1 /*
2  * Copyright (c) 2024 Nordic Semiconductor ASA
3  * SPDX-License-Identifier: Apache-2.0
4  */
5 
6 #include <string.h>
7 #include <zephyr/cache.h>
8 #include <zephyr/kernel.h>
9 #include <zephyr/sys/sys_heap.h>
10 #include <zephyr/mem_mgmt/mem_attr.h>
11 #include "dmm.h"
12 
13 #define _FILTER_MEM(node_id, fn)                                                                   \
14 	COND_CODE_1(DT_NODE_HAS_PROP(node_id, zephyr_memory_attr), (fn(node_id)), ())
15 #define DT_MEMORY_REGION_FOREACH_STATUS_OKAY_NODE(fn)                                              \
16 	DT_FOREACH_STATUS_OKAY_NODE_VARGS(_FILTER_MEM, fn)
17 
18 #define __BUILD_LINKER_END_VAR(_name) DT_CAT3(__, _name, _end)
19 #define _BUILD_LINKER_END_VAR(node_id)                                                             \
20 	__BUILD_LINKER_END_VAR(DT_STRING_UNQUOTED(node_id, zephyr_memory_region))
21 
22 #define _BUILD_MEM_REGION(node_id)                                                                 \
23 	{.dt_addr = DT_REG_ADDR(node_id),                                                          \
24 	 .dt_size = DT_REG_SIZE(node_id),                                                          \
25 	 .dt_attr = DT_PROP(node_id, zephyr_memory_attr),                                          \
26 	 .dt_align = DMM_REG_ALIGN_SIZE(node_id),                                                  \
27 	 .dt_allc = &_BUILD_LINKER_END_VAR(node_id)},
28 
29 /* Generate declarations of linker variables used to determine size of preallocated variables
30  * stored in memory sections spanning over memory regions.
31  * These are used to determine memory left for dynamic bounce buffer allocator to work with.
32  */
33 #define _DECLARE_LINKER_VARS(node_id) extern uint32_t _BUILD_LINKER_END_VAR(node_id);
34 DT_MEMORY_REGION_FOREACH_STATUS_OKAY_NODE(_DECLARE_LINKER_VARS);
35 
36 struct dmm_region {
37 	uintptr_t dt_addr;
38 	size_t dt_size;
39 	uint32_t dt_attr;
40 	uint32_t dt_align;
41 	void *dt_allc;
42 };
43 
44 struct dmm_heap {
45 	struct sys_heap heap;
46 	const struct dmm_region *region;
47 };
48 
49 static const struct dmm_region dmm_regions[] = {
50 	DT_MEMORY_REGION_FOREACH_STATUS_OKAY_NODE(_BUILD_MEM_REGION)
51 };
52 
53 struct {
54 	struct dmm_heap dmm_heaps[ARRAY_SIZE(dmm_regions)];
55 } dmm_heaps_data;
56 
dmm_heap_find(void * region)57 static struct dmm_heap *dmm_heap_find(void *region)
58 {
59 	struct dmm_heap *dh;
60 
61 	for (size_t idx = 0; idx < ARRAY_SIZE(dmm_heaps_data.dmm_heaps); idx++) {
62 		dh = &dmm_heaps_data.dmm_heaps[idx];
63 		if (dh->region->dt_addr == (uintptr_t)region) {
64 			return dh;
65 		}
66 	}
67 
68 	return NULL;
69 }
70 
is_region_cacheable(const struct dmm_region * region)71 static bool is_region_cacheable(const struct dmm_region *region)
72 {
73 	return (IS_ENABLED(CONFIG_DCACHE) && (region->dt_attr & DT_MEM_CACHEABLE));
74 }
75 
is_buffer_within_region(uintptr_t start,size_t size,uintptr_t reg_start,size_t reg_size)76 static bool is_buffer_within_region(uintptr_t start, size_t size,
77 				    uintptr_t reg_start, size_t reg_size)
78 {
79 	return ((start >= reg_start) && ((start + size) <= (reg_start + reg_size)));
80 }
81 
is_user_buffer_correctly_preallocated(void const * user_buffer,size_t user_length,const struct dmm_region * region)82 static bool is_user_buffer_correctly_preallocated(void const *user_buffer, size_t user_length,
83 					const struct dmm_region *region)
84 {
85 	uintptr_t addr = (uintptr_t)user_buffer;
86 
87 	if (!is_buffer_within_region(addr, user_length, region->dt_addr, region->dt_size)) {
88 		return false;
89 	}
90 
91 	if (!is_region_cacheable(region)) {
92 		/* Buffer is contained within non-cacheable region - use it as it is. */
93 		return true;
94 	}
95 
96 	if (IS_ALIGNED(addr, region->dt_align)) {
97 		/* If buffer is in cacheable region it must be aligned to data cache line size. */
98 		return true;
99 	}
100 
101 	return false;
102 }
103 
dmm_heap_start_get(struct dmm_heap * dh)104 static size_t dmm_heap_start_get(struct dmm_heap *dh)
