1 /*
2 * Copyright (c) 2017 Erwin Rol <erwin@erwinrol.com>
3 * Copyright (c) 2020 Alexander Kozhinov <AlexanderKozhinov@yandex.com>
4 * Copyright (c) 2021 Carbon Robotics
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #define DT_DRV_COMPAT st_stm32_ethernet
9
10 #define LOG_MODULE_NAME eth_stm32_hal
11 #define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL
12
13 #include <zephyr/logging/log.h>
14 LOG_MODULE_REGISTER(LOG_MODULE_NAME);
15
16 #include <zephyr/kernel.h>
17 #include <zephyr/device.h>
18 #include <zephyr/sys/__assert.h>
19 #include <zephyr/sys/util.h>
20 #include <zephyr/sys/crc.h>
21 #include <errno.h>
22 #include <stdbool.h>
23 #include <zephyr/net/net_pkt.h>
24 #include <zephyr/net/net_if.h>
25 #include <zephyr/net/ethernet.h>
26 #include <ethernet/eth_stats.h>
27 #include <soc.h>
28 #include <zephyr/sys/printk.h>
29 #include <zephyr/drivers/clock_control.h>
30 #include <zephyr/drivers/clock_control/stm32_clock_control.h>
31 #include <zephyr/drivers/pinctrl.h>
32 #include <zephyr/irq.h>
33 #include <zephyr/net/lldp.h>
34 #include <zephyr/drivers/hwinfo.h>
35
36 #if defined(CONFIG_NET_DSA)
37 #include <zephyr/net/dsa.h>
38 #endif
39
40 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
41 #include <zephyr/drivers/ptp_clock.h>
42 #endif /* CONFIG_PTP_CLOCK_STM32_HAL */
43
44 #include "eth.h"
45 #include "eth_stm32_hal_priv.h"
46
47 #if defined(CONFIG_ETH_STM32_HAL_RANDOM_MAC) || DT_INST_PROP(0, zephyr_random_mac_address)
48 #define ETH_STM32_RANDOM_MAC
49 #endif
50
51 #if defined(CONFIG_ETH_STM32_HAL_USE_DTCM_FOR_DMA_BUFFER) && \
52 !DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay)
53 #error DTCM for DMA buffer is activated but zephyr,dtcm is not present in dts
54 #endif
55
56 #define PHY_ADDR CONFIG_ETH_STM32_HAL_PHY_ADDRESS
57
58 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
59
60 #define PHY_BSR ((uint16_t)0x0001U) /*!< Transceiver Basic Status Register */
61 #define PHY_LINKED_STATUS ((uint16_t)0x0004U) /*!< Valid link established */
62
63 #define IS_ETH_DMATXDESC_OWN(dma_tx_desc) (dma_tx_desc->DESC3 & \
64 ETH_DMATXNDESCRF_OWN)
65
66 #define ETH_RXBUFNB ETH_RX_DESC_CNT
67 #define ETH_TXBUFNB ETH_TX_DESC_CNT
68
69 #define ETH_MEDIA_INTERFACE_MII HAL_ETH_MII_MODE
70 #define ETH_MEDIA_INTERFACE_RMII HAL_ETH_RMII_MODE
71
72 /* Only one tx_buffer is sufficient to pass only 1 dma_buffer */
73 #define ETH_TXBUF_DEF_NB 1U
74 #else
75
76 #define IS_ETH_DMATXDESC_OWN(dma_tx_desc) (dma_tx_desc->Status & \
77 ETH_DMATXDESC_OWN)
78
79 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
80
81 #define ETH_DMA_TX_TIMEOUT_MS 20U /* transmit timeout in milliseconds */
82
83 #if defined(CONFIG_ETH_STM32_HAL_USE_DTCM_FOR_DMA_BUFFER) && \
84 DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay)
85 #define __eth_stm32_desc __dtcm_noinit_section
86 #define __eth_stm32_buf __dtcm_noinit_section
87 #elif defined(CONFIG_SOC_SERIES_STM32H7X)
88 #define __eth_stm32_desc __attribute__((section(".eth_stm32_desc")))
89 #define __eth_stm32_buf __attribute__((section(".eth_stm32_buf")))
90 #elif defined(CONFIG_NOCACHE_MEMORY)
91 #define __eth_stm32_desc __nocache __aligned(4)
92 #define __eth_stm32_buf __nocache __aligned(4)
93 #else
94 #define __eth_stm32_desc __aligned(4)
95 #define __eth_stm32_buf __aligned(4)
96 #endif
97
98 static ETH_DMADescTypeDef dma_rx_desc_tab[ETH_RXBUFNB] __eth_stm32_desc;
99 static ETH_DMADescTypeDef dma_tx_desc_tab[ETH_TXBUFNB] __eth_stm32_desc;
100 static uint8_t dma_rx_buffer[ETH_RXBUFNB][ETH_STM32_RX_BUF_SIZE] __eth_stm32_buf;
101 static uint8_t dma_tx_buffer[ETH_TXBUFNB][ETH_STM32_TX_BUF_SIZE] __eth_stm32_buf;
102
103 #if defined(CONFIG_ETH_STM32_MULTICAST_FILTER)
104
105 static struct net_if_mcast_monitor mcast_monitor;
106
107 static K_MUTEX_DEFINE(multicast_addr_lock);
108
109 #if defined(CONFIG_NET_NATIVE_IPV6)
110 static struct in6_addr multicast_ipv6_joined_addrs[NET_IF_MAX_IPV6_MADDR] = {0};
111 #endif /* CONFIG_NET_NATIVE_IPV6 */
112
113 #if defined(CONFIG_NET_NATIVE_IPV4)
114 static struct in_addr multicast_ipv4_joined_addrs[NET_IF_MAX_IPV4_MADDR] = {0};
115 #endif /* CONFIG_NET_NATIVE_IPV4 */
116
117 #endif /* CONFIG_ETH_STM32_MULTICAST_FILTER */
118
119 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
120
121 BUILD_ASSERT(ETH_STM32_RX_BUF_SIZE % 4 == 0, "Rx buffer size must be a multiple of 4");
122
123 struct eth_stm32_rx_buffer_header {
124 struct eth_stm32_rx_buffer_header *next;
125 uint16_t size;
126 bool used;
127 };
128
129 struct eth_stm32_tx_buffer_header {
130 ETH_BufferTypeDef tx_buff;
131 bool used;
132 };
133
134 struct eth_stm32_tx_context {
135 struct net_pkt *pkt;
136 uint16_t first_tx_buffer_index;
137 };
138
139 static struct eth_stm32_rx_buffer_header dma_rx_buffer_header[ETH_RXBUFNB];
140 static struct eth_stm32_tx_buffer_header dma_tx_buffer_header[ETH_TXBUFNB];
