdr->block_sz);
548 if (sz != hdr->block_sz) {
549 ESP_APPTRACE_LOGE("Failed to write %d bytes to down buffer (%d %d)!", hdr->block_sz - sz, hdr->block_sz, sz);
550 }
551 hdr->block_sz = 0;
552 }
553 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
554 // copy pending data to TRAX block if any
555 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE
556 uint16_t max_chunk_sz = esp_apptrace_trax_pend_chunk_sz_get();
557 #else
558 uint16_t max_chunk_sz = s_trace_buf.trax.blocks[new_block_num].sz;
559 #endif
560 while (s_trace_buf.trax.state.markers[new_block_num] < max_chunk_sz) {
561 uint32_t read_sz = esp_apptrace_rb_read_size_get(&s_trace_buf.trax.rb_pend);
562 if (read_sz == 0) {
563 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE
564 /* theres is a bug: esp_apptrace_trax_pend_chunk_sz_get returned wrong value,
565 it must be greater or equal to one returned by esp_apptrace_rb_read_size_get */
566 ESP_APPTRACE_LOGE("No pended bytes, must be > 0 and <= %d!", max_chunk_sz);
567 #endif
568 break;
569 }
570 if (read_sz > max_chunk_sz - s_trace_buf.trax.state.markers[new_block_num]) {
571 read_sz = max_chunk_sz - s_trace_buf.trax.state.markers[new_block_num];
572 }
573 uint8_t *ptr = esp_apptrace_rb_consume(&s_trace_buf.trax.rb_pend, read_sz);
574 if (!ptr) {
575 assert(false && "Failed to consume pended bytes!!");
576 break;
577 }
578 if (host_connected) {
579 ESP_APPTRACE_LOGD("Pump %d pend bytes [%x %x %x %x : %x %x %x %x : %x %x %x %x : %x %x...%x %x]",
580 read_sz, *(ptr+0), *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4),
581 *(ptr+5), *(ptr+6), *(ptr+7), *(ptr+8), *(ptr+9), *(ptr+10), *(ptr+11), *(ptr+12), *(ptr+13), *(ptr+read_sz-2), *(ptr+read_sz-1));
582 }
583 memcpy(s_trace_buf.trax.blocks[new_block_num].start + s_trace_buf.trax.state.markers[new_block_num], ptr, read_sz);
584 s_trace_buf.trax.state.markers[new_block_num] += read_sz;
585 }
586 #endif
587 eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(s_trace_buf.trax.state.in_block) |
588 host_connected | ESP_APPTRACE_TRAX_BLOCK_LEN(s_trace_buf.trax.state.markers[prev_block_num]));
589
590 _on_func_exit:
591 // exit ERI update critical section
592 eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0x0);
593 // TODO: currently host sets breakpoint, use break instruction to stop;
594 // it will allow to use ESP_APPTRACE_TRAX_STAT_REG for other purposes
595 asm volatile (
596 " .global __esp_apptrace_trax_eri_updated\n"
597 "__esp_apptrace_trax_eri_updated:\n"); // host will set bp here to resolve collision at streaming start
598 return res;
599 }
600
esp_apptrace_trax_block_switch_waitus(esp_apptrace_tmo_t * tmo)601 static esp_err_t esp_apptrace_trax_block_switch_waitus(esp_apptrace_tmo_t *tmo)
602 {
603 int res;
604
605 while ((res = esp_apptrace_trax_block_switch()) != ESP_OK) {
606 res = esp_apptrace_tmo_check(tmo);
607 if (res != ESP_OK) {
608 break;
609 }
610 }
611 return res;
612 }
613
esp_apptrace_trax_down_buffer_get(uint32_t * size,esp_apptrace_tmo_t * tmo)614 static uint8_t *esp_apptrace_trax_down_buffer_get(uint32_t *size, esp_apptrace_tmo_t *tmo)
615 {
616 uint8_t *ptr = NULL;
617
618 int res = esp_apptrace_lock(tmo);
619 if (res != ESP_OK) {
620 return NULL;
621 }
622 while (1) {
623 uint32_t sz = esp_apptrace_rb_read_size_get(&s_trace_buf.rb_down);
624 if (sz != 0) {
625 *size = MIN(*size, sz);
