1 /*
2 * Copyright (c) 2023 Linaro Limited
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /**
8 * @file udc_stm32.c
9 * @brief STM32 USB device controller (UDC) driver
10 */
11
12 #include <soc.h>
13 #include <stm32_ll_bus.h>
14 #include <stm32_ll_pwr.h>
15 #include <stm32_ll_rcc.h>
16 #include <stm32_ll_system.h>
17 #include <string.h>
18 #include <zephyr/irq.h>
19 #include <zephyr/drivers/gpio.h>
20 #include <zephyr/drivers/pinctrl.h>
21 #include <zephyr/drivers/clock_control/stm32_clock_control.h>
22 #include <zephyr/sys/util.h>
23
24 #include "udc_common.h"
25
26 #include <zephyr/logging/log.h>
27 LOG_MODULE_REGISTER(udc_stm32, CONFIG_UDC_DRIVER_LOG_LEVEL);
28
29 #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs)
30 #define DT_DRV_COMPAT st_stm32_otghs
31 #define UDC_STM32_IRQ_NAME otghs
32 #elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otgfs)
33 #define DT_DRV_COMPAT st_stm32_otgfs
34 #define UDC_STM32_IRQ_NAME otgfs
35 #elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_usb)
36 #define DT_DRV_COMPAT st_stm32_usb
37 #define UDC_STM32_IRQ_NAME usb
38 #endif
39
40 #define UDC_STM32_IRQ DT_INST_IRQ_BY_NAME(0, UDC_STM32_IRQ_NAME, irq)
41 #define UDC_STM32_IRQ_PRI DT_INST_IRQ_BY_NAME(0, UDC_STM32_IRQ_NAME, priority)
42
43 struct udc_stm32_data {
44 PCD_HandleTypeDef pcd;
45 const struct device *dev;
46 uint32_t irq;
47 uint32_t occupied_mem;
48 void (*pcd_prepare)(const struct device *dev);
49 int (*clk_enable)(void);
50 int (*clk_disable)(void);
51 struct k_thread thread_data;
52 struct k_msgq msgq_data;
53 };
54
55 struct udc_stm32_config {
56 uint32_t num_endpoints;
57 uint32_t pma_offset;
58 uint32_t dram_size;
59 uint16_t ep0_mps;
60 uint16_t ep_mps;
61 int speed_idx;
62 };
63
64 enum udc_stm32_msg_type {
65 UDC_STM32_MSG_SETUP,
66 UDC_STM32_MSG_DATA_OUT,
67 UDC_STM32_MSG_DATA_IN,
68 };
69
70 struct udc_stm32_msg {
71 uint8_t type;
72 uint8_t ep;
73 uint16_t rx_count;
74 };
75
udc_stm32_lock(const struct device * dev)76 static void udc_stm32_lock(const struct device *dev)
77 {
78 udc_lock_internal(dev, K_FOREVER);
79 }
80
udc_stm32_unlock(const struct device * dev)81 static void udc_stm32_unlock(const struct device *dev)
82 {
83 udc_unlock_internal(dev);
84 }
85
86 #define hpcd2data(hpcd) CONTAINER_OF(hpcd, struct udc_stm32_data, pcd);
87
HAL_PCD_ResetCallback(PCD_HandleTypeDef * hpcd)88 void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd)
89 {
90 struct udc_stm32_data *priv = hpcd2data(hpcd);
91 const struct device *dev = priv->dev;
92 const struct udc_stm32_config *cfg = dev->config;
93 struct udc_ep_config *ep;
94
95 /* Re-Enable control endpoints */
96 ep = udc_get_ep_cfg(dev, USB_CONTROL_EP_OUT);
97 if (ep && ep->stat.enabled) {
98 HAL_PCD_EP_Open(&priv->pcd, USB_CONTROL_EP_OUT, cfg->ep0_mps,
99 EP_TYPE_CTRL);
100 }
101
102 ep = udc_get_ep_cfg(dev, USB_CONTROL_EP_IN);
103 if (ep && ep->stat.enabled) {
104 HAL_PCD_EP_Open(&priv->pcd, USB_CONTROL_EP_IN, cfg->ep0_mps,
105 EP_TYPE_CTRL);
106 }
107
108 udc_submit_event(priv->dev, UDC_EVT_RESET, 0);
109 }
110
HAL_PCD_ConnectCallback(PCD_HandleTypeDef * hpcd)111 void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd)
112 {
113 struct udc_stm32_data *priv = hpcd2data(hpcd);
114
115 udc_submit_event(priv->dev, UDC_EVT_VBUS_READY, 0);
116 }
117
HAL_PCD_DisconnectCallback(PCD_HandleTypeDef * hpcd)118 void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd)
119 {
120 struct udc_stm32_data *priv = hpcd2data(hpcd);
121
122 udc_submit_event(priv->dev, UDC_EVT_VBUS_REMOVED, 0);
123 }
124
HAL_PCD_SuspendCallback(PCD_HandleTypeDef * hpcd)125 void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd)
126 {
127 struct udc_stm32_data *priv = hpcd2data(hpcd);
128
129 udc_set_suspended(priv->dev, true);
130 udc_submit_event(priv->dev, UDC_EVT_SUSPEND, 0);
131 }
132
HAL_PCD_ResumeCallback(PCD_HandleTypeDef * hpcd)133 void HAL_PCD_ResumeCallback(PCD_HandleTypeDef *hpcd)
134 {
135 struct udc_stm32_data *priv = hpcd2data(hpcd);
136
137 udc_set_suspended(priv->dev, false);
138 udc_submit_event(priv->dev, UDC_EVT_RESUME, 0);
139 }
140
HAL_PCD_SetupStageCallback(PCD_HandleTypeDef * hpcd)141 void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd)
142 {
143 struct udc_stm32_data *priv = hpcd2data(hpcd);
144 struct udc_stm32_msg msg = {.type = UDC_STM32_MSG_SETUP};
145 int err;
146
147 err = k_msgq_put(&priv->msgq_data, &msg, K_NO_WAIT);
148
149 if (err < 0) {
150 LOG_ERR("UDC Message queue overrun");
151 }
152 }
153
HAL_PCD_SOFCallback(PCD_HandleTypeDef * hpcd)154 void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd)
155 {
156 struct udc_stm32_data *priv = hpcd2data(hpcd);
157
158 udc_submit_event(priv->dev, UDC_EVT_SOF, 0);
159 }
160
usbd_ctrl_feed_dout(const struct device * dev,const size_t length)161 static int usbd_ctrl_feed_dout(const struct device *dev, const size_t length)
162 {
163 struct udc_stm32_data *priv = udc_get_private(dev);
164 struct udc_ep_config *cfg = udc_get_ep_cfg(dev, USB_CONTROL_EP_OUT);
165 struct net_buf *buf;
166
167 buf = udc_ctrl_alloc(dev, USB_CONTROL_EP_OUT, length);
168 if (buf == NULL) {
169 return -ENOMEM;
170 }
171
172 k_fifo_put(&cfg->fifo, buf);
173
174 HAL_PCD_EP_Receive(&priv->pcd, cfg->addr, buf->data, buf->size);
175
176 return 0;
177 }
178
udc_stm32_flush_tx_fifo(const struct device * dev)179 static void udc_stm32_flush_tx_fifo(const struct device *dev)
180 {
181 struct udc_stm32_data *priv = udc_get_private(dev);
182 struct udc_ep_config *cfg = udc_get_ep_cfg(dev, USB_CONTROL_EP_OUT);
183
184 HAL_PCD_EP_Receive(&priv->pcd, cfg->addr, NULL, 0);
185 }
186
udc_stm32_tx(const struct device * dev,uint8_t ep,struct net_buf * buf)187 static int udc_stm32_tx(const struct device *dev, uint8_t ep,
188 struct net_buf *buf)
189 {
190 struct udc_stm32_data *priv = udc_get_private(dev);
191 const struct udc_stm32_config *cfg = dev->config;
192 uint8_t *data; uint32_t len;
193 HAL_StatusTypeDef status;
194
195 LOG_DBG("TX ep 0x%02x len %u", ep, buf->len);
196
197 if (udc_ep_is_busy(dev, ep)) {
198 return 0;
199 }
200
201 data = buf->data;
202 len = buf->len;
203
204 if (ep == USB_CONTROL_EP_IN) {
205 len = MIN(cfg->ep0_mps, buf->len);
206 }
207
208 buf->data += len;
209 buf->len -= len;
210
211 status = HAL_PCD_EP_Transmit(&priv->pcd, ep, data, len);
212 if (status != HAL_OK) {
213 LOG_ERR("HAL_PCD_EP_Transmit failed(0x%02x), %d", ep, (int)status);
214 return -EIO;
215 }
216
217 udc_ep_set_busy(dev, ep, true);
218
219 if (ep == USB_CONTROL_EP_IN && len > 0) {
220 /* Wait for an empty package from the host.