141
HAL_ETH_RxAllocateCallback(uint8_t ** buf)142 void HAL_ETH_RxAllocateCallback(uint8_t **buf)
143 {
144 for (size_t i = 0; i < ETH_RXBUFNB; ++i) {
145 if (!dma_rx_buffer_header[i].used) {
146 dma_rx_buffer_header[i].next = NULL;
147 dma_rx_buffer_header[i].size = 0;
148 dma_rx_buffer_header[i].used = true;
149 *buf = dma_rx_buffer[i];
150 return;
151 }
152 }
153 *buf = NULL;
154 }
155
156 /* Pointer to an array of ETH_STM32_RX_BUF_SIZE uint8_t's */
157 typedef uint8_t (*RxBufferPtr)[ETH_STM32_RX_BUF_SIZE];
158
159 /* called by HAL_ETH_ReadData() */
HAL_ETH_RxLinkCallback(void ** pStart,void ** pEnd,uint8_t * buff,uint16_t Length)160 void HAL_ETH_RxLinkCallback(void **pStart, void **pEnd, uint8_t *buff, uint16_t Length)
161 {
162 /* buff points to the begin on one of the rx buffers,
163 * so we can compute the index of the given buffer
164 */
165 size_t index = (RxBufferPtr)buff - &dma_rx_buffer[0];
166 struct eth_stm32_rx_buffer_header *header = &dma_rx_buffer_header[index];
167
168 __ASSERT_NO_MSG(index < ETH_RXBUFNB);
169
170 header->size = Length;
171
172 if (!*pStart) {
173 /* first packet, set head pointer of linked list */
174 *pStart = header;
175 *pEnd = header;
176 } else {
177 __ASSERT_NO_MSG(*pEnd != NULL);
178 /* not the first packet, add to list and adjust tail pointer */
179 ((struct eth_stm32_rx_buffer_header *)*pEnd)->next = header;
180 *pEnd = header;
181 }
182 }
183
184 /* Called by HAL_ETH_ReleaseTxPacket */
HAL_ETH_TxFreeCallback(uint32_t * buff)185 void HAL_ETH_TxFreeCallback(uint32_t *buff)
186 {
187 __ASSERT_NO_MSG(buff != NULL);
188
189 /* buff is the user context in tx_config.pData */
190 struct eth_stm32_tx_context *ctx = (struct eth_stm32_tx_context *)buff;
191 struct eth_stm32_tx_buffer_header *buffer_header =
192 &dma_tx_buffer_header[ctx->first_tx_buffer_index];
193
194 while (buffer_header != NULL) {
195 buffer_header->used = false;
196 if (buffer_header->tx_buff.next != NULL) {
197 buffer_header = CONTAINER_OF(buffer_header->tx_buff.next,
198 struct eth_stm32_tx_buffer_header, tx_buff);
199 } else {
200 buffer_header = NULL;
201 }
202 }
203 }
204
205 /* allocate a tx buffer and mark it as used */
allocate_tx_buffer(void)206 static inline uint16_t allocate_tx_buffer(void)
207 {
208 for (;;) {
209 for (uint16_t index = 0; index < ETH_TXBUFNB; index++) {
210 if (!dma_tx_buffer_header[index].used) {
211 dma_tx_buffer_header[index].used = true;
212 return index;
213 }
214 }
215 k_yield();
216 }
217 }
218 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
219
220 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X) || \
221 defined(CONFIG_ETH_STM32_HAL_API_V2)
222 static ETH_TxPacketConfig tx_config;
223 #endif
224
read_eth_phy_register(ETH_HandleTypeDef * heth,uint32_t PHYAddr,uint32_t PHYReg,uint32_t * RegVal)225 static HAL_StatusTypeDef read_eth_phy_register(ETH_HandleTypeDef *heth,
226 uint32_t PHYAddr,
227 uint32_t PHYReg,
228 uint32_t *RegVal)
229 {
230 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X) || \
231 defined(CONFIG_ETH_STM32_HAL_API_V2)
232 return HAL_ETH_ReadPHYRegister(heth, PHYAddr, PHYReg, RegVal);
233 #else
234 ARG_UNUSED(PHYAddr);
235 return HAL_ETH_ReadPHYRegister(heth, PHYReg, RegVal);
236 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X || CONFIG_ETH_STM32_HAL_API_V2 */
237 }
238
setup_mac_filter(ETH_HandleTypeDef * heth)239 static inline void setup_mac_filter(ETH_HandleTypeDef *heth)
240 {
241 __ASSERT_NO_MSG(heth != NULL);
242
243 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
244 ETH_MACFilterConfigTypeDef MACFilterConf;
245
246 HAL_ETH_GetMACFilterConfig(heth, &MACFilterConf);
247 #if defined(CONFIG_ETH_STM32_MULTICAST_FILTER)
248 MACFilterConf.HashMulticast = ENABLE;
249 MACFilterConf.PassAllMulticast = DISABLE;
250 #else
251 MACFilterConf.HashMulticast = DISABLE;
252 MACFilterConf.PassAllMulticast = ENABLE;
253 #endif /* CONFIG_ETH_STM32_MULTICAST_FILTER */
254 MACFilterConf.HachOrPerfectFilter = DISABLE;
255
256 HAL_ETH_SetMACFilterConfig(heth, &MACFilterConf);
257
258 k_sleep(K_MSEC(1));
259 #else
260 uint32_t tmp = heth->Instance->MACFFR;
261
262 /* clear all multicast filter bits, resulting in perfect filtering */
263 tmp &= ~(ETH_MULTICASTFRAMESFILTER_PERFECTHASHTABLE |
264 ETH_MULTICASTFRAMESFILTER_HASHTABLE |
265 ETH_MULTICASTFRAMESFILTER_PERFECT |
266 ETH_MULTICASTFRAMESFILTER_NONE);
267
268 if (IS_ENABLED(CONFIG_ETH_STM32_MULTICAST_FILTER)) {
269 /* enable multicast hash receive filter */
270 tmp |= ETH_MULTICASTFRAMESFILTER_HASHTABLE;
271 } else {
272 /* enable receiving all multicast frames */
273 tmp |= ETH_MULTICASTFRAMESFILTER_NONE;
274 }
275
276 heth->Instance->MACFFR = tmp;
277
278 /* Wait until the write operation will be taken into account:
279 * at least four TX_CLK/RX_CLK clock cycles
280 */