626 ptr = esp_apptrace_rb_consume(&s_trace_buf.rb_down, *size);
627 if (!ptr) {
628 assert(false && "Failed to consume bytes from down buffer!");
629 }
630 break;
631 }
632 // may need to flush
633 uint32_t ctrl_reg = eri_read(ESP_APPTRACE_TRAX_CTRL_REG);
634 if (ctrl_reg & ESP_APPTRACE_TRAX_HOST_DATA) {
635 ESP_APPTRACE_LOGD("force flush");
636 res = esp_apptrace_trax_block_switch_waitus(tmo);
637 if (res != ESP_OK) {
638 ESP_APPTRACE_LOGE("Failed to switch to another block to recv data from host!");
639 /*do not return error because data can be in down buffer already*/
640 }
641 } else {
642 // check tmo only if there is no data from host
643 res = esp_apptrace_tmo_check(tmo);
644 if (res != ESP_OK) {
645 return NULL;
646 }
647 }
648 }
649 if (esp_apptrace_unlock() != ESP_OK) {
650 assert(false && "Failed to unlock apptrace data!");
651 }
652 return ptr;
653 }
654
esp_apptrace_trax_down_buffer_put(uint8_t * ptr,esp_apptrace_tmo_t * tmo)655 static esp_err_t esp_apptrace_trax_down_buffer_put(uint8_t *ptr, esp_apptrace_tmo_t *tmo)
656 {
657 /* nothing todo */
658 return ESP_OK;
659 }
660
esp_apptrace_trax_down_buffer_write_nolock(uint8_t * data,uint32_t size)661 static uint32_t esp_apptrace_trax_down_buffer_write_nolock(uint8_t *data, uint32_t size)
662 {
663 uint32_t total_sz = 0;
664
665 while (total_sz < size) {
666 ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock WRS %d-%d-%d %d", s_trace_buf.rb_down.wr, s_trace_buf.rb_down.rd,
667 s_trace_buf.rb_down.cur_size, size);
668 uint32_t wr_sz = esp_apptrace_rb_write_size_get(&s_trace_buf.rb_down);
669 if (wr_sz == 0) {
670 break;
671 }
672
673 if (wr_sz > size - total_sz) {
674 wr_sz = size - total_sz;
675 }
676 ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d", wr_sz);
677 uint8_t *ptr = esp_apptrace_rb_produce(&s_trace_buf.rb_down, wr_sz);
678 if (!ptr) {
679 assert(false && "Failed to produce bytes to down buffer!");
680 }
681 ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d to 0x%x from 0x%x", wr_sz, ptr, data + total_sz + wr_sz);
682 memcpy(ptr, data + total_sz, wr_sz);
683 total_sz += wr_sz;
684 ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d/%d", wr_sz, total_sz);
685 }
686 return total_sz;
687 }
688
esp_apptrace_data_header_init(uint8_t * ptr,uint16_t usr_size)689 static inline uint8_t *esp_apptrace_data_header_init(uint8_t *ptr, uint16_t usr_size)
690 {
691 // it is safe to use xPortGetCoreID() in macro call because arg is used only once inside it
692 ((esp_tracedata_hdr_t *)ptr)->block_sz = ESP_APPTRACE_USR_BLOCK_CORE(xPortGetCoreID()) | usr_size;
693 ((esp_tracedata_hdr_t *)ptr)->wr_sz = 0;
694 return ptr + sizeof(esp_tracedata_hdr_t);
695 }
696
esp_apptrace_trax_wait4buf(uint16_t size,esp_apptrace_tmo_t * tmo,int * pended)697 static inline uint8_t *esp_apptrace_trax_wait4buf(uint16_t size, esp_apptrace_tmo_t *tmo, int *pended)
698 {
699 uint8_t *ptr = NULL;
700
701 int res = esp_apptrace_trax_block_switch_waitus(tmo);
702 if (res != ESP_OK) {
703 return NULL;
704 }
705 // check if we still have pending data
706 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
707 if (esp_apptrace_rb_read_size_get(&s_trace_buf.trax.rb_pend) > 0) {
708 // if after TRAX block switch still have pending data (not all pending data have been pumped to TRAX block)
709 // alloc new pending buffer
710 *pended = 1;
