1 /*
2  * Copyright (c) 2016, Freescale Semiconductor, Inc.
3  * Copyright 2016-2023 NXP
4  * All rights reserved.
5  *
6  * SPDX-License-Identifier: BSD-3-Clause
7  */
8 #ifndef FSL_ECSPI_H_
9 #define FSL_ECSPI_H_
10 
11 #include "fsl_common.h"
12 
13 /*!
14  * @addtogroup ecspi_driver
15  * @{
16  */
17 
18 /*******************************************************************************
19  * Definitions
20  ******************************************************************************/
21 
22 /*! @name Driver version */
23 /*! @{ */
24 /*! @brief ECSPI driver version. */
25 #define FSL_ECSPI_DRIVER_VERSION (MAKE_VERSION(2, 3, 3))
26 /*! @} */
27 
28 #ifndef ECSPI_DUMMYDATA
29 /*! @brief ECSPI dummy transfer data, the data is sent while txBuff is NULL. */
30 #define ECSPI_DUMMYDATA (0x00U)
31 #endif
32 
33 /*! @brief Retry times for waiting flag. */
34 #ifndef SPI_RETRY_TIMES
35 #define SPI_RETRY_TIMES 0U /* Define to zero means keep waiting until the flag is assert/deassert. */
36 #endif
37 
38 /*! @brief Return status for the ECSPI driver. */
39 enum
40 {
41     kStatus_ECSPI_Busy             = MAKE_STATUS(kStatusGroup_ECSPI, 0), /*!< ECSPI bus is busy */
42     kStatus_ECSPI_Idle             = MAKE_STATUS(kStatusGroup_ECSPI, 1), /*!< ECSPI is idle */
43     kStatus_ECSPI_Error            = MAKE_STATUS(kStatusGroup_ECSPI, 2), /*!< ECSPI error */
44     kStatus_ECSPI_HardwareOverFlow = MAKE_STATUS(kStatusGroup_ECSPI, 3), /*!< ECSPI hardware overflow */
45     kStatus_ECSPI_Timeout          = MAKE_STATUS(kStatusGroup_ECSPI, 4), /*!< ECSPI timeout polling status flags. */
46 };
47 
48 /*! @brief ECSPI clock polarity configuration. */
49 typedef enum _ecspi_clock_polarity
50 {
51     kECSPI_PolarityActiveHigh = 0x0U, /*!< Active-high ECSPI polarity high (idles low). */
52     kECSPI_PolarityActiveLow,         /*!< Active-low ECSPI polarity low (idles high). */
53 } ecspi_clock_polarity_t;
54 
55 /*! @brief ECSPI clock phase configuration. */
56 typedef enum _ecspi_clock_phase
57 {
58     kECSPI_ClockPhaseFirstEdge =
59         0x0U,                    /*!< First edge on SPSCK occurs at the middle of the first cycle of a data transfer. */
60     kECSPI_ClockPhaseSecondEdge, /*!< First edge on SPSCK occurs at the start of the first cycle of a data transfer. */
61 } ecspi_clock_phase_t;
62 
63 /*! @brief ECSPI interrupt sources. */
64 enum
65 {
66     kECSPI_TxfifoEmptyInterruptEnable      = ECSPI_INTREG_TEEN_MASK,  /*!< Transmit FIFO buffer empty interrupt */
67     kECSPI_TxFifoDataRequstInterruptEnable = ECSPI_INTREG_TDREN_MASK, /*!< Transmit FIFO data requst interrupt */
68     kECSPI_TxFifoFullInterruptEnable       = ECSPI_INTREG_TFEN_MASK,  /*!< Transmit FIFO full interrupt */
69     kECSPI_RxFifoReadyInterruptEnable      = ECSPI_INTREG_RREN_MASK,  /*!< Receiver FIFO ready interrupt */
70     kECSPI_RxFifoDataRequstInterruptEnable = ECSPI_INTREG_RDREN_MASK, /*!< Receiver FIFO data requst interrupt */
71     kECSPI_RxFifoFullInterruptEnable       = ECSPI_INTREG_RFEN_MASK,  /*!< Receiver FIFO full interrupt */
72     kECSPI_RxFifoOverFlowInterruptEnable   = ECSPI_INTREG_ROEN_MASK,  /*!< Receiver FIFO buffer overflow interrupt */
73     kECSPI_TransferCompleteInterruptEnable = ECSPI_INTREG_TCEN_MASK,  /*!< Transfer complete interrupt */
74     kECSPI_AllInterruptEnable = (ECSPI_INTREG_TEEN_MASK | ECSPI_INTREG_TDREN_MASK | ECSPI_INTREG_TFEN_MASK |
75                                  ECSPI_INTREG_RREN_MASK | ECSPI_INTREG_RDREN_MASK | ECSPI_INTREG_RFEN_MASK |
76                                  ECSPI_INTREG_ROEN_MASK | ECSPI_INTREG_TCEN_MASK), /*!< All interrupt */
77 };
78 
79 /*! @brief ECSPI status flags. */
80 enum
81 {
82     kECSPI_TxfifoEmptyFlag      = ECSPI_STATREG_TE_MASK,  /*!< Transmit FIFO buffer empty flag */