281 tmp = heth->Instance->MACFFR;
282 k_sleep(K_MSEC(1));
283 heth->Instance->MACFFR = tmp;
284 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X) */
285 }
286
287 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
eth_is_ptp_pkt(struct net_if * iface,struct net_pkt * pkt)288 static bool eth_is_ptp_pkt(struct net_if *iface, struct net_pkt *pkt)
289 {
290 #if defined(CONFIG_NET_VLAN)
291 struct net_eth_vlan_hdr *hdr_vlan;
292 struct ethernet_context *eth_ctx;
293
294 eth_ctx = net_if_l2_data(iface);
295 if (net_eth_is_vlan_enabled(eth_ctx, iface)) {
296 hdr_vlan = (struct net_eth_vlan_hdr *)NET_ETH_HDR(pkt);
297
298 if (ntohs(hdr_vlan->type) != NET_ETH_PTYPE_PTP) {
299 return false;
300 }
301 } else
302 #endif
303 {
304 if (ntohs(NET_ETH_HDR(pkt)->type) != NET_ETH_PTYPE_PTP) {
305 return false;
306 }
307 }
308
309 net_pkt_set_priority(pkt, NET_PRIORITY_CA);
310
311 return true;
312 }
313 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
HAL_ETH_TxPtpCallback(uint32_t * buff,ETH_TimeStampTypeDef * timestamp)314 void HAL_ETH_TxPtpCallback(uint32_t *buff, ETH_TimeStampTypeDef *timestamp)
315 {
316 struct eth_stm32_tx_context *ctx = (struct eth_stm32_tx_context *)buff;
317
318 ctx->pkt->timestamp.second = timestamp->TimeStampHigh;
319 ctx->pkt->timestamp.nanosecond = timestamp->TimeStampLow;
320
321 net_if_add_tx_timestamp(ctx->pkt);
322 }
323 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
324 #endif /* CONFIG_PTP_CLOCK_STM32_HAL */
325
eth_tx(const struct device * dev,struct net_pkt * pkt)326 static int eth_tx(const struct device *dev, struct net_pkt *pkt)
327 {
328 struct eth_stm32_hal_dev_data *dev_data = dev->data;
329 ETH_HandleTypeDef *heth;
330 int res;
331 size_t total_len;
332 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
333 size_t remaining_read;
334 struct eth_stm32_tx_context ctx = {.pkt = pkt, .first_tx_buffer_index = 0};
335 struct eth_stm32_tx_buffer_header *buf_header = NULL;
336 #else
337 uint8_t *dma_buffer;
338 __IO ETH_DMADescTypeDef *dma_tx_desc;
339 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
340 HAL_StatusTypeDef hal_ret = HAL_OK;
341 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
342 bool timestamped_frame;
343 #endif /* CONFIG_PTP_CLOCK_STM32_HAL */
344
345 __ASSERT_NO_MSG(pkt != NULL);
346 __ASSERT_NO_MSG(pkt->frags != NULL);
347 __ASSERT_NO_MSG(dev != NULL);
348 __ASSERT_NO_MSG(dev_data != NULL);
349
350 heth = &dev_data->heth;
351
352 total_len = net_pkt_get_len(pkt);
353 if (total_len > (ETH_STM32_TX_BUF_SIZE * ETH_TXBUFNB)) {
354 LOG_ERR("PKT too big");
355 return -EIO;
356 }
357
358 k_mutex_lock(&dev_data->tx_mutex, K_FOREVER);
359
360 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
361 ctx.first_tx_buffer_index = allocate_tx_buffer();
362 buf_header = &dma_tx_buffer_header[ctx.first_tx_buffer_index];
363 #else /* CONFIG_ETH_STM32_HAL_API_V2 */
364 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
365 uint32_t cur_tx_desc_idx;
366
367 cur_tx_desc_idx = heth->TxDescList.CurTxDesc;
368 dma_tx_desc = (ETH_DMADescTypeDef *)heth->TxDescList.TxDesc[cur_tx_desc_idx];
369 #else
370 dma_tx_desc = heth->TxDesc;
371 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
372
373 while (IS_ETH_DMATXDESC_OWN(dma_tx_desc) != (uint32_t)RESET) {
374 k_yield();
375 }
376 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
377
378 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
379 timestamped_frame = eth_is_ptp_pkt(net_pkt_iface(pkt), pkt);
380 if (timestamped_frame) {
381 /* Enable transmit timestamp */
382 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
383 HAL_ETH_PTP_InsertTxTimestamp(heth);
384 #elif defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
385 dma_tx_desc->DESC2 |= ETH_DMATXNDESCRF_TTSE;
386 #else
387 dma_tx_desc->Status |= ETH_DMATXDESC_TTSE;
388 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
389 }
390 #endif /* CONFIG_PTP_CLOCK_STM32_HAL */
391
392 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
393 remaining_read = total_len;
394 /* fill and allocate buffer until remaining data fits in one buffer */
395 while (remaining_read > ETH_STM32_TX_BUF_SIZE) {
396 if (net_pkt_read(pkt, buf_header->tx_buff.buffer, ETH_STM32_TX_BUF_SIZE)) {
397 res = -ENOBUFS;
398 goto error;
399 }
400 const uint16_t next_buffer_id = allocate_tx_buffer();
401
402 buf_header->tx_buff.len = ETH_STM32_TX_BUF_SIZE;
403 /* append new buffer to the linked list */
404 buf_header->tx_buff.next = &dma_tx_buffer_header[next_buffer_id].tx_buff;
405 /* and adjust tail pointer */
406 buf_header = &dma_tx_buffer_header[next_buffer_id];
407 remaining_read -= ETH_STM32_TX_BUF_SIZE;
408 }
409 if (net_pkt_read(pkt, buf_header->tx_buff.buffer, remaining_read)) {
410 res = -ENOBUFS;
411 goto error;
412 }
413 buf_header->tx_buff.len = remaining_read;
414 buf_header->tx_buff.next = NULL;