711 ptr = esp_apptrace_rb_produce(&s_trace_buf.trax.rb_pend, size);
712 if (!ptr) {
713 ESP_APPTRACE_LOGE("Failed to alloc pend buf 1: w-r-s %d-%d-%d!", s_trace_buf.trax.rb_pend.wr, s_trace_buf.trax.rb_pend.rd, s_trace_buf.trax.rb_pend.cur_size);
714 }
715 } else
716 #endif
717 {
718 // update block pointers
719 if (ESP_APPTRACE_TRAX_INBLOCK_MARKER() + size > ESP_APPTRACE_TRAX_INBLOCK_GET()->sz) {
720 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
721 *pended = 1;
722 ptr = esp_apptrace_rb_produce(&s_trace_buf.trax.rb_pend, size);
723 if (ptr == NULL) {
724 ESP_APPTRACE_LOGE("Failed to alloc pend buf 2: w-r-s %d-%d-%d!", s_trace_buf.trax.rb_pend.wr, s_trace_buf.trax.rb_pend.rd, s_trace_buf.trax.rb_pend.cur_size);
725 }
726 #endif
727 } else {
728 *pended = 0;
729 ptr = ESP_APPTRACE_TRAX_INBLOCK_GET()->start + ESP_APPTRACE_TRAX_INBLOCK_MARKER();
730 }
731 }
732
733 return ptr;
734 }
735
esp_apptrace_trax_get_buffer(uint32_t size,esp_apptrace_tmo_t * tmo)736 static uint8_t *esp_apptrace_trax_get_buffer(uint32_t size, esp_apptrace_tmo_t *tmo)
737 {
738 uint8_t *buf_ptr = NULL;
739
740 if (size > ESP_APPTRACE_USR_DATA_LEN_MAX) {
741 ESP_APPTRACE_LOGE("Too large user data size %d!", size);
742 return NULL;
743 }
744
745 int res = esp_apptrace_lock(tmo);
746 if (res != ESP_OK) {
747 return NULL;
748 }
749 // check for data in the pending buffer
750 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
751 if (esp_apptrace_rb_read_size_get(&s_trace_buf.trax.rb_pend) > 0) {
752 // if we have buffered data try to switch TRAX block
753 esp_apptrace_trax_block_switch();
754 // if switch was successful, part or all pended data have been copied to TRAX block
755 }
756 if (esp_apptrace_rb_read_size_get(&s_trace_buf.trax.rb_pend) > 0) {
757 // if we have buffered data alloc new pending buffer
758 ESP_APPTRACE_LOGD("Get %d bytes from PEND buffer", size);
759 buf_ptr = esp_apptrace_rb_produce(&s_trace_buf.trax.rb_pend, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
760 if (buf_ptr == NULL) {
761 int pended_buf;
762 buf_ptr = esp_apptrace_trax_wait4buf(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size), tmo, &pended_buf);
763 if (buf_ptr) {
764 if (pended_buf) {
765 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE
766 esp_apptrace_trax_pend_chunk_sz_update(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
767 #endif
768 } else {
769 ESP_APPTRACE_LOGD("Get %d bytes from TRAX buffer", size);
770 // update cur block marker
771 ESP_APPTRACE_TRAX_INBLOCK_MARKER_UPD(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
772 }
773 }
774 } else {
775 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE
776 esp_apptrace_trax_pend_chunk_sz_update(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
777 #endif
778 }
779 } else
780 #endif
781 if (ESP_APPTRACE_TRAX_INBLOCK_MARKER() + ESP_APPTRACE_USR_BLOCK_RAW_SZ(size) > ESP_APPTRACE_TRAX_INBLOCK_GET()->sz) {
782 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
783 ESP_APPTRACE_LOGD("TRAX full. Get %d bytes from PEND buffer", size);
784 buf_ptr = esp_apptrace_rb_produce(&s_trace_buf.trax.rb_pend, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
785 if (buf_ptr) {
786 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE
787 esp_apptrace_trax_pend_chunk_sz_update(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
788 #endif
789 }
790 #endif
791 if (buf_ptr == NULL) {