221 * This also flushes the TX FIFO to the host.
222 */
223 if (DT_HAS_COMPAT_STATUS_OKAY(st_stm32_usb)) {
224 udc_stm32_flush_tx_fifo(dev);
225 } else {
226 usbd_ctrl_feed_dout(dev, 0);
227 }
228 }
229
230 return 0;
231 }
232
udc_stm32_rx(const struct device * dev,uint8_t ep,struct net_buf * buf)233 static int udc_stm32_rx(const struct device *dev, uint8_t ep,
234 struct net_buf *buf)
235 {
236 struct udc_stm32_data *priv = udc_get_private(dev);
237 HAL_StatusTypeDef status;
238
239 LOG_DBG("RX ep 0x%02x len %u", ep, buf->size);
240
241 if (udc_ep_is_busy(dev, ep)) {
242 return 0;
243 }
244
245 status = HAL_PCD_EP_Receive(&priv->pcd, ep, buf->data, buf->size);
246 if (status != HAL_OK) {
247 LOG_ERR("HAL_PCD_EP_Receive failed(0x%02x), %d", ep, (int)status);
248 return -EIO;
249 }
250
251 udc_ep_set_busy(dev, ep, true);
252
253 return 0;
254 }
255
HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef * hpcd,uint8_t epnum)256 void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
257 {
258 uint32_t rx_count = HAL_PCD_EP_GetRxCount(hpcd, epnum);
259 struct udc_stm32_data *priv = hpcd2data(hpcd);
260 struct udc_stm32_msg msg = {
261 .type = UDC_STM32_MSG_DATA_OUT,
262 .ep = epnum,
263 .rx_count = rx_count,
264 };
265 int err;
266
267 err = k_msgq_put(&priv->msgq_data, &msg, K_NO_WAIT);
268 if (err != 0) {
269 LOG_ERR("UDC Message queue overrun");
270 }
271 }
272
HAL_PCD_DataInStageCallback(PCD_HandleTypeDef * hpcd,uint8_t epnum)273 void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
274 {
275 struct udc_stm32_data *priv = hpcd2data(hpcd);
276 struct udc_stm32_msg msg = {
277 .type = UDC_STM32_MSG_DATA_IN,
278 .ep = epnum,
279 };
280 int err;
281
282 err = k_msgq_put(&priv->msgq_data, &msg, K_NO_WAIT);
283 if (err != 0) {
284 LOG_ERR("UDC Message queue overrun");
285 }
286 }
287
handle_msg_data_out(struct udc_stm32_data * priv,uint8_t epnum,uint16_t rx_count)288 static void handle_msg_data_out(struct udc_stm32_data *priv, uint8_t epnum, uint16_t rx_count)
289 {
290 const struct device *dev = priv->dev;
291 uint8_t ep = epnum | USB_EP_DIR_OUT;
292 struct net_buf *buf;
293
294 LOG_DBG("DataOut ep 0x%02x", ep);
295
296 udc_ep_set_busy(dev, ep, false);
297
298 buf = udc_buf_get(dev, ep);
299 if (unlikely(buf == NULL)) {
300 LOG_ERR("ep 0x%02x queue is empty", ep);
301 return;
302 }
303
304 net_buf_add(buf, rx_count);
305
306 if (ep == USB_CONTROL_EP_OUT) {
307 if (udc_ctrl_stage_is_status_out(dev)) {
308 udc_ctrl_update_stage(dev, buf);
309 udc_ctrl_submit_status(dev, buf);
310 } else {
311 udc_ctrl_update_stage(dev, buf);
312 }
313
314 if (udc_ctrl_stage_is_status_in(dev)) {
315 udc_ctrl_submit_s_out_status(dev, buf);
316 }
317 } else {
318 udc_submit_ep_event(dev, buf, 0);
319 }
320
321 buf = udc_buf_peek(dev, ep);
322 if (buf) {
323 udc_stm32_rx(dev, ep, buf);
324 }
325 }
326
handle_msg_data_in(struct udc_stm32_data * priv,uint8_t epnum)327 static void handle_msg_data_in(struct udc_stm32_data *priv, uint8_t epnum)
328 {
329 const struct device *dev = priv->dev;
330 uint8_t ep = epnum | USB_EP_DIR_IN;
331 struct net_buf *buf;
332
333 LOG_DBG("DataIn ep 0x%02x", ep);
334
335 udc_ep_set_busy(dev, ep, false);
336
337 buf = udc_buf_peek(dev, ep);
338 if (unlikely(buf == NULL)) {
339 return;
340 }
341
342 if (ep == USB_CONTROL_EP_IN && buf->len) {
343 const struct udc_stm32_config *cfg = dev->config;
344 uint32_t len = MIN(cfg->ep0_mps, buf->len);
345
346 HAL_PCD_EP_Transmit(&priv->pcd, ep, buf->data, len);
347
348 buf->len -= len;
349 buf->data += len;
350
351 return;
352 }
353
354 if (udc_ep_buf_has_zlp(buf)) {
355 udc_ep_buf_clear_zlp(buf);
356 HAL_PCD_EP_Transmit(&priv->pcd, ep, buf->data, 0);
357
358 return;
359 }
360
361 udc_buf_get(dev, ep);
362
363 if (ep == USB_CONTROL_EP_IN) {
364 if (udc_ctrl_stage_is_status_in(dev) ||
365 udc_ctrl_stage_is_no_data(dev)) {
366 /* Status stage finished, notify upper layer */
367 udc_ctrl_submit_status(dev, buf);
368 }
369
370 /* Update to next stage of control transfer */
371 udc_ctrl_update_stage(dev, buf);
372
373 if (udc_ctrl_stage_is_status_out(dev)) {
374 /*
375 * IN transfer finished, release buffer,
376 * control OUT buffer should be already fed.