415
416 #else /* CONFIG_ETH_STM32_HAL_API_V2 */
417 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
418 dma_buffer = dma_tx_buffer[cur_tx_desc_idx];
419 #else
420 dma_buffer = (uint8_t *)(dma_tx_desc->Buffer1Addr);
421 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
422
423 if (net_pkt_read(pkt, dma_buffer, total_len)) {
424 res = -ENOBUFS;
425 goto error;
426 }
427
428 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
429 ETH_BufferTypeDef tx_buffer_def;
430
431 tx_buffer_def.buffer = dma_buffer;
432 tx_buffer_def.len = total_len;
433 tx_buffer_def.next = NULL;
434 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
435 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
436
437 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X) || \
438 defined(CONFIG_ETH_STM32_HAL_API_V2)
439
440 tx_config.Length = total_len;
441 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
442 tx_config.pData = &ctx;
443 tx_config.TxBuffer = &dma_tx_buffer_header[ctx.first_tx_buffer_index].tx_buff;
444 #else
445 tx_config.TxBuffer = &tx_buffer_def;
446 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
447
448 /* Reset TX complete interrupt semaphore before TX request*/
449 k_sem_reset(&dev_data->tx_int_sem);
450
451 /* tx_buffer is allocated on function stack, we need */
452 /* to wait for the transfer to complete */
453 /* So it is not freed before the interrupt happens */
454 hal_ret = HAL_ETH_Transmit_IT(heth, &tx_config);
455
456 if (hal_ret != HAL_OK) {
457 LOG_ERR("HAL_ETH_Transmit: failed!");
458 res = -EIO;
459 goto error;
460 }
461
462 /* Wait for end of TX buffer transmission */
463 /* If the semaphore timeout breaks, it means */
464 /* an error occurred or IT was not fired */
465 if (k_sem_take(&dev_data->tx_int_sem,
466 K_MSEC(ETH_DMA_TX_TIMEOUT_MS)) != 0) {
467
468 LOG_ERR("HAL_ETH_TransmitIT tx_int_sem take timeout");
469 res = -EIO;
470
471 #ifndef CONFIG_ETH_STM32_HAL_API_V2
472 /* Content of the packet could be the reason for timeout */
473 LOG_HEXDUMP_ERR(dma_buffer, total_len, "eth packet timeout");
474 #endif
475
476 /* Check for errors */
477 /* Ethernet device was put in error state */
478 /* Error state is unrecoverable ? */
479 if (HAL_ETH_GetState(heth) == HAL_ETH_STATE_ERROR) {
480 LOG_ERR("%s: ETH in error state: errorcode:%x",
481 __func__,
482 HAL_ETH_GetError(heth));
483 /* TODO recover from error state by restarting eth */
484 }
485
486 /* Check for DMA errors */
487 if (HAL_ETH_GetDMAError(heth)) {
488 LOG_ERR("%s: ETH DMA error: dmaerror:%x",
489 __func__,
490 HAL_ETH_GetDMAError(heth));
491 /* DMA fatal bus errors are putting in error state*/
492 /* TODO recover from this */
493 }
494
495 /* Check for MAC errors */
496 if (HAL_ETH_GetMACError(heth)) {
497 LOG_ERR("%s: ETH MAC error: macerror:%x",
498 __func__,
499 HAL_ETH_GetMACError(heth));
500 /* MAC errors are putting in error state*/
501 /* TODO recover from this */
502 }
503
504 goto error;
505 }
506
507 #else
508 hal_ret = HAL_ETH_TransmitFrame(heth, total_len);
509
510 if (hal_ret != HAL_OK) {
511 LOG_ERR("HAL_ETH_Transmit: failed!");
512 res = -EIO;
513 goto error;
514 }
515
516 /* When Transmit Underflow flag is set, clear it and issue a
517 * Transmit Poll Demand to resume transmission.
518 */
519 if ((heth->Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET) {
520 /* Clear TUS ETHERNET DMA flag */
521 heth->Instance->DMASR = ETH_DMASR_TUS;
522 /* Resume DMA transmission*/
523 heth->Instance->DMATPDR = 0;
524 res = -EIO;
525 goto error;
526 }
527 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X || CONFIG_ETH_STM32_HAL_API_V2 */
528
529 #if defined(CONFIG_PTP_CLOCK_STM32_HAL) && !defined(CONFIG_ETH_STM32_HAL_API_V2)
530 if (timestamped_frame) {
531 /* Retrieve transmission timestamp from last DMA TX descriptor */
532 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
533 ETH_TxDescListTypeDef * dma_tx_desc_list;
534
535 __IO ETH_DMADescTypeDef *last_dma_tx_desc;
536
537 dma_tx_desc_list = &heth->TxDescList;
538 for (uint32_t i = 0; i < ETH_TX_DESC_CNT; i++) {
539 const uint32_t last_desc_idx = (cur_tx_desc_idx + i) % ETH_TX_DESC_CNT;
540
541 last_dma_tx_desc =
542 (ETH_DMADescTypeDef *)dma_tx_desc_list->TxDesc[last_desc_idx];
543 if (last_dma_tx_desc->DESC3 & ETH_DMATXNDESCWBF_LD) {
544 break;
545 }
546 }
547
548 while (IS_ETH_DMATXDESC_OWN(last_dma_tx_desc) != (uint32_t)RESET) {
549 /* Wait for transmission */
550 k_yield();
551 }
552
553 if ((last_dma_tx_desc->DESC3 & ETH_DMATXNDESCWBF_LD) &&
554 (last_dma_tx_desc->DESC3 & ETH_DMATXNDESCWBF_TTSS)) {
555 pkt->timestamp.second = last_dma_tx_desc->DESC1;
556 pkt->timestamp.nanosecond = last_dma_tx_desc->DESC0;
557 } else {
558 /* Invalid value */
559 pkt->timestamp.second = UINT64_MAX;
560 pkt->timestamp.nanosecond = UINT32_MAX;
561 }
562 #else