792 int pended_buf;
793 ESP_APPTRACE_LOGD("TRAX full. Get %d bytes from pend buffer", size);
794 buf_ptr = esp_apptrace_trax_wait4buf(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size), tmo, &pended_buf);
795 if (buf_ptr) {
796 if (pended_buf) {
797 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE
798 esp_apptrace_trax_pend_chunk_sz_update(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
799 #endif
800 } else {
801 ESP_APPTRACE_LOGD("Got %d bytes from TRAX buffer", size);
802 // update cur block marker
803 ESP_APPTRACE_TRAX_INBLOCK_MARKER_UPD(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
804 }
805 }
806 }
807 } else {
808 ESP_APPTRACE_LOGD("Get %d bytes from TRAX buffer", size);
809 // fit to curr TRAX nlock
810 buf_ptr = ESP_APPTRACE_TRAX_INBLOCK_GET()->start + ESP_APPTRACE_TRAX_INBLOCK_MARKER();
811 // update cur block marker
812 ESP_APPTRACE_TRAX_INBLOCK_MARKER_UPD(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size));
813 }
814 if (buf_ptr) {
815 buf_ptr = esp_apptrace_data_header_init(buf_ptr, size);
816 }
817
818 // now we can safely unlock apptrace to allow other tasks/ISRs to get other buffers and write their data
819 if (esp_apptrace_unlock() != ESP_OK) {
820 assert(false && "Failed to unlock apptrace data!");
821 }
822
823 return buf_ptr;
824 }
825
esp_apptrace_trax_put_buffer(uint8_t * ptr,esp_apptrace_tmo_t * tmo)826 static esp_err_t esp_apptrace_trax_put_buffer(uint8_t *ptr, esp_apptrace_tmo_t *tmo)
827 {
828 int res = ESP_OK;
829 esp_tracedata_hdr_t *hdr = (esp_tracedata_hdr_t *)(ptr - sizeof(esp_tracedata_hdr_t));
830
831 // update written size
832 hdr->wr_sz = hdr->block_sz;
833
834 // TODO: mark block as busy in order not to re-use it for other tracing calls until it is completely written
835 // TODO: avoid potential situation when all memory is consumed by low prio tasks which can not complete writing due to
836 // higher prio tasks and the latter can not allocate buffers at all
837 // this is abnormal situation can be detected on host which will receive only uncompleted buffers
838 // workaround: use own memcpy which will kick-off dead tracing calls
839
840 return res;
841 }
842
esp_apptrace_trax_flush(uint32_t min_sz,esp_apptrace_tmo_t * tmo)843 static esp_err_t esp_apptrace_trax_flush(uint32_t min_sz, esp_apptrace_tmo_t *tmo)
844 {
845 int res = ESP_OK;
846
847 if (ESP_APPTRACE_TRAX_INBLOCK_MARKER() < min_sz) {
848 ESP_APPTRACE_LOGI("Ignore flush request for min %d bytes. Bytes in TRAX block: %d.", min_sz, ESP_APPTRACE_TRAX_INBLOCK_MARKER());
849 return ESP_OK;
850 }
851 // switch TRAX block while size of data is more than min size
852 while (ESP_APPTRACE_TRAX_INBLOCK_MARKER() > 0) {
853 ESP_APPTRACE_LOGD("Try to flush %d bytes. Wait until block switch for %u us", ESP_APPTRACE_TRAX_INBLOCK_MARKER(), tmo->tmo);
854 res = esp_apptrace_trax_block_switch_waitus(tmo);
855 if (res != ESP_OK) {
856 ESP_APPTRACE_LOGE("Failed to switch to another block!");
857 return res;
858 }
859 }
860
861 return res;
862 }
863
esp_apptrace_trax_host_is_connected(void)864 static bool esp_apptrace_trax_host_is_connected(void)
865 {
866 return eri_read(ESP_APPTRACE_TRAX_CTRL_REG) & ESP_APPTRACE_TRAX_HOST_CONNECT ? true : false;
867 }
868
esp_apptrace_trax_status_reg_set(uint32_t val)869 static esp_err_t esp_apptrace_trax_status_reg_set(uint32_t val)
870 {