377 */
378 net_buf_unref(buf);
379 }
380
381 return;
382 }
383
384 udc_submit_ep_event(dev, buf, 0);
385
386 buf = udc_buf_peek(dev, ep);
387 if (buf) {
388 udc_stm32_tx(dev, ep, buf);
389 }
390 }
391
handle_msg_setup(struct udc_stm32_data * priv)392 static void handle_msg_setup(struct udc_stm32_data *priv)
393 {
394 struct usb_setup_packet *setup = (void *)priv->pcd.Setup;
395 const struct device *dev = priv->dev;
396 struct net_buf *buf;
397 int err;
398
399 buf = udc_ctrl_alloc(dev, USB_CONTROL_EP_OUT, sizeof(struct usb_setup_packet));
400 if (buf == NULL) {
401 LOG_ERR("Failed to allocate for setup");
402 return;
403 }
404
405 udc_ep_buf_set_setup(buf);
406 memcpy(buf->data, setup, 8);
407 net_buf_add(buf, 8);
408
409 udc_ctrl_update_stage(dev, buf);
410
411 if (!buf->len) {
412 return;
413 }
414
415 if ((setup->bmRequestType == 0) && (setup->bRequest == USB_SREQ_SET_ADDRESS)) {
416 /* HAL requires we set the address before submitting status */
417 HAL_PCD_SetAddress(&priv->pcd, setup->wValue);
418 }
419
420 if (udc_ctrl_stage_is_data_out(dev)) {
421 /* Allocate and feed buffer for data OUT stage */
422 err = usbd_ctrl_feed_dout(dev, udc_data_stage_length(buf));
423 if (err == -ENOMEM) {
424 udc_submit_ep_event(dev, buf, err);
425 }
426 } else if (udc_ctrl_stage_is_data_in(dev)) {
427 udc_ctrl_submit_s_in_status(dev);
428 } else {
429 udc_ctrl_submit_s_status(dev);
430 }
431 }
432
udc_stm32_thread_handler(void * arg1,void * arg2,void * arg3)433 static void udc_stm32_thread_handler(void *arg1, void *arg2, void *arg3)
434 {
435 const struct device *dev = arg1;
436 struct udc_stm32_data *priv = udc_get_private(dev);
437 struct udc_stm32_msg msg;
438
439 while (true) {
440 k_msgq_get(&priv->msgq_data, &msg, K_FOREVER);
441 switch (msg.type) {
442 case UDC_STM32_MSG_SETUP:
443 handle_msg_setup(priv);
444 break;
445 case UDC_STM32_MSG_DATA_IN:
446 handle_msg_data_in(priv, msg.ep);
447 break;
448 case UDC_STM32_MSG_DATA_OUT:
449 handle_msg_data_out(priv, msg.ep, msg.rx_count);
450 break;
451 }
452 }
453 }
454
455 #if DT_INST_NODE_HAS_PROP(0, disconnect_gpios)
HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef * hpcd,uint8_t state)456 void HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef *hpcd, uint8_t state)
457 {
458 struct gpio_dt_spec usb_disconnect = GPIO_DT_SPEC_INST_GET(0, disconnect_gpios);
459
460 gpio_pin_configure_dt(&usb_disconnect,
461 state ? GPIO_OUTPUT_ACTIVE : GPIO_OUTPUT_INACTIVE);
462 }
463 #endif
464
udc_stm32_irq(const struct device * dev)465 static void udc_stm32_irq(const struct device *dev)
466 {
467 const struct udc_stm32_data *priv = udc_get_private(dev);
468
469 /* HAL irq handler will call the related above callback */
470 HAL_PCD_IRQHandler((PCD_HandleTypeDef *)&priv->pcd);
471 }
472
udc_stm32_init(const struct device * dev)473 int udc_stm32_init(const struct device *dev)
474 {
475 struct udc_stm32_data *priv = udc_get_private(dev);
476 HAL_StatusTypeDef status;
477
478 if (priv->clk_enable && priv->clk_enable()) {
479 LOG_ERR("Error enabling clock(s)");
480 return -EIO;
481 }
482
483 priv->pcd_prepare(dev);
484
485 status = HAL_PCD_Init(&priv->pcd);
486 if (status != HAL_OK) {
487 LOG_ERR("PCD_Init failed, %d", (int)status);
488 return -EIO;
489 }
490
491 HAL_PCD_Stop(&priv->pcd);
492
493 return 0;
494 }
495
496 #if defined(USB) || defined(USB_DRD_FS)
udc_stm32_mem_init(const struct device * dev)497 static inline void udc_stm32_mem_init(const struct device *dev)
498 {
499 struct udc_stm32_data *priv = udc_get_private(dev);
500 const struct udc_stm32_config *cfg = dev->config;
501
502 priv->occupied_mem = cfg->pma_offset;
503 }
504
udc_stm32_ep_mem_config(const struct device * dev,struct udc_ep_config * ep,bool enable)505 static int udc_stm32_ep_mem_config(const struct device *dev,
506 struct udc_ep_config *ep,
507 bool enable)
508 {
509 struct udc_stm32_data *priv = udc_get_private(dev);
510 const struct udc_stm32_config *cfg = dev->config;
511 uint32_t size;
512
513 size = MIN(udc_mps_ep_size(ep), cfg->ep_mps);
514
515 if (!enable) {
516 priv->occupied_mem -= size;
517 return 0;
518 }
519
520 if (priv->occupied_mem + size >= cfg->dram_size) {
521 LOG_ERR("Unable to allocate FIFO for 0x%02x", ep->addr);
522 return -ENOMEM;
523 }
524
525 /* Configure PMA offset for the endpoint */
526 HAL_PCDEx_PMAConfig(&priv->pcd, ep->addr, PCD_SNG_BUF,
527 priv->occupied_mem);
528
529 priv->occupied_mem += size;
530
531 return 0;
532 }
533 #else
udc_stm32_mem_init(const struct device * dev)534 static void udc_stm32_mem_init(const struct device *dev)
535 {
536 struct udc_stm32_data *priv = udc_get_private(dev);
537 const struct udc_stm32_config *cfg = dev->config;
538 int words;
539
540 LOG_DBG("DRAM size: %ub", cfg->dram_size);
541
542 if (cfg->ep_mps % 4 || cfg->ep0_mps % 4) {
543 LOG_ERR("Not a 32-bit word multiple: ep0(%u)|ep(%u)",
544 cfg->ep0_mps, cfg->ep_mps);
545 return;
546 }
547
548 /* The documentation is not clear at all about RX FiFo size requirement,
549 * 160 has been selected through trial and error.