563 __IO ETH_DMADescTypeDef *last_dma_tx_desc = dma_tx_desc;
564
565 while (!(last_dma_tx_desc->Status & ETH_DMATXDESC_LS) &&
566 last_dma_tx_desc->Buffer2NextDescAddr) {
567 last_dma_tx_desc =
568 (ETH_DMADescTypeDef *)last_dma_tx_desc->Buffer2NextDescAddr;
569 }
570
571 while (IS_ETH_DMATXDESC_OWN(last_dma_tx_desc) != (uint32_t)RESET) {
572 /* Wait for transmission */
573 k_yield();
574 }
575
576 if (last_dma_tx_desc->Status & ETH_DMATXDESC_LS &&
577 last_dma_tx_desc->Status & ETH_DMATXDESC_TTSS) {
578 pkt->timestamp.second = last_dma_tx_desc->TimeStampHigh;
579 pkt->timestamp.nanosecond = last_dma_tx_desc->TimeStampLow;
580 } else {
581 /* Invalid value */
582 pkt->timestamp.second = UINT64_MAX;
583 pkt->timestamp.nanosecond = UINT32_MAX;
584 }
585 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
586
587 net_if_add_tx_timestamp(pkt);
588 }
589 #endif /* CONFIG_PTP_CLOCK_STM32_HAL && !CONFIG_ETH_STM32_HAL_API_V2 */
590
591 res = 0;
592 error:
593
594 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
595 /* free package tx buffer */
596 if (res != 0) {
597 HAL_ETH_TxFreeCallback((uint32_t *)&ctx);
598 } else if (HAL_ETH_ReleaseTxPacket(heth) != HAL_OK) {
599 LOG_ERR("HAL_ETH_ReleaseTxPacket failed");
600 res = -EIO;
601 }
602 #endif
603
604 k_mutex_unlock(&dev_data->tx_mutex);
605
606 return res;
607 }
608
get_iface(struct eth_stm32_hal_dev_data * ctx,uint16_t vlan_tag)609 static struct net_if *get_iface(struct eth_stm32_hal_dev_data *ctx,
610 uint16_t vlan_tag)
611 {
612 #if defined(CONFIG_NET_VLAN)
613 struct net_if *iface;
614
615 iface = net_eth_get_vlan_iface(ctx->iface, vlan_tag);
616 if (!iface) {
617 return ctx->iface;
618 }
619
620 return iface;
621 #else
622 ARG_UNUSED(vlan_tag);
623
624 return ctx->iface;
625 #endif
626 }
627
eth_rx(const struct device * dev,uint16_t * vlan_tag)628 static struct net_pkt *eth_rx(const struct device *dev, uint16_t *vlan_tag)
629 {
630 struct eth_stm32_hal_dev_data *dev_data;
631 ETH_HandleTypeDef *heth;
632 struct net_pkt *pkt;
633 size_t total_len = 0;
634 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
635 void *appbuf = NULL;
636 struct eth_stm32_rx_buffer_header *rx_header;
637 #else
638 #if !defined(CONFIG_SOC_SERIES_STM32H7X) && !defined(CONFIG_SOC_SERIES_STM32H5X)
639 __IO ETH_DMADescTypeDef *dma_rx_desc;
640 #endif /* !CONFIG_SOC_SERIES_STM32H7X */
641 uint8_t *dma_buffer;
642 HAL_StatusTypeDef hal_ret = HAL_OK;
643 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
644 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
645 struct net_ptp_time timestamp;
646 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
647 ETH_TimeStampTypeDef ts_registers;
648 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
649 /* Default to invalid value. */
650 timestamp.second = UINT64_MAX;
651 timestamp.nanosecond = UINT32_MAX;
652 #endif /* CONFIG_PTP_CLOCK_STM32_HAL */
653
654 __ASSERT_NO_MSG(dev != NULL);
655
656 dev_data = dev->data;
657
658 __ASSERT_NO_MSG(dev_data != NULL);
659
660 heth = &dev_data->heth;
661
662 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
663 if (HAL_ETH_ReadData(heth, &appbuf) != HAL_OK) {
664 /* no frame available */
665 return NULL;
666 }
667
668 /* computing total length */
669 for (rx_header = (struct eth_stm32_rx_buffer_header *)appbuf;
670 rx_header; rx_header = rx_header->next) {
671 total_len += rx_header->size;
672 }
673 #elif defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
674 if (HAL_ETH_IsRxDataAvailable(heth) != true) {
675 /* no frame available */
676 return NULL;
677 }
678
679 ETH_BufferTypeDef rx_buffer_def;
680 uint32_t frame_length = 0;
681
682 hal_ret = HAL_ETH_GetRxDataBuffer(heth, &rx_buffer_def);
683 if (hal_ret != HAL_OK) {
684 LOG_ERR("HAL_ETH_GetRxDataBuffer: failed with state: %d",
685 hal_ret);
686 return NULL;
687 }
688
689 hal_ret = HAL_ETH_GetRxDataLength(heth, &frame_length);
690 if (hal_ret != HAL_OK) {
691 LOG_ERR("HAL_ETH_GetRxDataLength: failed with state: %d",
692 hal_ret);
693 return NULL;
694 }
695
696 total_len = frame_length;
697 dma_buffer = rx_buffer_def.buffer;
698 #else
699 hal_ret = HAL_ETH_GetReceivedFrame_IT(heth);
700 if (hal_ret != HAL_OK) {
701 /* no frame available */
702 return NULL;
703 }
704
705 total_len = heth->RxFrameInfos.length;
706 dma_buffer = (uint8_t *)heth->RxFrameInfos.buffer;
707 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
708
709 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
710 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
711
712 if (HAL_ETH_PTP_GetRxTimestamp(heth, &ts_registers) == HAL_OK) {
713 timestamp.second = ts_registers.TimeStampHigh;
714 timestamp.nanosecond = ts_registers.TimeStampLow;
715 }
716
717 #elif defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
718 ETH_RxDescListTypeDef * dma_rx_desc_list;
719