83     kECSPI_TxFifoDataRequstFlag = ECSPI_STATREG_TDR_MASK, /*!< Transmit FIFO data requst flag */
84     kECSPI_TxFifoFullFlag       = ECSPI_STATREG_TF_MASK,  /*!< Transmit FIFO full flag */
85     kECSPI_RxFifoReadyFlag      = ECSPI_STATREG_RR_MASK,  /*!< Receiver FIFO ready flag */
86     kECSPI_RxFifoDataRequstFlag = ECSPI_STATREG_RDR_MASK, /*!< Receiver FIFO data requst flag */
87     kECSPI_RxFifoFullFlag       = ECSPI_STATREG_RF_MASK,  /*!< Receiver FIFO full flag */
88     kECSPI_RxFifoOverFlowFlag   = ECSPI_STATREG_RO_MASK,  /*!< Receiver FIFO buffer overflow flag */
89     kECSPI_TransferCompleteFlag = ECSPI_STATREG_TC_MASK,  /*!< Transfer complete flag */
90 };
91 /*! @brief ECSPI DMA enable.*/
92 enum
93 {
94     kECSPI_TxDmaEnable  = ECSPI_DMAREG_TEDEN_MASK,                            /*!< Tx DMA request source */
95     kECSPI_RxDmaEnable  = ECSPI_DMAREG_RXDEN_MASK,                            /*!< Rx DMA request source */
96     kECSPI_DmaAllEnable = (ECSPI_DMAREG_TEDEN_MASK | ECSPI_DMAREG_RXDEN_MASK) /*!< All DMA request source*/
97 };
98 
99 /*! @brief ECSPI SPI_RDY signal configuration. */
100 typedef enum _ecspi_data_ready
101 {
102     kECSPI_DataReadyIgnore = 0x0U, /*!< SPI_RDY signal is ignored */
103     kECSPI_DataReadyFallingEdge,   /*!< SPI_RDY signal will be triggerd by the falling edge */
104     kECSPI_DataReadyLowLevel,      /*!< SPI_RDY signal will be triggerd by a low level */
105 } ecspi_Data_ready_t;
106 
107 /*! @brief ECSPI channel select source. */
108 typedef enum _ecspi_channel_source
109 {
110     kECSPI_Channel0 = 0x0U, /*!< Channel 0 is selectd */
111     kECSPI_Channel1,        /*!< Channel 1 is selectd */
112     kECSPI_Channel2,        /*!< Channel 2 is selectd */
113     kECSPI_Channel3,        /*!< Channel 3 is selectd */
114 } ecspi_channel_source_t;
115 
116 /*! @brief ECSPI master or slave mode configuration. */
117 typedef enum _ecspi_master_slave_mode
118 {
119     kECSPI_Slave = 0U, /*!< ECSPI peripheral operates in slave mode.*/
120     kECSPI_Master,     /*!< ECSPI peripheral operates in master mode.*/
121 } ecspi_master_slave_mode_t;
122 
123 /*! @brief ECSPI data line inactive state configuration. */
124 typedef enum _ecspi_data_line_inactive_state_t
125 {
126     kECSPI_DataLineInactiveStateHigh = 0x0U, /*!< The data line inactive state stays high. */
127     kECSPI_DataLineInactiveStateLow,         /*!< The data line inactive state stays low. */
128 } ecspi_data_line_inactive_state_t;
129 
130 /*! @brief ECSPI clock inactive state configuration. */
131 typedef enum _ecspi_clock_inactive_state_t
132 {
133     kECSPI_ClockInactiveStateLow = 0x0U, /*!< The SCLK inactive state stays low. */
134     kECSPI_ClockInactiveStateHigh,       /*!< The SCLK inactive state stays high. */
135 } ecspi_clock_inactive_state_t;
136 
137 /*! @brief ECSPI active state configuration.*/
138 typedef enum _ecspi_chip_select_active_state_t
139 {
140     kECSPI_ChipSelectActiveStateLow = 0x0U, /*!< The SS signal line active stays low. */
141     kECSPI_ChipSelectActiveStateHigh,       /*!< The SS signal line active stays high. */
142 } ecspi_chip_select_active_state_t;
143 
144 /*! @brief ECSPI sample period clock configuration.*/
145 typedef enum _ecspi_sample_period_clock_source
146 {
147     kECSPI_spiClock = 0x0U, /*!< The sample period clock source is SCLK. */
148     kECSPI_lowFreqClock,    /*!< The sample seriod clock source is low_frequency reference clock(32.768 kHz). */
149 } ecspi_sample_period_clock_source_t;
150 
151 /*! @brief ECSPI user channel configure structure.*/
152 typedef struct _ecspi_channel_config
153 {
154     ecspi_master_slave_mode_t channelMode;                  /*!< Channel mode */
155     ecspi_clock_inactive_state_t clockInactiveState;        /*!< Clock line (SCLK) inactive state */