550 */
551 words = MAX(160, cfg->ep_mps / 4);
552 HAL_PCDEx_SetRxFiFo(&priv->pcd, words);
553 priv->occupied_mem = words * 4;
554
555 /* For EP0 TX, reserve only one MPS */
556 HAL_PCDEx_SetTxFiFo(&priv->pcd, 0, cfg->ep0_mps / 4);
557 priv->occupied_mem += cfg->ep0_mps;
558
559 /* Reset TX allocs */
560 for (unsigned int i = 1U; i < cfg->num_endpoints; i++) {
561 HAL_PCDEx_SetTxFiFo(&priv->pcd, i, 0);
562 }
563 }
564
udc_stm32_ep_mem_config(const struct device * dev,struct udc_ep_config * ep,bool enable)565 static int udc_stm32_ep_mem_config(const struct device *dev,
566 struct udc_ep_config *ep,
567 bool enable)
568 {
569 struct udc_stm32_data *priv = udc_get_private(dev);
570 const struct udc_stm32_config *cfg = dev->config;
571 unsigned int words;
572
573 if (!(ep->addr & USB_EP_DIR_IN) || !USB_EP_GET_IDX(ep->addr)) {
574 return 0;
575 }
576
577 words = MIN(udc_mps_ep_size(ep), cfg->ep_mps) / 4;
578 words = (words <= 64) ? words * 2 : words;
579
580 if (!enable) {
581 if (priv->occupied_mem >= (words * 4)) {
582 priv->occupied_mem -= (words * 4);
583 }
584 HAL_PCDEx_SetTxFiFo(&priv->pcd, USB_EP_GET_IDX(ep->addr), 0);
585 return 0;
586 }
587
588 if (cfg->dram_size - priv->occupied_mem < words * 4) {
589 LOG_ERR("Unable to allocate FIFO for 0x%02x", ep->addr);
590 return -ENOMEM;
591 }
592
593 HAL_PCDEx_SetTxFiFo(&priv->pcd, USB_EP_GET_IDX(ep->addr), words);
594
595 priv->occupied_mem += words * 4;
596
597 return 0;
598 }
599 #endif
600
udc_stm32_enable(const struct device * dev)601 static int udc_stm32_enable(const struct device *dev)
602 {
603 struct udc_stm32_data *priv = udc_get_private(dev);
604 const struct udc_stm32_config *cfg = dev->config;
605 HAL_StatusTypeDef status;
606 int ret;
607
608 LOG_DBG("Enable UDC");
609
610 udc_stm32_mem_init(dev);
611
612 status = HAL_PCD_Start(&priv->pcd);
613 if (status != HAL_OK) {
614 LOG_ERR("PCD_Start failed, %d", (int)status);
615 return -EIO;
616 }
617
618 ret = udc_ep_enable_internal(dev, USB_CONTROL_EP_OUT,
619 USB_EP_TYPE_CONTROL, cfg->ep0_mps, 0);
620 if (ret) {
621 LOG_ERR("Failed enabling ep 0x%02x", USB_CONTROL_EP_OUT);
622 return ret;
623 }
624
625 ret |= udc_ep_enable_internal(dev, USB_CONTROL_EP_IN,
626 USB_EP_TYPE_CONTROL, cfg->ep0_mps, 0);
627 if (ret) {
628 LOG_ERR("Failed enabling ep 0x%02x", USB_CONTROL_EP_IN);
629 return ret;
630 }
631
632 irq_enable(priv->irq);
633
634 return 0;
635 }
636
udc_stm32_disable(const struct device * dev)637 static int udc_stm32_disable(const struct device *dev)
638 {
639 struct udc_stm32_data *priv = udc_get_private(dev);
640 HAL_StatusTypeDef status;
641
642 irq_disable(UDC_STM32_IRQ);
643
644 if (udc_ep_disable_internal(dev, USB_CONTROL_EP_OUT)) {
645 LOG_ERR("Failed to disable control endpoint");
646 return -EIO;
647 }
648
649 if (udc_ep_disable_internal(dev, USB_CONTROL_EP_IN)) {
650 LOG_ERR("Failed to disable control endpoint");
651 return -EIO;
652 }
653
654 status = HAL_PCD_Stop(&priv->pcd);
655 if (status != HAL_OK) {
656 LOG_ERR("PCD_Stop failed, %d", (int)status);
657 return -EIO;
658 }
659
660 return 0;
661 }
662
udc_stm32_shutdown(const struct device * dev)663 static int udc_stm32_shutdown(const struct device *dev)
664 {
665 struct udc_stm32_data *priv = udc_get_private(dev);
666 HAL_StatusTypeDef status;
667
668 status = HAL_PCD_DeInit(&priv->pcd);
669 if (status != HAL_OK) {
670 LOG_ERR("PCD_DeInit failed, %d", (int)status);
671 /* continue anyway */
672 }
673
674 if (priv->clk_disable && priv->clk_disable()) {
675 LOG_ERR("Error disabling clock(s)");
676 /* continue anyway */
677 }
678
679 if (irq_is_enabled(priv->irq)) {
680 irq_disable(priv->irq);
681 }
682
683 return 0;
684 }
685
udc_stm32_set_address(const struct device * dev,const uint8_t addr)686 static int udc_stm32_set_address(const struct device *dev, const uint8_t addr)
687 {
688 struct udc_stm32_data *priv = udc_get_private(dev);
689 HAL_StatusTypeDef status;
690
691 LOG_DBG("Set Address %u", addr);
692
693 status = HAL_PCD_SetAddress(&priv->pcd, addr);
694 if (status != HAL_OK) {
695 LOG_ERR("HAL_PCD_SetAddress failed(0x%02x), %d",
696 addr, (int)status);
697 return -EIO;
698 }
699
700 return 0;
701 }
702
udc_stm32_host_wakeup(const struct device * dev)703 static int udc_stm32_host_wakeup(const struct device *dev)
704 {
705 struct udc_stm32_data *priv = udc_get_private(dev);
706 HAL_StatusTypeDef status;
707
708 status = HAL_PCD_ActivateRemoteWakeup(&priv->pcd);
709 if (status != HAL_OK) {
710 LOG_ERR("HAL_PCD_ActivateRemoteWakeup, %d", (int)status);
711 return -EIO;
712 }
713
714 /* Must be active from 1ms to 15ms as per reference manual. */
715 k_sleep(K_MSEC(2));
716
717 status = HAL_PCD_DeActivateRemoteWakeup(&priv->pcd);
718 if (status != HAL_OK) {
719 return -EIO;
720 }
721
722 return 0;
723 }
724
udc_stm32_ep_enable(const struct device * dev,struct udc_ep_config * ep_cfg)725 static int udc_stm32_ep_enable(const struct device *dev,
726 struct udc_ep_config *ep_cfg)
727 {
728 struct udc_stm32_data *priv = udc_get_private(dev);
729 HAL_StatusTypeDef status;
730 uint8_t ep_type;
731 int ret;
732
733 LOG_DBG("Enable ep 0x%02x", ep_cfg->addr);
734
735 switch (ep_cfg->attributes & USB_EP_TRANSFER_TYPE_MASK) {
736 case USB_EP_TYPE_CONTROL:
737 ep_type = EP_TYPE_CTRL;
738 break;
739 case USB_EP_TYPE_BULK:
740 ep_type = EP_TYPE_BULK;
741 break;
742 case USB_EP_TYPE_INTERRUPT:
743 ep_type = EP_TYPE_INTR;
744 break;
745 case USB_EP_TYPE_ISO:
746 ep_type = EP_TYPE_ISOC;
747 break;
748 default:
749 return -EINVAL;
750 }
751
752 ret = udc_stm32_ep_mem_config(dev, ep_cfg, true);
753 if (ret) {
754 return ret;
755 }
756
757 status = HAL_PCD_EP_Open(&priv->pcd, ep_cfg->addr,
758 udc_mps_ep_size(ep_cfg), ep_type);
759 if (status != HAL_OK) {
760 LOG_ERR("HAL_PCD_EP_Open failed(0x%02x), %d",
761 ep_cfg->addr, (int)status);
762 return -EIO;
763 }
764
765 return 0;
766 }
767
udc_stm32_ep_disable(const struct device * dev,struct udc_ep_config * ep)768 static int udc_stm32_ep_disable(const struct device *dev,
769 struct udc_ep_config *ep)
770 {
771 struct udc_stm32_data *priv = udc_get_private(dev);
772 HAL_StatusTypeDef status;
773
774 LOG_DBG("Disable ep 0x%02x", ep->addr);
775
776 status = HAL_PCD_EP_Close(&priv->pcd, ep->addr);
777 if (status != HAL_OK) {
778 LOG_ERR("HAL_PCD_EP_Close failed(0x%02x), %d",
779 ep->addr, (int)status);
780 return -EIO;
781 }
782
783 return udc_stm32_ep_mem_config(dev, ep, false);
784 }
785
udc_stm32_ep_set_halt(const struct device * dev,struct udc_ep_config * cfg)786 static int udc_stm32_ep_set_halt(const struct device *dev,
787 struct udc_ep_config *cfg)
788 {
789 struct udc_stm32_data *priv = udc_get_private(dev);
790 HAL_StatusTypeDef status;
791
792 LOG_DBG("Halt ep 0x%02x", cfg->addr);
793
794 status = HAL_PCD_EP_SetStall(&priv->pcd, cfg->addr);
795 if (status != HAL_OK) {
796 LOG_ERR("HAL_PCD_EP_SetStall failed(0x%02x), %d",
797 cfg->addr, (int)status);
798 return -EIO;
799 }
800
801 return 0;
802 }
803
udc_stm32_ep_clear_halt(const struct device * dev,struct udc_ep_config * cfg)804 static int udc_stm32_ep_clear_halt(const struct device *dev,
805 struct udc_ep_config *cfg)
806 {
807 struct udc_stm32_data *priv = udc_get_private(dev);
808 HAL_StatusTypeDef status;
809
810 LOG_DBG("Clear halt for ep 0x%02x", cfg->addr);
811
812 status = HAL_PCD_EP_ClrStall(&priv->pcd, cfg->addr);
813 if (status != HAL_OK) {
814 LOG_ERR("HAL_PCD_EP_ClrStall failed(0x%02x), %d",
815 cfg->addr, (int)status);
816 return -EIO;
817 }
818
819 return 0;
820 }
821
udc_stm32_ep_flush(const struct device * dev,struct udc_ep_config * cfg)822 static int udc_stm32_ep_flush(const struct device *dev,
823 struct udc_ep_config *cfg)
824 {
825 struct udc_stm32_data *priv = udc_get_private(dev);
826 HAL_StatusTypeDef status;
827
828 LOG_DBG("Flush ep 0x%02x", cfg->addr);
829
830 status = HAL_PCD_EP_Flush(&priv->pcd, cfg->addr);
831 if (status != HAL_OK) {
832 LOG_ERR("HAL_PCD_EP_Flush failed(0x%02x), %d",
833 cfg->addr, (int)status);
834 return -EIO;
835 }
836
837 return 0;
838 }
839
udc_stm32_ep_enqueue(const struct device * dev,struct udc_ep_config * epcfg,struct net_buf * buf)840 static int udc_stm32_ep_enqueue(const struct device *dev,
841 struct udc_ep_config *epcfg,
842 struct net_buf *buf)
843 {
844 unsigned int lock_key;
845 int ret;
846
847 udc_buf_put(epcfg, buf);
848
849 lock_key = irq_lock();
850
851 if (USB_EP_DIR_IS_IN(epcfg->addr)) {
852 ret = udc_stm32_tx(dev, epcfg->addr, buf);
853 } else {
854 ret = udc_stm32_rx(dev, epcfg->addr, buf);
855 }
856
857 irq_unlock(lock_key);
858
859 return ret;
860 }
861
udc_stm32_ep_dequeue(const struct device * dev,struct udc_ep_config * epcfg)862 static int udc_stm32_ep_dequeue(const struct device *dev,
863 struct udc_ep_config *epcfg)
864 {
865 struct net_buf *buf;
866
867 udc_stm32_ep_flush(dev, epcfg);
868
869 buf = udc_buf_get_all(dev, epcfg->addr);
870 if (buf) {
871 udc_submit_ep_event(dev, buf, -ECONNABORTED);
872 }
873
874 udc_ep_set_busy(dev, epcfg->addr, false);
875
876 return 0;
877 }
878
udc_stm32_device_speed(const struct device * dev)879 static enum udc_bus_speed udc_stm32_device_speed(const struct device *dev)
880 {
881 struct udc_stm32_data *priv = udc_get_private(dev);
882
883 #ifdef USBD_HS_SPEED
884 if (priv->pcd.Init.speed == USBD_HS_SPEED) {
885 return UDC_BUS_SPEED_HS;
886 }
887 #endif
888
889 if (priv->pcd.Init.speed == USBD_FS_SPEED) {
890 return UDC_BUS_SPEED_FS;
891 }
892
893 return UDC_BUS_UNKNOWN;
894 }
895
896 static const struct udc_api udc_stm32_api = {
897 .lock = udc_stm32_lock,
898 .unlock = udc_stm32_unlock,
899 .init = udc_stm32_init,
900 .enable = udc_stm32_enable,
901 .disable = udc_stm32_disable,
902 .shutdown = udc_stm32_shutdown,
903 .set_address = udc_stm32_set_address,
904 .host_wakeup = udc_stm32_host_wakeup,
905 .ep_try_config = NULL,
906 .ep_enable = udc_stm32_ep_enable,
907 .ep_disable = udc_stm32_ep_disable,
908 .ep_set_halt = udc_stm32_ep_set_halt,
909 .ep_clear_halt = udc_stm32_ep_clear_halt,
910 .ep_enqueue = udc_stm32_ep_enqueue,
911 .ep_dequeue = udc_stm32_ep_dequeue,
912 .device_speed = udc_stm32_device_speed,
913 };
914
915 /* ----------------- Instance/Device specific data ----------------- */
916
917 /*
918 * USB, USB_OTG_FS and USB_DRD_FS are defined in STM32Cube HAL and allows to
919 * distinguish between two kind of USB DC. STM32 F0, F3, L0 and G4 series
920 * support USB device controller. STM32 F4 and F7 series support USB_OTG_FS
921 * device controller. STM32 F1 and L4 series support either USB or USB_OTG_FS
922 * device controller.STM32 G0 series supports USB_DRD_FS device controller.