720 dma_rx_desc_list = &heth->RxDescList;
721 if (dma_rx_desc_list->AppDescNbr) {
722 __IO ETH_DMADescTypeDef *last_dma_rx_desc;
723
724 const uint32_t last_desc_idx =
725 (dma_rx_desc_list->FirstAppDesc + dma_rx_desc_list->AppDescNbr - 1U)
726 % ETH_RX_DESC_CNT;
727
728 last_dma_rx_desc =
729 (ETH_DMADescTypeDef *)dma_rx_desc_list->RxDesc[last_desc_idx];
730
731 if (dma_rx_desc_list->AppContextDesc &&
732 last_dma_rx_desc->DESC1 & ETH_DMARXNDESCWBF_TSA) {
733 /* Retrieve timestamp from context DMA descriptor */
734 __IO ETH_DMADescTypeDef *context_dma_rx_desc;
735
736 const uint32_t context_desc_idx = (last_desc_idx + 1U) % ETH_RX_DESC_CNT;
737
738 context_dma_rx_desc =
739 (ETH_DMADescTypeDef *)dma_rx_desc_list->RxDesc[context_desc_idx];
740 if (context_dma_rx_desc->DESC1 != UINT32_MAX ||
741 context_dma_rx_desc->DESC0 != UINT32_MAX) {
742 timestamp.second = context_dma_rx_desc->DESC1;
743 timestamp.nanosecond = context_dma_rx_desc->DESC0;
744 }
745 }
746 }
747 #else
748 __IO ETH_DMADescTypeDef *last_dma_rx_desc;
749
750 last_dma_rx_desc = heth->RxFrameInfos.LSRxDesc;
751 if (last_dma_rx_desc->TimeStampHigh != UINT32_MAX ||
752 last_dma_rx_desc->TimeStampLow != UINT32_MAX) {
753 timestamp.second = last_dma_rx_desc->TimeStampHigh;
754 timestamp.nanosecond = last_dma_rx_desc->TimeStampLow;
755 }
756 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
757 #endif /* CONFIG_PTP_CLOCK_STM32_HAL */
758
759 pkt = net_pkt_rx_alloc_with_buffer(get_iface(dev_data, *vlan_tag),
760 total_len, AF_UNSPEC, 0, K_MSEC(100));
761 if (!pkt) {
762 LOG_ERR("Failed to obtain RX buffer");
763 goto release_desc;
764 }
765
766 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
767 for (rx_header = (struct eth_stm32_rx_buffer_header *)appbuf;
768 rx_header; rx_header = rx_header->next) {
769 const size_t index = rx_header - &dma_rx_buffer_header[0];
770
771 __ASSERT_NO_MSG(index < ETH_RXBUFNB);
772 if (net_pkt_write(pkt, dma_rx_buffer[index], rx_header->size)) {
773 LOG_ERR("Failed to append RX buffer to context buffer");
774 net_pkt_unref(pkt);
775 pkt = NULL;
776 goto release_desc;
777 }
778 }
779 #else
780 if (net_pkt_write(pkt, dma_buffer, total_len)) {
781 LOG_ERR("Failed to append RX buffer to context buffer");
782 net_pkt_unref(pkt);
783 pkt = NULL;
784 goto release_desc;
785 }
786 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
787
788 release_desc:
789 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
790 for (rx_header = (struct eth_stm32_rx_buffer_header *)appbuf;
791 rx_header; rx_header = rx_header->next) {
792 rx_header->used = false;
793 }
794
795 #elif defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
796 hal_ret = HAL_ETH_BuildRxDescriptors(heth);
797 if (hal_ret != HAL_OK) {
798 LOG_ERR("HAL_ETH_BuildRxDescriptors: failed: %d", hal_ret);
799 }
800 #else
801 /* Release descriptors to DMA */
802 /* Point to first descriptor */
803 dma_rx_desc = heth->RxFrameInfos.FSRxDesc;
804 /* Set Own bit in Rx descriptors: gives the buffers back to DMA */
805 for (int i = 0; i < heth->RxFrameInfos.SegCount; i++) {
806 dma_rx_desc->Status |= ETH_DMARXDESC_OWN;
807 dma_rx_desc = (ETH_DMADescTypeDef *)
808 (dma_rx_desc->Buffer2NextDescAddr);
809 }
810
811 /* Clear Segment_Count */
812 heth->RxFrameInfos.SegCount = 0;
813
814 /* When Rx Buffer unavailable flag is set: clear it
815 * and resume reception.
816 */
817 if ((heth->Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET) {
818 /* Clear RBUS ETHERNET DMA flag */
819 heth->Instance->DMASR = ETH_DMASR_RBUS;
820 /* Resume DMA reception */
821 heth->Instance->DMARPDR = 0;
822 }
823 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
824
825 if (!pkt) {
826 goto out;
827 }
828
829 #if defined(CONFIG_NET_VLAN)
830 struct net_eth_hdr *hdr = NET_ETH_HDR(pkt);
831
832 if (ntohs(hdr->type) == NET_ETH_PTYPE_VLAN) {
833 struct net_eth_vlan_hdr *hdr_vlan =
834 (struct net_eth_vlan_hdr *)NET_ETH_HDR(pkt);
835
836 net_pkt_set_vlan_tci(pkt, ntohs(hdr_vlan->vlan.tci));
837 *vlan_tag = net_pkt_vlan_tag(pkt);
838
839 #if CONFIG_NET_TC_RX_COUNT > 1
840 enum net_priority prio;
841
842 prio = net_vlan2priority(net_pkt_vlan_priority(pkt));
843 net_pkt_set_priority(pkt, prio);
844 #endif
845 } else {
846 net_pkt_set_iface(pkt, dev_data->iface);
847 }
848 #endif /* CONFIG_NET_VLAN */
849
850 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
851 if (eth_is_ptp_pkt(get_iface(dev_data, *vlan_tag), pkt)) {
852 pkt->timestamp.second = timestamp.second;
853 pkt->timestamp.nanosecond = timestamp.nanosecond;
854 } else {
855 /* Invalid value */
856 pkt->timestamp.second = UINT64_MAX;
857 pkt->timestamp.nanosecond = UINT32_MAX;
858 }
859 #endif /* CONFIG_PTP_CLOCK_STM32_HAL */
860
861 out:
862 if (!pkt) {
863 eth_stats_update_errors_rx(get_iface(dev_data, *vlan_tag));
864 }
865
866 return pkt;
867 }
868