156     ecspi_data_line_inactive_state_t dataLineInactiveState; /*!< Data line (MOSI&MISO) inactive state */
157     ecspi_chip_select_active_state_t chipSlectActiveState;  /*!< Chip select(SS) line active state */
158     ecspi_clock_polarity_t polarity;                        /*!< Clock polarity */
159     ecspi_clock_phase_t phase;                              /*!< Clock phase */
160 } ecspi_channel_config_t;
161 
162 /*! @brief ECSPI master configure structure.*/
163 typedef struct _ecspi_master_config
164 {
165     ecspi_channel_source_t channel;                       /*!< Channel number */
166     ecspi_channel_config_t channelConfig;                 /*!< Channel configuration */
167     ecspi_sample_period_clock_source_t samplePeriodClock; /*!< Sample period clock source */
168 
169     uint16_t burstLength;    /*!< Burst length. The length shall be less than 4096 bits */
170     uint8_t chipSelectDelay; /*!< SS delay time */
171     uint16_t samplePeriod;   /*!< Sample period */
172     uint8_t txFifoThreshold; /*!< TX Threshold */
173     uint8_t rxFifoThreshold; /*!< RX Threshold */
174     uint32_t baudRate_Bps;   /*!< ECSPI baud rate for master mode */
175     bool enableLoopback;     /*!< Enable the ECSPI loopback test. */
176 } ecspi_master_config_t;
177 
178 /*! @brief ECSPI slave configure structure.*/
179 typedef struct _ecspi_slave_config
180 {
181     ecspi_channel_source_t channel;       /*Channel number */
182     uint16_t burstLength;                 /*!< Burst length. The length shall be less than 4096 bits */
183     uint8_t txFifoThreshold;              /*!< TX Threshold */
184     uint8_t rxFifoThreshold;              /*!< RX Threshold */
185     ecspi_channel_config_t channelConfig; /*!< Channel configuration */
186 } ecspi_slave_config_t;
187 
188 /*! @brief ECSPI transfer structure */
189 typedef struct _ecspi_transfer
190 {
191     const uint32_t *txData;         /*!< Send buffer */
192     uint32_t *rxData;               /*!< Receive buffer */
193     size_t dataSize;                /*!< Transfer bytes */
194     ecspi_channel_source_t channel; /*!< ECSPI channel select */
195 } ecspi_transfer_t;
196 
197 typedef struct _ecspi_master_handle ecspi_master_handle_t;
198 /*! @brief  Slave handle is the same with master handle  */
199 typedef ecspi_master_handle_t ecspi_slave_handle_t;
200 
201 /*! @brief ECSPI master callback for finished transmit */
202 typedef void (*ecspi_master_callback_t)(ECSPI_Type *base,
203                                         ecspi_master_handle_t *handle,
204                                         status_t status,
205                                         void *userData);
206 
207 /*! @brief ECSPI slave callback for finished transmit */
208 typedef void (*ecspi_slave_callback_t)(ECSPI_Type *base, ecspi_slave_handle_t *handle, status_t status, void *userData);
209 
210 /*! @brief ECSPI master handle structure */
211 struct _ecspi_master_handle
212 {
213     ecspi_channel_source_t channel;   /*!< Channel number */
214     const uint32_t *volatile txData;  /*!< Transfer buffer */
215     uint32_t *volatile rxData;        /*!< Receive buffer */
216     volatile size_t txRemainingBytes; /*!< Send data remaining in bytes */
217     volatile size_t rxRemainingBytes; /*!< Receive data remaining in bytes */
218     volatile uint32_t state;          /*!< ECSPI internal state */
219     size_t transferSize;              /*!< Bytes to be transferred */
220     ecspi_master_callback_t callback; /*!< ECSPI callback */
221     void *userData;                   /*!< Callback parameter */
222 };
223 
224 #if defined(__cplusplus)
225 extern "C" {
226 #endif
227 /*******************************************************************************
228  * APIs
229  ******************************************************************************/
230 /*!