105 {
106 	return ROUND_UP(dh->region->dt_allc, dh->region->dt_align);
107 }
108 
dmm_heap_size_get(struct dmm_heap * dh)109 static size_t dmm_heap_size_get(struct dmm_heap *dh)
110 {
111 	return (dh->region->dt_size - (dmm_heap_start_get(dh) - dh->region->dt_addr));
112 }
113 
dmm_buffer_alloc(struct dmm_heap * dh,size_t length)114 static void *dmm_buffer_alloc(struct dmm_heap *dh, size_t length)
115 {
116 	length = ROUND_UP(length, dh->region->dt_align);
117 	return sys_heap_aligned_alloc(&dh->heap, dh->region->dt_align, length);
118 }
119 
dmm_buffer_free(struct dmm_heap * dh,void * buffer)120 static void dmm_buffer_free(struct dmm_heap *dh, void *buffer)
121 {
122 	sys_heap_free(&dh->heap, buffer);
123 }
124 
dmm_buffer_out_prepare(void * region,void const * user_buffer,size_t user_length,void ** buffer_out)125 int dmm_buffer_out_prepare(void *region, void const *user_buffer, size_t user_length,
126 			   void **buffer_out)
127 {
128 	struct dmm_heap *dh;
129 
130 	if (user_length == 0) {
131 		/* Assume that zero-length buffers are correct as they are. */
132 		*buffer_out = (void *)user_buffer;
133 		return 0;
134 	}
135 
136 	/* Get memory region that specified device can perform DMA transfers from */
137 	dh = dmm_heap_find(region);
138 	if (dh == NULL) {
139 		return -EINVAL;
140 	}
141 
142 	/* Check if:
143 	 * - provided user buffer is already in correct memory region,
144 	 * - provided user buffer is aligned and padded to cache line,
145 	 *   if it is located in cacheable region.
146 	 */
147 	if (is_user_buffer_correctly_preallocated(user_buffer, user_length, dh->region)) {
148 		/* If yes, assign buffer_out to user_buffer*/
149 		*buffer_out = (void *)user_buffer;
150 	} else {
151 		/* If no:
152 		 * - dynamically allocate buffer in correct memory region that respects cache line
153 		 *   alignment and padding
154 		 */
155 		*buffer_out = dmm_buffer_alloc(dh, user_length);
156 		/* Return error if dynamic allocation fails */
157 		if (*buffer_out == NULL) {
158 			return -ENOMEM;
159 		}
160 		/* - copy user buffer contents into allocated buffer */
161 		memcpy(*buffer_out, user_buffer, user_length);
162 	}
163 
164 	/* Check if device memory region is cacheable
165 	 * If yes, writeback all cache lines associated with output buffer
166 	 * (either user or allocated)
167 	 */
168 	if (is_region_cacheable(dh->region)) {
169 		sys_cache_data_flush_range(*buffer_out, user_length);
170 	}
171 	/* If no, no action is needed */
172 
173 	return 0;
174 }
175 
dmm_buffer_out_release(void * region,void * buffer_out)176 int dmm_buffer_out_release(void *region, void *buffer_out)
177 {
178 	struct dmm_heap *dh;
179 	uintptr_t addr = (uintptr_t)buffer_out;
180 
181 	/* Get memory region that specified device can perform DMA transfers from */
182 	dh = dmm_heap_find(region);
183 	if (dh == NULL) {
184 		return -EINVAL;
185 	}
186 
187 	/* Check if output buffer is contained within memory area
188 	 * managed by dynamic memory allocator
189 	 */
190 	if (is_buffer_within_region(addr, 0, dmm_heap_start_get(dh), dmm_heap_size_get(dh))) {
191 		/* If yes, free the buffer */
192 		dmm_buffer_free(dh, buffer_out);
193 	}
194 	/* If no, no action is needed */
195 
196 	return 0;
197 }
198 
dmm_buffer_in_prepare(void * region,void * user_buffer,size_t user_length,void ** buffer_in)199 int dmm_buffer_in_prepare(void *region, void *user_buffer, size_t user_length, void **buffer_in)
200 {
201 	struct dmm_heap *dh;
202 
203 	if (user_length == 0) {
204 		/* Assume that zero-length buffers are correct as they are. */
205 		*buffer_in = (void *)user_buffer;
206 		return 0;
207 	}
208 
209 	/* Get memory region that specified device can perform DMA transfers to */
210 	dh = dmm_heap_find(region);
211 	if (dh == NULL) {
212 		return -EINVAL;
213 	}
214 
215 	/* Check if:
216 	 * - provided user buffer is already in correct memory region,
217 	 * - provided user buffer is aligned and padded to cache line,
218 	 *   if it is located in cacheable region.