rx_thread(void * arg1,void * unused1,void * unused2)869 static void rx_thread(void *arg1, void *unused1, void *unused2)
870 {
871 uint16_t vlan_tag = NET_VLAN_TAG_UNSPEC;
872 const struct device *dev;
873 struct eth_stm32_hal_dev_data *dev_data;
874 struct net_if *iface;
875 struct net_pkt *pkt;
876 int res;
877 uint32_t status;
878 HAL_StatusTypeDef hal_ret = HAL_OK;
879
880 __ASSERT_NO_MSG(arg1 != NULL);
881 ARG_UNUSED(unused1);
882 ARG_UNUSED(unused2);
883
884 dev = (const struct device *)arg1;
885 dev_data = dev->data;
886
887 __ASSERT_NO_MSG(dev_data != NULL);
888
889 while (1) {
890 res = k_sem_take(&dev_data->rx_int_sem,
891 K_MSEC(CONFIG_ETH_STM32_CARRIER_CHECK_RX_IDLE_TIMEOUT_MS));
892 if (res == 0) {
893 /* semaphore taken, update link status and receive packets */
894 if (dev_data->link_up != true) {
895 dev_data->link_up = true;
896 net_eth_carrier_on(get_iface(dev_data,
897 vlan_tag));
898 }
899 while ((pkt = eth_rx(dev, &vlan_tag)) != NULL) {
900 iface = net_pkt_iface(pkt);
901 #if defined(CONFIG_NET_DSA)
902 iface = dsa_net_recv(iface, &pkt);
903 #endif
904 res = net_recv_data(iface, pkt);
905 if (res < 0) {
906 eth_stats_update_errors_rx(
907 net_pkt_iface(pkt));
908 LOG_ERR("Failed to enqueue frame "
909 "into RX queue: %d", res);
910 net_pkt_unref(pkt);
911 }
912 }
913 } else if (res == -EAGAIN) {
914 /* semaphore timeout period expired, check link status */
915 hal_ret = read_eth_phy_register(&dev_data->heth,
916 PHY_ADDR, PHY_BSR, (uint32_t *) &status);
917 if (hal_ret == HAL_OK) {
918 if ((status & PHY_LINKED_STATUS) == PHY_LINKED_STATUS) {
919 if (dev_data->link_up != true) {
920 dev_data->link_up = true;
921 net_eth_carrier_on(
922 get_iface(dev_data,
923 vlan_tag));
924 }
925 } else {
926 if (dev_data->link_up != false) {
927 dev_data->link_up = false;
928 net_eth_carrier_off(
929 get_iface(dev_data,
930 vlan_tag));
931 }
932 }
933 }
934 }
935 }
936 }
937
eth_isr(const struct device * dev)938 static void eth_isr(const struct device *dev)
939 {
940 struct eth_stm32_hal_dev_data *dev_data;
941 ETH_HandleTypeDef *heth;
942
943 __ASSERT_NO_MSG(dev != NULL);
944
945 dev_data = dev->data;
946
947 __ASSERT_NO_MSG(dev_data != NULL);
948
949 heth = &dev_data->heth;
950
951 __ASSERT_NO_MSG(heth != NULL);
952
953 HAL_ETH_IRQHandler(heth);
954 }
955 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X) || \
956 defined(CONFIG_ETH_STM32_HAL_API_V2)
HAL_ETH_TxCpltCallback(ETH_HandleTypeDef * heth_handle)957 void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth_handle)
958 {
959 __ASSERT_NO_MSG(heth_handle != NULL);
960
961 struct eth_stm32_hal_dev_data *dev_data =
962 CONTAINER_OF(heth_handle, struct eth_stm32_hal_dev_data, heth);
963
964 __ASSERT_NO_MSG(dev_data != NULL);
965
966 k_sem_give(&dev_data->tx_int_sem);
967
968 }
969 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X || CONFIG_ETH_STM32_HAL_API_V2 */
970
971 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
HAL_ETH_ErrorCallback(ETH_HandleTypeDef * heth)972 void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
973 {
974 /* Do not log errors. If errors are reported due to high traffic,
975 * logging errors will only increase traffic issues
976 */
977 #if defined(CONFIG_NET_STATISTICS_ETHERNET)
978 __ASSERT_NO_MSG(heth != NULL);
979
980 uint32_t dma_error;
981 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
982 uint32_t mac_error;
983 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
984 const uint32_t error_code = HAL_ETH_GetError(heth);
985
986 struct eth_stm32_hal_dev_data *dev_data =
987 CONTAINER_OF(heth, struct eth_stm32_hal_dev_data, heth);
988
989 switch (error_code) {
990 case HAL_ETH_ERROR_DMA:
991 dma_error = HAL_ETH_GetDMAError(heth);
992
993 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
994 if ((dma_error & ETH_DMA_RX_WATCHDOG_TIMEOUT_FLAG) ||
995 (dma_error & ETH_DMA_RX_PROCESS_STOPPED_FLAG) ||
996 (dma_error & ETH_DMA_RX_BUFFER_UNAVAILABLE_FLAG)) {
997 eth_stats_update_errors_rx(dev_data->iface);
998 }
999 if ((dma_error & ETH_DMA_EARLY_TX_IT_FLAG) ||
1000 (dma_error & ETH_DMA_TX_PROCESS_STOPPED_FLAG)) {
1001 eth_stats_update_errors_tx(dev_data->iface);
1002 }
1003 #else
1004 if ((dma_error & ETH_DMASR_RWTS) ||
1005 (dma_error & ETH_DMASR_RPSS) ||
1006 (dma_error & ETH_DMASR_RBUS)) {
1007 eth_stats_update_errors_rx(dev_data->iface);
1008 }
1009 if ((dma_error & ETH_DMASR_ETS) ||
1010 (dma_error & ETH_DMASR_TPSS) ||
1011 (dma_error & ETH_DMASR_TJTS)) {
1012 eth_stats_update_errors_tx(dev_data->iface);
1013 }
1014 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1015 break;
1016
1017 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1018 case HAL_ETH_ERROR_MAC:
1019 mac_error = HAL_ETH_GetMACError(heth);
1020
1021 if (mac_error & ETH_RECEIVE_WATCHDOG_TIMEOUT) {
1022 eth_stats_update_errors_rx(dev_data->iface);
1023 }