231  * @brief Get the instance for ECSPI module.
232  *
233  * @param base ECSPI base address
234  */
235 uint32_t ECSPI_GetInstance(ECSPI_Type *base);
236 
237 /*!
238  * @name Initialization and deinitialization
239  * @{
240  */
241 
242 /*!
243  * @brief  Sets the ECSPI configuration structure to default values.
244  *
245  * The purpose of this API is to get the configuration structure initialized for use in ECSPI_MasterInit().
246  * User may use the initialized structure unchanged in ECSPI_MasterInit, or modify
247  * some fields of the structure before calling ECSPI_MasterInit. After calling this API,
248  * the master is ready to transfer.
249  * Example:
250    @code
251    ecspi_master_config_t config;
252    ECSPI_MasterGetDefaultConfig(&config);
253    @endcode
254  *
255  * @param config pointer to config structure
256  */
257 void ECSPI_MasterGetDefaultConfig(ecspi_master_config_t *config);
258 
259 /*!
260  * @brief Initializes the ECSPI with configuration.
261  *
262  * The configuration structure can be filled by user from scratch, or be set with default
263  * values by ECSPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
264  * Example
265    @code
266    ecspi_master_config_t config = {
267    .baudRate_Bps = 400000,
268    ...
269    };
270    ECSPI_MasterInit(ECSPI0, &config);
271    @endcode
272  *
273  * @param base ECSPI base pointer
274  * @param config pointer to master configuration structure
275  * @param srcClock_Hz Source clock frequency.
276  */
277 void ECSPI_MasterInit(ECSPI_Type *base, const ecspi_master_config_t *config, uint32_t srcClock_Hz);
278 
279 /*!
280  * @brief  Sets the ECSPI configuration structure to default values.
281  *
282  * The purpose of this API is to get the configuration structure initialized for use in ECSPI_SlaveInit().
283  * User may use the initialized structure unchanged in ECSPI_SlaveInit(), or modify
284  * some fields of the structure before calling ECSPI_SlaveInit(). After calling this API,
285  * the master is ready to transfer.
286  * Example:
287    @code
288    ecspi_Slaveconfig_t config;
289    ECSPI_SlaveGetDefaultConfig(&config);
290    @endcode
291  *
292  * @param config pointer to config structure
293  */
294 void ECSPI_SlaveGetDefaultConfig(ecspi_slave_config_t *config);
295 
296 /*!
297  * @brief Initializes the ECSPI with configuration.
298  *
299  * The configuration structure can be filled by user from scratch, or be set with default
300  * values by ECSPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer.
301  * Example
302    @code
303    ecspi_Salveconfig_t config = {
304    .baudRate_Bps = 400000,
305    ...
306    };
307    ECSPI_SlaveInit(ECSPI1, &config);
308    @endcode
309  *
310  * @param base ECSPI base pointer
311  * @param config pointer to master configuration structure
312  */
313 void ECSPI_SlaveInit(ECSPI_Type *base, const ecspi_slave_config_t *config);
314 
315 /*!
316  * @brief De-initializes the ECSPI.
317  *
318  * Calling this API resets the ECSPI module, gates the ECSPI clock.
319  * The ECSPI module can't work unless calling the ECSPI_MasterInit/ECSPI_SlaveInit to initialize module.
320  *
321  * @param base ECSPI base pointer
322  */
323 void ECSPI_Deinit(ECSPI_Type *base);
324 
325 /*!