871 eri_write(ESP_APPTRACE_TRAX_STAT_REG, val);
872 return ESP_OK;
873 }
874
esp_apptrace_trax_status_reg_get(uint32_t * val)875 static esp_err_t esp_apptrace_trax_status_reg_get(uint32_t *val)
876 {
877 *val = eri_read(ESP_APPTRACE_TRAX_STAT_REG);
878 return ESP_OK;
879 }
880
esp_apptrace_trax_dest_init(void)881 static esp_err_t esp_apptrace_trax_dest_init(void)
882 {
883 for (size_t i = 0; i < ESP_APPTRACE_TRAX_BLOCKS_NUM; i++) {
884 s_trace_buf.trax.blocks[i].start = (uint8_t *)s_trax_blocks[i];
885 s_trace_buf.trax.blocks[i].sz = ESP_APPTRACE_TRAX_BLOCK_SIZE;
886 s_trace_buf.trax.state.markers[i] = 0;
887 }
888 s_trace_buf.trax.state.in_block = ESP_APPTRACE_TRAX_INBLOCK_START;
889 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0
890 esp_apptrace_rb_init(&s_trace_buf.trax.rb_pend, s_trace_buf.trax.pending_data,
891 sizeof(s_trace_buf.trax.pending_data));
892 #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE
893 s_trace_buf.trax.cur_pending_chunk_sz = 0;
894 esp_apptrace_rb_init(&s_trace_buf.trax.rb_pend_chunk_sz, (uint8_t *)s_trace_buf.trax.pending_chunk_sz,
895 sizeof(s_trace_buf.trax.pending_chunk_sz));
896 #endif
897 #endif
898
899 #if CONFIG_IDF_TARGET_ESP32
900 DPORT_WRITE_PERI_REG(DPORT_PRO_TRACEMEM_ENA_REG, DPORT_PRO_TRACEMEM_ENA_M);
901 #if CONFIG_FREERTOS_UNICORE == 0
902 DPORT_WRITE_PERI_REG(DPORT_APP_TRACEMEM_ENA_REG, DPORT_APP_TRACEMEM_ENA_M);
903 #endif
904 #endif
905 esp_apptrace_trax_select_memory_block(0);
906
907 return ESP_OK;
908 }
909 #endif
910
esp_apptrace_init(void)911 esp_err_t esp_apptrace_init(void)
912 {
913 int res;
914
915 if (!s_trace_buf.inited) {
916 memset(&s_trace_buf, 0, sizeof(s_trace_buf));
917 // disabled by default
918 esp_apptrace_rb_init(&s_trace_buf.rb_down, NULL, 0);
919 res = esp_apptrace_lock_initialize(&s_trace_buf.lock);
920 if (res != ESP_OK) {
921 ESP_APPTRACE_LOGE("Failed to init log lock (%d)!", res);
922 return res;
923 }
924 #if CONFIG_APPTRACE_DEST_TRAX
925 res = esp_apptrace_trax_dest_init();
926 if (res != ESP_OK) {
927 ESP_APPTRACE_LOGE("Failed to init TRAX dest data (%d)!", res);
928 esp_apptrace_lock_cleanup();
929 return res;
930 }
931 #endif
932 }
933
934 #if CONFIG_APPTRACE_DEST_TRAX
935 // init TRAX on this CPU
936 esp_apptrace_trax_init();
937 #endif
938
939 s_trace_buf.inited |= 1 << xPortGetCoreID(); // global and this CPU-specific data are inited
940
941 return ESP_OK;
942 }
943
esp_apptrace_down_buffer_config(uint8_t * buf,uint32_t size)944 void esp_apptrace_down_buffer_config(uint8_t *buf, uint32_t size)
945 {
946 esp_apptrace_rb_init(&s_trace_buf.rb_down, buf, size);
947 }
948
esp_apptrace_read(esp_apptrace_dest_t dest,void * buf,uint32_t * size,uint32_t user_tmo)949 esp_err_t esp_apptrace_read(esp_apptrace_dest_t dest, void *buf, uint32_t *size, uint32_t user_tmo)
950 {
951 int res = ESP_OK;
952 esp_apptrace_tmo_t tmo;
953 esp_apptrace_hw_t *hw = NULL;
954
955 if (dest == ESP_APPTRACE_DEST_TRAX) {
956 #if CONFIG_APPTRACE_DEST_TRAX
957 hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX);
958 #else
959 ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
960 return ESP_ERR_NOT_SUPPORTED;
961 #endif
962 } else {
963 ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
964 return ESP_ERR_NOT_SUPPORTED;
965 }
966 if (buf == NULL || size == NULL || *size == 0) {
967 return ESP_ERR_INVALID_ARG;
968 }
969
970 //TODO: callback system