923 *
924 * WARNING: Don't mix USB defined in STM32Cube HAL and CONFIG_USB_* from Zephyr
925 * Kconfig system.
926 */
927 #define USB_NUM_BIDIR_ENDPOINTS DT_INST_PROP(0, num_bidir_endpoints)
928
929 #if defined(USB) || defined(USB_DRD_FS)
930 #define EP0_MPS 64U
931 #define EP_MPS 64U
932 #define USB_BTABLE_SIZE (8 * USB_NUM_BIDIR_ENDPOINTS)
933 #define USB_RAM_SIZE DT_INST_PROP(0, ram_size)
934 #else /* USB_OTG_FS */
935 #define EP0_MPS USB_OTG_MAX_EP0_SIZE
936 #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs)
937 #define EP_MPS USB_OTG_HS_MAX_PACKET_SIZE
938 #elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otgfs) || DT_HAS_COMPAT_STATUS_OKAY(st_stm32_usb)
939 #define EP_MPS USB_OTG_FS_MAX_PACKET_SIZE
940 #endif
941 #define USB_RAM_SIZE DT_INST_PROP(0, ram_size)
942 #define USB_BTABLE_SIZE 0
943 #endif /* USB */
944
945 #define USB_OTG_HS_EMB_PHY (DT_HAS_COMPAT_STATUS_OKAY(st_stm32_usbphyc) && \
946 DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs))
947
948 #define USB_OTG_HS_ULPI_PHY (DT_HAS_COMPAT_STATUS_OKAY(usb_ulpi_phy) && \
949 DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs))
950
951 static struct udc_stm32_data udc0_priv;
952
953 static struct udc_data udc0_data = {
954 .mutex = Z_MUTEX_INITIALIZER(udc0_data.mutex),
955 .priv = &udc0_priv,
956 };
957
958 static const struct udc_stm32_config udc0_cfg = {
959 .num_endpoints = USB_NUM_BIDIR_ENDPOINTS,
960 .dram_size = USB_RAM_SIZE,
961 .pma_offset = USB_BTABLE_SIZE,
962 .ep0_mps = EP0_MPS,
963 .ep_mps = EP_MPS,
964 .speed_idx = DT_ENUM_IDX_OR(DT_DRV_INST(0), maximum_speed, 1),
965 };
966
967 #if defined(USB_OTG_FS) || defined(USB_OTG_HS)
usb_dc_stm32_get_maximum_speed(void)968 static uint32_t usb_dc_stm32_get_maximum_speed(void)
969 {
970 /*
971 * STM32L4 series USB LL API doesn't provide HIGH and HIGH_IN_FULL speed
972 * defines.
973 */
974 #if defined(CONFIG_SOC_SERIES_STM32L4X)
975 #define USB_OTG_SPEED_HIGH 0U
976 #define USB_OTG_SPEED_HIGH_IN_FULL 1U
977 #endif /* CONFIG_SOC_SERIES_STM32L4X */
978 /*
979 * If max-speed is not passed via DT, set it to USB controller's
980 * maximum hardware capability.
981 */
982 #if USB_OTG_HS_EMB_PHY || USB_OTG_HS_ULPI_PHY
983 uint32_t speed = USB_OTG_SPEED_HIGH;
984 #else
985 uint32_t speed = USB_OTG_SPEED_FULL;
986 #endif
987
988 #ifdef USB_MAXIMUM_SPEED
989
990 if (!strncmp(USB_MAXIMUM_SPEED, "high-speed", 10)) {
991 speed = USB_OTG_SPEED_HIGH;
992 } else if (!strncmp(USB_MAXIMUM_SPEED, "full-speed", 10)) {
993 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(USB_OTG_HS_EMB_PHY)
994 speed = USB_OTG_SPEED_HIGH_IN_FULL;
995 #else
996 speed = USB_OTG_SPEED_FULL;
997 #endif
998 } else {
999 LOG_DBG("Unsupported maximum speed defined in device tree. "
1000 "USB controller will default to its maximum HW "
1001 "capability");
1002 }
1003 #endif
1004
1005 return speed;
1006 }
1007 #endif /* USB_OTG_FS || USB_OTG_HS */
1008
priv_pcd_prepare(const struct device * dev)1009 static void priv_pcd_prepare(const struct device *dev)
1010 {
1011 struct udc_stm32_data *priv = udc_get_private(dev);
1012 const struct udc_stm32_config *cfg = dev->config;
1013
1014 memset(&priv->pcd, 0, sizeof(priv->pcd));
1015
1016 /* Default values */
1017 priv->pcd.Init.dev_endpoints = cfg->num_endpoints;
1018 priv->pcd.Init.ep0_mps = cfg->ep0_mps;
1019 priv->pcd.Init.speed = PCD_SPEED_FULL;
1020
1021 /* Per controller/Phy values */
1022 #if defined(USB)
1023 priv->pcd.Instance = USB;
1024 #elif defined(USB_DRD_FS)
1025 priv->pcd.Instance = USB_DRD_FS;
1026 #elif defined(USB_OTG_FS) || defined(USB_OTG_HS)
1027 priv->pcd.Init.speed = usb_dc_stm32_get_maximum_speed();
1028 #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs)
1029 priv->pcd.Instance = USB_OTG_HS;
1030 #else
1031 priv->pcd.Instance = USB_OTG_FS;
1032 #endif
1033 #endif /* USB */
1034
1035 #if USB_OTG_HS_EMB_PHY
1036 priv->pcd.Init.phy_itface = USB_OTG_HS_EMBEDDED_PHY;
1037 #elif USB_OTG_HS_ULPI_PHY
1038 priv->pcd.Init.phy_itface = USB_OTG_ULPI_PHY;
1039 #else
1040 priv->pcd.Init.phy_itface = PCD_PHY_EMBEDDED;
1041 #endif /* USB_OTG_HS_EMB_PHY */
1042 }
1043
1044 static const struct stm32_pclken pclken[] = STM32_DT_INST_CLOCKS(0);
1045
priv_clock_enable(void)1046 static int priv_clock_enable(void)
1047 {
1048 const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
1049
1050 if (!device_is_ready(clk)) {
1051 LOG_ERR("clock control device not ready");
1052 return -ENODEV;
1053 }
1054
1055 #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs) && defined(CONFIG_SOC_SERIES_STM32U5X)