219 	 */
220 	if (is_user_buffer_correctly_preallocated(user_buffer, user_length, dh->region)) {
221 		/* If yes, assign buffer_in to user_buffer */
222 		*buffer_in = user_buffer;
223 	} else {
224 		/* If no, dynamically allocate buffer in correct memory region that respects cache
225 		 * line alignment and padding
226 		 */
227 		*buffer_in = dmm_buffer_alloc(dh, user_length);
228 		/* Return error if dynamic allocation fails */
229 		if (*buffer_in == NULL) {
230 			return -ENOMEM;
231 		}
232 	}
233 
234 	/* Check if device memory region is cacheable
235 	 * If yes, invalidate all cache lines associated with input buffer
236 	 * (either user or allocated) to clear potential dirty bits.
237 	 */
238 	if (is_region_cacheable(dh->region)) {
239 		sys_cache_data_invd_range(*buffer_in, user_length);
240 	}
241 	/* If no, no action is needed */
242 
243 	return 0;
244 }
245 
dmm_buffer_in_release(void * region,void * user_buffer,size_t user_length,void * buffer_in)246 int dmm_buffer_in_release(void *region, void *user_buffer, size_t user_length, void *buffer_in)
247 {
248 	struct dmm_heap *dh;
249 	uintptr_t addr = (uintptr_t)buffer_in;
250 
251 	/* Get memory region that specified device can perform DMA transfers to, using devicetree */
252 	dh = dmm_heap_find(region);
253 	if (dh == NULL) {
254 		return -EINVAL;
255 	}
256 
257 	/* Check if device memory region is cacheable
258 	 * If yes, invalidate all cache lines associated with input buffer
259 	 * (either user or allocated)
260 	 */
261 	if (is_region_cacheable(dh->region)) {
262 		sys_cache_data_invd_range(buffer_in, user_length);
263 	}
264 	/* If no, no action is needed */
265 
266 	/* Check if user buffer and allocated buffer points to the same memory location
267 	 * If no, copy allocated buffer to the user buffer
268 	 */
269 	if (buffer_in != user_buffer) {
270 		memcpy(user_buffer, buffer_in, user_length);
271 	}
272 	/* If yes, no action is needed */
273 
274 	/* Check if input buffer is contained within memory area
275 	 * managed by dynamic memory allocator
276 	 */
277 	if (is_buffer_within_region(addr, 0, dmm_heap_start_get(dh), dmm_heap_size_get(dh))) {
278 		/* If yes, free the buffer */
279 		dmm_buffer_free(dh, buffer_in);
280 	}
281 	/* If no, no action is needed */
282 
283 	return 0;
284 }
285 
dmm_init(void)286 int dmm_init(void)
287 {
288 	struct dmm_heap *dh;
289 
290 	for (size_t idx = 0; idx < ARRAY_SIZE(dmm_regions); idx++) {
291 		dh = &dmm_heaps_data.dmm_heaps[idx];
292 		dh->region = &dmm_regions[idx];
293 		sys_heap_init(&dh->heap, (void *)dmm_heap_start_get(dh), dmm_heap_size_get(dh));
294 	}
295 
296 	return 0;
297 }
298