971 esp_apptrace_tmo_init(&tmo, user_tmo);
972 uint32_t act_sz = *size;
973 *size = 0;
974 uint8_t * ptr = hw->get_down_buffer(&act_sz, &tmo);
975 if (ptr && act_sz > 0) {
976 ESP_APPTRACE_LOGD("Read %d bytes from host", act_sz);
977 memcpy(buf, ptr, act_sz);
978 res = hw->put_down_buffer(ptr, &tmo);
979 *size = act_sz;
980 } else {
981 res = ESP_ERR_TIMEOUT;
982 }
983
984 return res;
985 }
986
esp_apptrace_down_buffer_get(esp_apptrace_dest_t dest,uint32_t * size,uint32_t user_tmo)987 uint8_t *esp_apptrace_down_buffer_get(esp_apptrace_dest_t dest, uint32_t *size, uint32_t user_tmo)
988 {
989 esp_apptrace_tmo_t tmo;
990 esp_apptrace_hw_t *hw = NULL;
991
992 if (dest == ESP_APPTRACE_DEST_TRAX) {
993 #if CONFIG_APPTRACE_DEST_TRAX
994 hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX);
995 #else
996 ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
997 return NULL;
998 #endif
999 } else {
1000 ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
1001 return NULL;
1002 }
1003 if (size == NULL || *size == 0) {
1004 return NULL;
1005 }
1006
1007 esp_apptrace_tmo_init(&tmo, user_tmo);
1008 return hw->get_down_buffer(size, &tmo);
1009 }
1010
esp_apptrace_down_buffer_put(esp_apptrace_dest_t dest,uint8_t * ptr,uint32_t user_tmo)1011 esp_err_t esp_apptrace_down_buffer_put(esp_apptrace_dest_t dest, uint8_t *ptr, uint32_t user_tmo)
1012 {
1013 esp_apptrace_tmo_t tmo;
1014 esp_apptrace_hw_t *hw = NULL;
1015
1016 if (dest == ESP_APPTRACE_DEST_TRAX) {
1017 #if CONFIG_APPTRACE_DEST_TRAX
1018 hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX);
1019 #else
1020 ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
1021 return ESP_ERR_NOT_SUPPORTED;
1022 #endif
1023 } else {
1024 ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
1025 return ESP_ERR_NOT_SUPPORTED;
1026 }
1027 if (ptr == NULL) {
1028 return ESP_ERR_INVALID_ARG;
1029 }
1030
1031 esp_apptrace_tmo_init(&tmo, user_tmo);
1032 return hw->put_down_buffer(ptr, &tmo);
1033 }
1034
esp_apptrace_write(esp_apptrace_dest_t dest,const void * data,uint32_t size,uint32_t user_tmo)1035 esp_err_t esp_apptrace_write(esp_apptrace_dest_t dest, const void *data, uint32_t size, uint32_t user_tmo)
1036 {
1037 uint8_t *ptr = NULL;
1038 esp_apptrace_tmo_t tmo;
1039 esp_apptrace_hw_t *hw = NULL;
1040
1041 if (dest == ESP_APPTRACE_DEST_TRAX) {
1042 #if CONFIG_APPTRACE_DEST_TRAX
1043 hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX);
1044 #else
1045 ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
1046 return ESP_ERR_NOT_SUPPORTED;
1047 #endif
1048 } else {
1049 ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
1050 return ESP_ERR_NOT_SUPPORTED;
1051 }
1052 if (data == NULL || size == 0) {
1053 return ESP_ERR_INVALID_ARG;
1054 }
1055
1056 esp_apptrace_tmo_init(&tmo, user_tmo);
1057 ptr = hw->get_up_buffer(size, &tmo);
1058 if (ptr == NULL) {
1059 return ESP_ERR_NO_MEM;
1060 }
1061
1062 // actually can be suspended here by higher prio tasks/ISRs
1063 //TODO: use own memcpy with dead trace calls kick-off algo and tmo expiration check
1064 memcpy(ptr, data, size);
1065
1066 // now indicate that this buffer is ready to be sent off to host
1067 return hw->put_up_buffer(ptr, &tmo);
1068 }
1069
esp_apptrace_vprintf_to(esp_apptrace_dest_t dest,uint32_t user_tmo,const char * fmt,va_list ap)1070 int esp_apptrace_vprintf_to(esp_apptrace_dest_t dest, uint32_t user_tmo, const char *fmt, va_list ap)