1056 /* Sequence to enable the power of the OTG HS on a stm32U5 serie : Enable VDDUSB */
1057 bool pwr_clk = LL_AHB3_GRP1_IsEnabledClock(LL_AHB3_GRP1_PERIPH_PWR);
1058
1059 if (!pwr_clk) {
1060 LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR);
1061 }
1062
1063 /* Check that power range is 1 or 2 */
1064 if (LL_PWR_GetRegulVoltageScaling() < LL_PWR_REGU_VOLTAGE_SCALE2) {
1065 LOG_ERR("Wrong Power range to use USB OTG HS");
1066 return -EIO;
1067 }
1068
1069 LL_PWR_EnableVddUSB();
1070 /* Configure VOSR register of USB HSTransceiverSupply(); */
1071 LL_PWR_EnableUSBPowerSupply();
1072 LL_PWR_EnableUSBEPODBooster();
1073 while (LL_PWR_IsActiveFlag_USBBOOST() != 1) {
1074 /* Wait for USB EPOD BOOST ready */
1075 }
1076
1077 /* Leave the PWR clock in its initial position */
1078 if (!pwr_clk) {
1079 LL_AHB3_GRP1_DisableClock(LL_AHB3_GRP1_PERIPH_PWR);
1080 }
1081
1082 /* Set the OTG PHY reference clock selection (through SYSCFG) block */
1083 LL_APB3_GRP1_EnableClock(LL_APB3_GRP1_PERIPH_SYSCFG);
1084 HAL_SYSCFG_SetOTGPHYReferenceClockSelection(SYSCFG_OTG_HS_PHY_CLK_SELECT_1);
1085 /* Configuring the SYSCFG registers OTG_HS PHY : OTG_HS PHY enable*/
1086 HAL_SYSCFG_EnableOTGPHY(SYSCFG_OTG_HS_PHY_ENABLE);
1087 #elif defined(PWR_USBSCR_USB33SV) || defined(PWR_SVMCR_USV)
1088 /*
1089 * VDDUSB independent USB supply (PWR clock is on)
1090 * with LL_PWR_EnableVDDUSB function (higher case)
1091 */
1092 LL_PWR_EnableVDDUSB();
1093 #endif
1094
1095 #if defined(CONFIG_SOC_SERIES_STM32H7X)
1096 LL_PWR_EnableUSBVoltageDetector();
1097
1098 /* Per AN2606: USBREGEN not supported when running in FS mode. */
1099 LL_PWR_DisableUSBReg();
1100 while (!LL_PWR_IsActiveFlag_USB()) {
1101 LOG_INF("PWR not active yet");
1102 k_sleep(K_MSEC(100));
1103 }
1104 #endif
1105
1106 if (DT_INST_NUM_CLOCKS(0) > 1) {
1107 if (clock_control_configure(clk, (clock_control_subsys_t *)&pclken[1],
1108 NULL) != 0) {
1109 LOG_ERR("Could not select USB domain clock");
1110 return -EIO;
1111 }
1112 }
1113
1114 if (clock_control_on(clk, (clock_control_subsys_t *)&pclken[0]) != 0) {
1115 LOG_ERR("Unable to enable USB clock");
1116 return -EIO;
1117 }
1118
1119 if (IS_ENABLED(CONFIG_UDC_STM32_CLOCK_CHECK)) {
1120 uint32_t usb_clock_rate;
1121
1122 if (clock_control_get_rate(clk,
1123 (clock_control_subsys_t *)&pclken[1],
1124 &usb_clock_rate) != 0) {
1125 LOG_ERR("Failed to get USB domain clock rate");
1126 return -EIO;
1127 }
1128
1129 if (usb_clock_rate != MHZ(48)) {
1130 LOG_ERR("USB Clock is not 48MHz (%d)", usb_clock_rate);
1131 return -ENOTSUP;
1132 }
1133 }
1134
1135 /* Previous check won't work in case of F1/F3. Add build time check */
1136 #if defined(RCC_CFGR_OTGFSPRE) || defined(RCC_CFGR_USBPRE)
1137
1138 #if (MHZ(48) == CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) && !defined(STM32_PLL_USBPRE)
1139 /* PLL output clock is set to 48MHz, it should not be divided */
1140 #warning USBPRE/OTGFSPRE should be set in rcc node
1141 #endif
1142
1143 #endif /* RCC_CFGR_OTGFSPRE / RCC_CFGR_USBPRE */
1144
1145 #if USB_OTG_HS_ULPI_PHY
1146 #if defined(CONFIG_SOC_SERIES_STM32H7X)
1147 LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_USB1OTGHSULPI);
1148 #else
1149 LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_OTGHSULPI);
1150 #endif
1151 #elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs) /* USB_OTG_HS_ULPI_PHY */
1152 /* Disable ULPI interface (for external high-speed PHY) clock in sleep/low-power mode.
1153 * It is disabled by default in run power mode, no need to disable it.
1154 */
1155 #if defined(CONFIG_SOC_SERIES_STM32H7X)
1156 LL_AHB1_GRP1_DisableClockSleep(LL_AHB1_GRP1_PERIPH_USB1OTGHSULPI);
1157 #elif defined(CONFIG_SOC_SERIES_STM32U5X)
1158 LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_USBPHY);
1159 /* Both OTG HS and USBPHY sleep clock MUST be disabled here at the same time */
1160 LL_AHB2_GRP1_DisableClockStopSleep(LL_AHB2_GRP1_PERIPH_OTG_HS ||
1161 LL_AHB2_GRP1_PERIPH_USBPHY);
1162 #else
1163 LL_AHB1_GRP1_DisableClockLowPower(LL_AHB1_GRP1_PERIPH_OTGHSULPI);
1164 #endif /* defined(CONFIG_SOC_SERIES_STM32H7X) */
1165
1166 #if USB_OTG_HS_EMB_PHY
1167 LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_OTGPHYC);
1168 #endif
1169 #elif defined(CONFIG_SOC_SERIES_STM32H7X) && DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otgfs)
1170 /* The USB2 controller only works in FS mode, but the ULPI clock needs
1171 * to be disabled in sleep mode for it to work.