326  * @brief Enables or disables the ECSPI.
327  *
328  * @param base ECSPI base pointer
329  * @param enable pass true to enable module, false to disable module
330  */
ECSPI_Enable(ECSPI_Type * base,bool enable)331 static inline void ECSPI_Enable(ECSPI_Type *base, bool enable)
332 {
333     if (enable)
334     {
335         base->CONREG |= ECSPI_CONREG_EN_MASK;
336     }
337     else
338     {
339         base->CONREG &= ~ECSPI_CONREG_EN_MASK;
340     }
341 }
342 /*! @} */
343 
344 /*!
345  * @name Status
346  * @{
347  */
348 
349 /*!
350  * @brief Gets the status flag.
351  *
352  * @param base ECSPI base pointer
353  * @return ECSPI Status, use status flag to AND _ecspi_flags could get the related status.
354  */
ECSPI_GetStatusFlags(ECSPI_Type * base)355 static inline uint32_t ECSPI_GetStatusFlags(ECSPI_Type *base)
356 {
357     return (base->STATREG);
358 }
359 
360 /*!
361  * @brief Clear the status flag.
362  *
363  * @param base ECSPI base pointer
364  * @param mask ECSPI Status, use status flag to AND _ecspi_flags could get the related status.
365  */
ECSPI_ClearStatusFlags(ECSPI_Type * base,uint32_t mask)366 static inline void ECSPI_ClearStatusFlags(ECSPI_Type *base, uint32_t mask)
367 {
368     base->STATREG |= mask;
369 }
370 /*! @} */
371 
372 /*!
373  * @name Interrupts
374  * @{
375  */
376 
377 /*!
378  * @brief Enables the interrupt for the ECSPI.
379  *
380  * @param base ECSPI base pointer
381  * @param mask ECSPI interrupt source. The parameter can be any combination of the following values:
382  *        @arg kECSPI_TxfifoEmptyInterruptEnable
383  *        @arg kECSPI_TxFifoDataRequstInterruptEnable
384  *        @arg kECSPI_TxFifoFullInterruptEnable
385  *        @arg kECSPI_RxFifoReadyInterruptEnable
386  *        @arg kECSPI_RxFifoDataRequstInterruptEnable
387  *        @arg kECSPI_RxFifoFullInterruptEnable
388  *        @arg kECSPI_RxFifoOverFlowInterruptEnable
389  *        @arg kECSPI_TransferCompleteInterruptEnable
390  *        @arg kECSPI_AllInterruptEnable
391  */
ECSPI_EnableInterrupts(ECSPI_Type * base,uint32_t mask)392 static inline void ECSPI_EnableInterrupts(ECSPI_Type *base, uint32_t mask)
393 {
394     base->INTREG |= mask;
395 }
396 
397 /*!
398  * @brief Disables the interrupt for the ECSPI.
399  *
400  * @param base ECSPI base pointer
401  * @param mask ECSPI interrupt source. The parameter can be any combination of the following values:
402  *        @arg kECSPI_TxfifoEmptyInterruptEnable
403  *        @arg kECSPI_TxFifoDataRequstInterruptEnable
404  *        @arg kECSPI_TxFifoFullInterruptEnable
405  *        @arg kECSPI_RxFifoReadyInterruptEnable
406  *        @arg kECSPI_RxFifoDataRequstInterruptEnable
407  *        @arg kECSPI_RxFifoFullInterruptEnable
408  *        @arg kECSPI_RxFifoOverFlowInterruptEnable
409  *        @arg kECSPI_TransferCompleteInterruptEnable
410  *        @arg kECSPI_AllInterruptEnable
411  */
ECSPI_DisableInterrupts(ECSPI_Type * base,uint32_t mask)412 static inline void ECSPI_DisableInterrupts(ECSPI_Type *base, uint32_t mask)
413 {
414     base->INTREG &= ~(mask);
415 }
416 /*! @} */
417 
418 /*!
419  * @name Software Reset
420  * @{
421  */
422 
423 /*!
424  * @brief Software reset.
425  *
426  * @param base ECSPI base pointer
427  */
ECSPI_SoftwareReset(ECSPI_Type * base)428 static inline void ECSPI_SoftwareReset(ECSPI_Type *base)
429 {
430     /* Disables the block and resets the internal logic with the exception of the ECSPI control register */
431     base->CONREG &= ~ECSPI_CONREG_EN_MASK;
432     /* Software reset can not reset the control register, so clear the control register manually */
433     base->CONREG = 0x0U;
434 }
435 /*! @} */
436 
437 /*!