1071 {
1072 uint16_t nargs = 0;
1073 uint8_t *pout, *p = (uint8_t *)fmt;
1074 esp_apptrace_tmo_t tmo;
1075 esp_apptrace_hw_t *hw = NULL;
1076
1077 if (dest == ESP_APPTRACE_DEST_TRAX) {
1078 #if CONFIG_APPTRACE_DEST_TRAX
1079 hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX);
1080 #else
1081 ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
1082 return ESP_ERR_NOT_SUPPORTED;
1083 #endif
1084 } else {
1085 ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
1086 return ESP_ERR_NOT_SUPPORTED;
1087 }
1088 if (fmt == NULL) {
1089 return ESP_ERR_INVALID_ARG;
1090 }
1091
1092 esp_apptrace_tmo_init(&tmo, user_tmo);
1093 ESP_APPTRACE_LOGD("fmt %x", fmt);
1094 while ((p = (uint8_t *)strchr((char *)p, '%')) && nargs < ESP_APPTRACE_MAX_VPRINTF_ARGS) {
1095 p++;
1096 if (*p != '%' && *p != 0) {
1097 nargs++;
1098 }
1099 }
1100 ESP_APPTRACE_LOGD("nargs = %d", nargs);
1101 if (p) {
1102 ESP_APPTRACE_LOGE("Failed to store all printf args!");
1103 }
1104
1105 pout = hw->get_up_buffer(1 + sizeof(char *) + nargs * sizeof(uint32_t), &tmo);
1106 if (pout == NULL) {
1107 ESP_APPTRACE_LOGE("Failed to get buffer!");
1108 return -1;
1109 }
1110 p = pout;
1111 *pout = nargs;
1112 pout++;
1113 *(const char **)pout = fmt;
1114 pout += sizeof(char *);
1115 while (nargs-- > 0) {
1116 uint32_t arg = va_arg(ap, uint32_t);
1117 *(uint32_t *)pout = arg;
1118 pout += sizeof(uint32_t);
1119 ESP_APPTRACE_LOGD("arg %x", arg);
1120 }
1121
1122 int ret = hw->put_up_buffer(p, &tmo);
1123 if (ret != ESP_OK) {
1124 ESP_APPTRACE_LOGE("Failed to put printf buf (%d)!", ret);
1125 return -1;
1126 }
1127
1128 return (pout - p);
1129 }
1130
esp_apptrace_vprintf(const char * fmt,va_list ap)1131 int esp_apptrace_vprintf(const char *fmt, va_list ap)
1132 {
1133 return esp_apptrace_vprintf_to(ESP_APPTRACE_DEST_TRAX, /*ESP_APPTRACE_TMO_INFINITE*/0, fmt, ap);
1134 }
1135
esp_apptrace_buffer_get(esp_apptrace_dest_t dest,uint32_t size,uint32_t user_tmo)1136 uint8_t *esp_apptrace_buffer_get(esp_apptrace_dest_t dest, uint32_t size, uint32_t user_tmo)
1137 {
1138 esp_apptrace_tmo_t tmo;
1139 esp_apptrace_hw_t *hw = NULL;
1140
1141 if (dest == ESP_APPTRACE_DEST_TRAX) {
1142 #if CONFIG_APPTRACE_DEST_TRAX
1143 hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX);
1144 #else
1145 ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
1146 return NULL;
1147 #endif
1148 } else {
1149 ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
1150 return NULL;
1151 }
1152 if (size == 0) {
1153 return NULL;
1154 }
1155
1156 esp_apptrace_tmo_init(&tmo, user_tmo);
1157 return hw->get_up_buffer(size, &tmo);
1158 }
1159
esp_apptrace_buffer_put(esp_apptrace_dest_t dest,uint8_t * ptr,uint32_t user_tmo)1160 esp_err_t esp_apptrace_buffer_put(esp_apptrace_dest_t dest, uint8_t *ptr, uint32_t user_tmo)
1161 {
1162 esp_apptrace_tmo_t tmo;
1163 esp_apptrace_hw_t *hw = NULL;
1164
1165 if (dest == ESP_APPTRACE_DEST_TRAX) {
1166 #if CONFIG_APPTRACE_DEST_TRAX
1167 hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX);
1168 #else
1169 ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
1170 return ESP_ERR_NOT_SUPPORTED;
1171 #endif
1172 } else {
1173 ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
1174 return ESP_ERR_NOT_SUPPORTED;
1175 }
1176 if (ptr == NULL) {
1177 return ESP_ERR_INVALID_ARG;
1178 }
1179