1172 */
1173 LL_AHB1_GRP1_DisableClockSleep(LL_AHB1_GRP1_PERIPH_USB2OTGHSULPI);
1174 #endif /* USB_OTG_HS_ULPI_PHY */
1175
1176 return 0;
1177 }
1178
priv_clock_disable(void)1179 static int priv_clock_disable(void)
1180 {
1181 const struct device *clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
1182
1183 if (clock_control_off(clk, (clock_control_subsys_t *)&pclken[0]) != 0) {
1184 LOG_ERR("Unable to disable USB clock");
1185 return -EIO;
1186 }
1187 #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_otghs) && defined(CONFIG_SOC_SERIES_STM32U5X)
1188 LL_AHB2_GRP1_DisableClock(LL_AHB2_GRP1_PERIPH_USBPHY);
1189 #endif
1190
1191 return 0;
1192 }
1193
1194 static struct udc_ep_config ep_cfg_in[DT_INST_PROP(0, num_bidir_endpoints)];
1195 static struct udc_ep_config ep_cfg_out[DT_INST_PROP(0, num_bidir_endpoints)];
1196
1197 PINCTRL_DT_INST_DEFINE(0);
1198 static const struct pinctrl_dev_config *usb_pcfg =
1199 PINCTRL_DT_INST_DEV_CONFIG_GET(0);
1200
1201 #if USB_OTG_HS_ULPI_PHY
1202 static const struct gpio_dt_spec ulpi_reset =
1203 GPIO_DT_SPEC_GET_OR(DT_PHANDLE(DT_INST(0, st_stm32_otghs), phys), reset_gpios, {0});
1204 #endif
1205
1206 static char udc_msgq_buf_0[CONFIG_UDC_STM32_MAX_QMESSAGES * sizeof(struct udc_stm32_msg)];
1207
1208 K_THREAD_STACK_DEFINE(udc_stm32_stack_0, CONFIG_UDC_STM32_STACK_SIZE);
1209
udc_stm32_driver_init0(const struct device * dev)1210 static int udc_stm32_driver_init0(const struct device *dev)
1211 {
1212 struct udc_stm32_data *priv = udc_get_private(dev);
1213 const struct udc_stm32_config *cfg = dev->config;
1214 struct udc_data *data = dev->data;
1215 int err;
1216
1217 for (unsigned int i = 0; i < ARRAY_SIZE(ep_cfg_out); i++) {
1218 ep_cfg_out[i].caps.out = 1;
1219 if (i == 0) {
1220 ep_cfg_out[i].caps.control = 1;
1221 ep_cfg_out[i].caps.mps = cfg->ep0_mps;
1222 } else {
1223 ep_cfg_out[i].caps.bulk = 1;
1224 ep_cfg_out[i].caps.interrupt = 1;
1225 ep_cfg_out[i].caps.iso = 1;
1226 ep_cfg_out[i].caps.mps = cfg->ep_mps;
1227 }
1228
1229 ep_cfg_out[i].addr = USB_EP_DIR_OUT | i;
1230 err = udc_register_ep(dev, &ep_cfg_out[i]);
1231 if (err != 0) {
1232 LOG_ERR("Failed to register endpoint");
1233 return err;
1234 }
1235 }
1236
1237 for (unsigned int i = 0; i < ARRAY_SIZE(ep_cfg_in); i++) {
1238 ep_cfg_in[i].caps.in = 1;
1239 if (i == 0) {
1240 ep_cfg_in[i].caps.control = 1;
1241 ep_cfg_in[i].caps.mps = cfg->ep0_mps;
1242 } else {
1243 ep_cfg_in[i].caps.bulk = 1;
1244 ep_cfg_in[i].caps.interrupt = 1;
1245 ep_cfg_in[i].caps.iso = 1;
1246 ep_cfg_in[i].caps.mps = 1023;
1247 }
1248
1249 ep_cfg_in[i].addr = USB_EP_DIR_IN | i;
1250 err = udc_register_ep(dev, &ep_cfg_in[i]);
1251 if (err != 0) {
1252 LOG_ERR("Failed to register endpoint");
1253 return err;
1254 }
1255 }
1256
1257 data->caps.rwup = true;
1258 data->caps.out_ack = false;
1259 data->caps.mps0 = UDC_MPS0_64;
1260 if (cfg->speed_idx == 2) {
1261 data->caps.hs = true;
1262 }
1263
1264 priv->dev = dev;
1265 priv->irq = UDC_STM32_IRQ;
1266 priv->clk_enable = priv_clock_enable;
1267 priv->clk_disable = priv_clock_disable;
1268 priv->pcd_prepare = priv_pcd_prepare;
1269
1270 k_msgq_init(&priv->msgq_data, udc_msgq_buf_0, sizeof(struct udc_stm32_msg),
1271 CONFIG_UDC_STM32_MAX_QMESSAGES);
1272
1273 k_thread_create(&priv->thread_data, udc_stm32_stack_0,
1274 K_THREAD_STACK_SIZEOF(udc_stm32_stack_0), udc_stm32_thread_handler,
1275 (void *)dev, NULL, NULL, K_PRIO_COOP(CONFIG_UDC_STM32_THREAD_PRIORITY),
1276 K_ESSENTIAL, K_NO_WAIT);
1277 k_thread_name_set(&priv->thread_data, dev->name);
1278
1279 IRQ_CONNECT(UDC_STM32_IRQ, UDC_STM32_IRQ_PRI, udc_stm32_irq,
1280 DEVICE_DT_INST_GET(0), 0);
1281
1282 err = pinctrl_apply_state(usb_pcfg, PINCTRL_STATE_DEFAULT);
1283 if (err < 0) {
1284 LOG_ERR("USB pinctrl setup failed (%d)", err);
1285 return err;
1286 }
1287
1288 #ifdef SYSCFG_CFGR1_USB_IT_RMP
1289 /*
1290 * STM32F302/F303: USB IRQ collides with CAN_1 IRQ (§14.1.3, RM0316)
1291 * Remap IRQ by default to enable use of both IPs simultaneoulsy
1292 * This should be done before calling any HAL function
1293 */
1294 if (LL_APB2_GRP1_IsEnabledClock(LL_APB2_GRP1_PERIPH_SYSCFG)) {
1295 LL_SYSCFG_EnableRemapIT_USB();
1296 } else {
1297 LOG_ERR("System Configuration Controller clock is "
1298 "disabled. Unable to enable IRQ remapping.");
1299 }
1300 #endif
1301
1302 #if USB_OTG_HS_ULPI_PHY
1303 if (ulpi_reset.port != NULL) {
1304 if (!gpio_is_ready_dt(&ulpi_reset)) {
1305 LOG_ERR("Reset GPIO device not ready");
1306 return -EINVAL;
1307 }
1308 if (gpio_pin_configure_dt(&ulpi_reset, GPIO_OUTPUT_INACTIVE)) {
1309 LOG_ERR("Couldn't configure reset pin");
1310 return -EIO;
1311 }
1312 }
1313 #endif
1314
1315 /*cd
1316 * Required for at least STM32L4 devices as they electrically
1317 * isolate USB features from VDDUSB. It must be enabled before
1318 * USB can function. Refer to section 5.1.3 in DM00083560 or
1319 * DM00310109.
1320 */
1321 #ifdef PWR_CR2_USV
1322 #if defined(LL_APB1_GRP1_PERIPH_PWR)
1323 if (LL_APB1_GRP1_IsEnabledClock(LL_APB1_GRP1_PERIPH_PWR)) {
1324 LL_PWR_EnableVddUSB();
1325 } else {
1326 LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_PWR);
1327 LL_PWR_EnableVddUSB();
1328 LL_APB1_GRP1_DisableClock(LL_APB1_GRP1_PERIPH_PWR);
1329 }
1330 #else
1331 LL_PWR_EnableVddUSB();
1332 #endif /* defined(LL_APB1_GRP1_PERIPH_PWR) */
1333 #endif /* PWR_CR2_USV */
1334
1335 return 0;
1336 }
1337
1338 DEVICE_DT_INST_DEFINE(0, udc_stm32_driver_init0, NULL, &udc0_data, &udc0_cfg,
1339 POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
1340 &udc_stm32_api);
1341