438  * @name Channel mode check
439  * @{
440  */
441 
442 /*!
443  * @brief Mode check
444  *
445  * @param base ECSPI base pointer
446  * @param channel ECSPI channel source
447  * @return mode of channel
448  */
ECSPI_IsMaster(ECSPI_Type * base,ecspi_channel_source_t channel)449 static inline bool ECSPI_IsMaster(ECSPI_Type *base, ecspi_channel_source_t channel)
450 {
451     return (bool)(((base->CONREG & ECSPI_CONREG_CHANNEL_MODE_MASK) >>
452                    (ECSPI_CONREG_CHANNEL_MODE_SHIFT + (uint32_t)channel)) &
453                   0x1U);
454 }
455 /*! @} */
456 
457 /*!
458  * @name DMA Control
459  * @{
460  */
461 
462 /*!
463  * @brief Enables the DMA source for ECSPI.
464  *
465  * @param base ECSPI base pointer
466  * @param mask ECSPI DMA source. The parameter can be any of the following values:
467  *        @arg kECSPI_TxDmaEnable
468  *        @arg kECSPI_RxDmaEnable
469  *        @arg kECSPI_DmaAllEnable
470  * @param enable True means enable DMA, false means disable DMA
471  */
ECSPI_EnableDMA(ECSPI_Type * base,uint32_t mask,bool enable)472 static inline void ECSPI_EnableDMA(ECSPI_Type *base, uint32_t mask, bool enable)
473 {
474     if (enable)
475     {
476         base->DMAREG |= mask;
477     }
478     else
479     {
480         base->DMAREG &= ~mask;
481     }
482 }
483 /*! @} */
484 
485 /*!
486  * @name FIFO Operation
487  * @{
488  */
489 
490 /*!
491  * @brief Get the Tx FIFO data count.
492  *
493  * @param base ECSPI base pointer.
494  * @return the number of words in Tx FIFO buffer.
495  */
ECSPI_GetTxFifoCount(ECSPI_Type * base)496 static inline uint8_t ECSPI_GetTxFifoCount(ECSPI_Type *base)
497 {
498     return (uint8_t)((base->TESTREG & ECSPI_TESTREG_TXCNT_MASK) >> ECSPI_TESTREG_TXCNT_SHIFT);
499 }
500 
501 /*!
502  * @brief Get the Rx FIFO data count.
503  *
504  * @param base ECSPI base pointer.
505  * @return the number of words in Rx FIFO buffer.
506  */
ECSPI_GetRxFifoCount(ECSPI_Type * base)507 static inline uint8_t ECSPI_GetRxFifoCount(ECSPI_Type *base)
508 {
509     return (uint8_t)((base->TESTREG & ECSPI_TESTREG_RXCNT_MASK) >> ECSPI_TESTREG_RXCNT_SHIFT);
510 }
511 /*! @} */
512 
513 /*!
514  * @name Bus Operations
515  * @{
516  */
517 
518 /*!
519  * @brief Set channel select for transfer.
520  *
521  * @param base ECSPI base pointer
522  * @param channel Channel source.
523  */
ECSPI_SetChannelSelect(ECSPI_Type * base,ecspi_channel_source_t channel)524 static inline void ECSPI_SetChannelSelect(ECSPI_Type *base, ecspi_channel_source_t channel)
525 {
526     /* Clear Channel select bits in CONREG register */
527     uint32_t temp = base->CONREG & (~(ECSPI_CONREG_CHANNEL_SELECT_MASK));
528     /* Set channel select bits */
529     base->CONREG = (temp | ECSPI_CONREG_CHANNEL_SELECT(channel));
530 }
531 /*!
532  * @brief Set channel select configuration for transfer.
533  *
534  * The purpose of this API is to set the channel will be use to transfer.
535  * User may use this API after instance has been initialized or before transfer start.
536  * The configuration structure _ecspi_channel_config_ can be filled by user from scratch.
537  * After calling this API, user can select this channel as transfer channel.
538  *
539  * @param base ECSPI base pointer
540  * @param channel Channel source.
541  * @param config Configuration struct of channel
542  */
543 void ECSPI_SetChannelConfig(ECSPI_Type *base, ecspi_channel_source_t channel, const ecspi_channel_config_t *config);
544 
545 /*!