1180 esp_apptrace_tmo_init(&tmo, user_tmo);
1181 return hw->put_up_buffer(ptr, &tmo);
1182 }
1183
esp_apptrace_flush_nolock(esp_apptrace_dest_t dest,uint32_t min_sz,uint32_t usr_tmo)1184 esp_err_t esp_apptrace_flush_nolock(esp_apptrace_dest_t dest, uint32_t min_sz, uint32_t usr_tmo)
1185 {
1186 esp_apptrace_tmo_t tmo;
1187 esp_apptrace_hw_t *hw = NULL;
1188
1189 if (dest == ESP_APPTRACE_DEST_TRAX) {
1190 #if CONFIG_APPTRACE_DEST_TRAX
1191 hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX);
1192 #else
1193 ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
1194 return ESP_ERR_NOT_SUPPORTED;
1195 #endif
1196 } else {
1197 ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
1198 return ESP_ERR_NOT_SUPPORTED;
1199 }
1200
1201 esp_apptrace_tmo_init(&tmo, usr_tmo);
1202 return hw->flush_up_buffer(min_sz, &tmo);
1203 }
1204
esp_apptrace_flush(esp_apptrace_dest_t dest,uint32_t usr_tmo)1205 esp_err_t esp_apptrace_flush(esp_apptrace_dest_t dest, uint32_t usr_tmo)
1206 {
1207 int res;
1208 esp_apptrace_tmo_t tmo;
1209
1210 esp_apptrace_tmo_init(&tmo, usr_tmo);
1211 res = esp_apptrace_lock(&tmo);
1212 if (res != ESP_OK) {
1213 ESP_APPTRACE_LOGE("Failed to lock apptrace data (%d)!", res);
1214 return res;
1215 }
1216
1217 res = esp_apptrace_flush_nolock(dest, 0, esp_apptrace_tmo_remaining_us(&tmo));
1218 if (res != ESP_OK) {
1219 ESP_APPTRACE_LOGE("Failed to flush apptrace data (%d)!", res);
1220 }
1221
1222 if (esp_apptrace_unlock() != ESP_OK) {
1223 assert(false && "Failed to unlock apptrace data!");
1224 }
1225
1226 return res;
1227 }
1228
esp_apptrace_host_is_connected(esp_apptrace_dest_t dest)1229 bool esp_apptrace_host_is_connected(esp_apptrace_dest_t dest)
1230 {
1231 esp_apptrace_hw_t *hw = NULL;
1232
1233 if (dest == ESP_APPTRACE_DEST_TRAX) {
1234 #if CONFIG_APPTRACE_DEST_TRAX
1235 hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX);
1236 #else
1237 ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
1238 return false;
1239 #endif
1240 } else {
1241 ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
1242 return false;
1243 }
1244 return hw->host_is_connected();
1245 }
1246
esp_apptrace_status_reg_set(esp_apptrace_dest_t dest,uint32_t val)1247 esp_err_t esp_apptrace_status_reg_set(esp_apptrace_dest_t dest, uint32_t val)
1248 {
1249 esp_apptrace_hw_t *hw = NULL;
1250
1251 if (dest == ESP_APPTRACE_DEST_TRAX) {
1252 #if CONFIG_APPTRACE_DEST_TRAX
1253 hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX);
1254 #else
1255 ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
1256 return ESP_ERR_NOT_SUPPORTED;
1257 #endif
1258 } else {
1259 ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
1260 return ESP_ERR_NOT_SUPPORTED;
1261 }
1262 return hw->status_reg_set(val);
1263 }
1264
esp_apptrace_status_reg_get(esp_apptrace_dest_t dest,uint32_t * val)1265 esp_err_t esp_apptrace_status_reg_get(esp_apptrace_dest_t dest, uint32_t *val)
1266 {
1267 esp_apptrace_hw_t *hw = NULL;
1268
1269 if (dest == ESP_APPTRACE_DEST_TRAX) {
1270 #if CONFIG_APPTRACE_DEST_TRAX
1271 hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX);
1272 #else
1273 ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
1274 return ESP_ERR_NOT_SUPPORTED;
1275 #endif
1276 } else {
1277 ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
1278 return ESP_ERR_NOT_SUPPORTED;
1279 }
1280 return hw->status_reg_get(val);
1281 }
1282
1283 #endif
1284