546  * @brief Sets the baud rate for ECSPI transfer. This is only used in master.
547  *
548  * @param base ECSPI base pointer
549  * @param baudRate_Bps baud rate needed in Hz.
550  * @param srcClock_Hz ECSPI source clock frequency in Hz.
551  */
552 void ECSPI_SetBaudRate(ECSPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz);
553 
554 /*!
555  * @brief Sends a buffer of data bytes using a blocking method.
556  *
557  * @note This function blocks via polling until all bytes have been sent.
558  *
559  * @param base ECSPI base pointer
560  * @param buffer The data bytes to send
561  * @param size The number of data bytes to send
562  * @retval kStatus_Success Successfully start a transfer.
563  * @retval kStatus_ECSPI_Timeout The transfer timed out and was aborted.
564  */
565 status_t ECSPI_WriteBlocking(ECSPI_Type *base, const uint32_t *buffer, size_t size);
566 
567 /*!
568  * @brief Writes a data into the ECSPI data register.
569  *
570  * @param base ECSPI base pointer
571  * @param data Data needs to be write.
572  */
ECSPI_WriteData(ECSPI_Type * base,uint32_t data)573 static inline void ECSPI_WriteData(ECSPI_Type *base, uint32_t data)
574 {
575     base->TXDATA = data;
576 }
577 
578 /*!
579  * @brief Gets a data from the ECSPI data register.
580  *
581  * @param base ECSPI base pointer
582  * @return Data in the register.
583  */
ECSPI_ReadData(ECSPI_Type * base)584 static inline uint32_t ECSPI_ReadData(ECSPI_Type *base)
585 {
586     return (uint32_t)(base->RXDATA);
587 }
588 /*! @} */
589 
590 /*!
591  * @name Transactional
592  * @{
593  */
594 /*!
595  * @brief Initializes the ECSPI master handle.
596  *
597  * This function initializes the ECSPI master handle which can be used for other ECSPI master transactional APIs.
598  * Usually,
599  * for a specified ECSPI instance, call this API once to get the initialized handle.
600  *
601  * @param base ECSPI peripheral base address.
602  * @param handle ECSPI handle pointer.
603  * @param callback Callback function.
604  * @param userData User data.
605  */
606 void ECSPI_MasterTransferCreateHandle(ECSPI_Type *base,
607                                       ecspi_master_handle_t *handle,
608                                       ecspi_master_callback_t callback,
609                                       void *userData);
610 
611 /*!
612  * @brief Transfers a block of data using a polling method.
613  *
614  * @param base SPI base pointer
615  * @param xfer pointer to spi_xfer_config_t structure
616  * @retval kStatus_Success Successfully start a transfer.
617  * @retval kStatus_InvalidArgument Input argument is invalid.
618  * @retval kStatus_ECSPI_Timeout The transfer timed out and was aborted.
619  */
620 status_t ECSPI_MasterTransferBlocking(ECSPI_Type *base, ecspi_transfer_t *xfer);
621 
622 /*!
623  * @brief Performs a non-blocking ECSPI interrupt transfer.
624  *
625  * @note The API immediately returns after transfer initialization is finished.
626  * @note If ECSPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
627  *
628  * @param base ECSPI peripheral base address.
629  * @param handle pointer to ecspi_master_handle_t structure which stores the transfer state
630  * @param xfer pointer to ecspi_transfer_t structure
631  * @retval kStatus_Success Successfully start a transfer.
632  * @retval kStatus_InvalidArgument Input argument is invalid.
633  * @retval kStatus_ECSPI_Busy ECSPI is not idle, is running another transfer.
634  */
635 status_t ECSPI_MasterTransferNonBlocking(ECSPI_Type *base, ecspi_master_handle_t *handle, ecspi_transfer_t *xfer);
636 
637 /*!
638  * @brief Gets the bytes of the ECSPI interrupt transferred.
639  *
640  * @param base ECSPI peripheral base address.
641  * @param handle Pointer to ECSPI transfer handle, this should be a static variable.
642  * @param count Transferred bytes of ECSPI master.
643  * @retval kStatus_ECSPI_Success Succeed get the transfer count.
644  * @retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
645  */
646 status_t ECSPI_MasterTransferGetCount(ECSPI_Type *base, ecspi_master_handle_t *handle, size_t *count);
647 
648 /*!
649  * @brief Aborts an ECSPI transfer using interrupt.
650  *
651  * @param base ECSPI peripheral base address.
652  * @param handle Pointer to ECSPI transfer handle, this should be a static variable.
653  */
654 void ECSPI_MasterTransferAbort(ECSPI_Type *base, ecspi_master_handle_t *handle);
655 
656 /*!
657  * @brief Interrupts the handler for the ECSPI.
658  *
659  * @param base ECSPI peripheral base address.
660  * @param handle pointer to ecspi_master_handle_t structure which stores the transfer state.
661  */
662 void ECSPI_MasterTransferHandleIRQ(ECSPI_Type *base, ecspi_master_handle_t *handle);
663 
664 /*!
665  * @brief Initializes the ECSPI slave handle.
666  *
667  * This function initializes the ECSPI slave handle which can be used for other ECSPI slave transactional APIs. Usually,
668  * for a specified ECSPI instance, call this API once to get the initialized handle.
669  *
670  * @param base ECSPI peripheral base address.
671  * @param handle ECSPI handle pointer.
672  * @param callback Callback function.
673  * @param userData User data.
674  */
675 void ECSPI_SlaveTransferCreateHandle(ECSPI_Type *base,
676                                      ecspi_slave_handle_t *handle,
677                                      ecspi_slave_callback_t callback,
678                                      void *userData);
679 
680 /*!
681  * @brief Performs a non-blocking ECSPI slave interrupt transfer.
682  *
683  * @note The API returns immediately after the transfer initialization is finished.
684  *
685  * @param base ECSPI peripheral base address.
686  * @param handle pointer to ecspi_master_handle_t structure which stores the transfer state
687  * @param xfer pointer to ecspi_transfer_t structure
688  * @retval kStatus_Success Successfully start a transfer.
689  * @retval kStatus_InvalidArgument Input argument is invalid.
690  * @retval kStatus_ECSPI_Busy ECSPI is not idle, is running another transfer.
691  */
ECSPI_SlaveTransferNonBlocking(ECSPI_Type * base,ecspi_slave_handle_t * handle,ecspi_transfer_t * xfer)692 static inline status_t ECSPI_SlaveTransferNonBlocking(ECSPI_Type *base,
693                                                       ecspi_slave_handle_t *handle,
694                                                       ecspi_transfer_t *xfer)
695 {
696     return ECSPI_MasterTransferNonBlocking(base, handle, xfer);
697 }
698 
699 /*!
700  * @brief Gets the bytes of the ECSPI interrupt transferred.
701  *
702  * @param base ECSPI peripheral base address.
703  * @param handle Pointer to ECSPI transfer handle, this should be a static variable.
704  * @param count Transferred bytes of ECSPI slave.
705  * @retval kStatus_ECSPI_Success Succeed get the transfer count.
706  * @retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
707  */
ECSPI_SlaveTransferGetCount(ECSPI_Type * base,ecspi_slave_handle_t * handle,size_t * count)708 static inline status_t ECSPI_SlaveTransferGetCount(ECSPI_Type *base, ecspi_slave_handle_t *handle, size_t *count)
709 {
710     return ECSPI_MasterTransferGetCount(base, handle, count);
711 }
712 
713 /*!
714  * @brief Aborts an ECSPI slave transfer using interrupt.
715  *
716  * @param base ECSPI peripheral base address.
717  * @param handle Pointer to ECSPI transfer handle, this should be a static variable.
718  */
ECSPI_SlaveTransferAbort(ECSPI_Type * base,ecspi_slave_handle_t * handle)719 static inline void ECSPI_SlaveTransferAbort(ECSPI_Type *base, ecspi_slave_handle_t *handle)
720 {
721     ECSPI_MasterTransferAbort(base, handle);
722 }
723 
724 /*!
725  * @brief Interrupts a handler for the ECSPI slave.
726  *
727  * @param base ECSPI peripheral base address.
728  * @param handle pointer to ecspi_slave_handle_t structure which stores the transfer state
729  */
730 void ECSPI_SlaveTransferHandleIRQ(ECSPI_Type *base, ecspi_slave_handle_t *handle);
731 
732 /*! @} */
733 
734 #if defined(__cplusplus)
735 }
736 #endif
737 
738 /*! @} */
739 
740 #endif /* FSL_ECSPI_H_*/
741