1024
1025 if ((mac_error & ETH_EXECESSIVE_COLLISIONS) ||
1026 (mac_error & ETH_LATE_COLLISIONS) ||
1027 (mac_error & ETH_EXECESSIVE_DEFERRAL) ||
1028 (mac_error & ETH_TRANSMIT_JABBR_TIMEOUT) ||
1029 (mac_error & ETH_LOSS_OF_CARRIER) ||
1030 (mac_error & ETH_NO_CARRIER)) {
1031 eth_stats_update_errors_tx(dev_data->iface);
1032 }
1033 break;
1034 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1035 }
1036
1037 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1038 dev_data->stats.error_details.rx_crc_errors = heth->Instance->MMCRCRCEPR;
1039 dev_data->stats.error_details.rx_align_errors = heth->Instance->MMCRAEPR;
1040 #else
1041 dev_data->stats.error_details.rx_crc_errors = heth->Instance->MMCRFCECR;
1042 dev_data->stats.error_details.rx_align_errors = heth->Instance->MMCRFAECR;
1043 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1044
1045 #endif /* CONFIG_NET_STATISTICS_ETHERNET */
1046 }
1047 #elif defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1048 /* DMA and MAC errors callback only appear in H7 series */
HAL_ETH_DMAErrorCallback(ETH_HandleTypeDef * heth_handle)1049 void HAL_ETH_DMAErrorCallback(ETH_HandleTypeDef *heth_handle)
1050 {
1051 __ASSERT_NO_MSG(heth_handle != NULL);
1052
1053 LOG_ERR("%s errorcode:%x dmaerror:%x",
1054 __func__,
1055 HAL_ETH_GetError(heth_handle),
1056 HAL_ETH_GetDMAError(heth_handle));
1057
1058 /* State of eth handle is ERROR in case of unrecoverable error */
1059 /* unrecoverable (ETH_DMACSR_FBE | ETH_DMACSR_TPS | ETH_DMACSR_RPS) */
1060 if (HAL_ETH_GetState(heth_handle) == HAL_ETH_STATE_ERROR) {
1061 LOG_ERR("%s ethernet in error state", __func__);
1062 /* TODO restart the ETH peripheral to recover */
1063 return;
1064 }
1065
1066 /* Recoverable errors don't put ETH in error state */
1067 /* ETH_DMACSR_CDE | ETH_DMACSR_ETI | ETH_DMACSR_RWT */
1068 /* | ETH_DMACSR_RBU | ETH_DMACSR_AIS) */
1069
1070 /* TODO Check if we were TX transmitting and the unlock semaphore */
1071 /* To return the error as soon as possible else we'll just wait */
1072 /* for the timeout */
1073
1074
1075 }
HAL_ETH_MACErrorCallback(ETH_HandleTypeDef * heth_handle)1076 void HAL_ETH_MACErrorCallback(ETH_HandleTypeDef *heth_handle)
1077 {
1078 __ASSERT_NO_MSG(heth_handle != NULL);
1079
1080 /* MAC errors dumping */
1081 LOG_ERR("%s errorcode:%x macerror:%x",
1082 __func__,
1083 HAL_ETH_GetError(heth_handle),
1084 HAL_ETH_GetMACError(heth_handle));
1085
1086 /* State of eth handle is ERROR in case of unrecoverable error */
1087 if (HAL_ETH_GetState(heth_handle) == HAL_ETH_STATE_ERROR) {
1088 LOG_ERR("%s ethernet in error state", __func__);
1089 /* TODO restart or reconfig ETH peripheral to recover */
1090
1091 return;
1092 }
1093 }
1094 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
1095
HAL_ETH_RxCpltCallback(ETH_HandleTypeDef * heth_handle)1096 void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth_handle)
1097 {
1098 __ASSERT_NO_MSG(heth_handle != NULL);
1099
1100 struct eth_stm32_hal_dev_data *dev_data =
1101 CONTAINER_OF(heth_handle, struct eth_stm32_hal_dev_data, heth);
1102
1103 __ASSERT_NO_MSG(dev_data != NULL);
1104
1105 k_sem_give(&dev_data->rx_int_sem);
1106 }
1107
generate_mac(uint8_t * mac_addr)1108 static void generate_mac(uint8_t *mac_addr)
1109 {
1110 #if defined(ETH_STM32_RANDOM_MAC)
1111 /* Either CONFIG_ETH_STM32_HAL_RANDOM_MAC or device tree property */
1112 /* "zephyr,random-mac-address" is set, generate a random mac address */
1113 gen_random_mac(mac_addr, ST_OUI_B0, ST_OUI_B1, ST_OUI_B2);
1114 #else /* Use user defined mac address */
1115 mac_addr[0] = ST_OUI_B0;
1116 mac_addr[1] = ST_OUI_B1;
1117 mac_addr[2] = ST_OUI_B2;
1118 #if NODE_HAS_VALID_MAC_ADDR(DT_DRV_INST(0))
1119 mac_addr[3] = NODE_MAC_ADDR_OCTET(DT_DRV_INST(0), 3);
1120 mac_addr[4] = NODE_MAC_ADDR_OCTET(DT_DRV_INST(0), 4);
1121 mac_addr[5] = NODE_MAC_ADDR_OCTET(DT_DRV_INST(0), 5);
1122 #elif defined(CONFIG_ETH_STM32_HAL_USER_STATIC_MAC)
1123 mac_addr[3] = CONFIG_ETH_STM32_HAL_MAC3;
1124 mac_addr[4] = CONFIG_ETH_STM32_HAL_MAC4;
1125 mac_addr[5] = CONFIG_ETH_STM32_HAL_MAC5;
1126 #else
1127 uint8_t unique_device_ID_12_bytes[12];
1128 uint32_t result_mac_32_bits;
1129
1130 /* Nothing defined by the user, use device id */
1131 hwinfo_get_device_id(unique_device_ID_12_bytes, 12);
1132 result_mac_32_bits = crc32_ieee((uint8_t *)unique_device_ID_12_bytes, 12);
1133 memcpy(&mac_addr[3], &result_mac_32_bits, 3);
1134
1135 #endif /* NODE_HAS_VALID_MAC_ADDR(DT_DRV_INST(0))) */
1136 #endif
1137 }
1138
eth_initialize(const struct device * dev)1139 static int eth_initialize(const struct device *dev)
1140 {
1141 struct eth_stm32_hal_dev_data *dev_data;
1142 const struct eth_stm32_hal_dev_cfg *cfg;
1143 ETH_HandleTypeDef *heth;
1144 HAL_StatusTypeDef hal_ret = HAL_OK;
1145 int ret = 0;
1146
1147 __ASSERT_NO_MSG(dev != NULL);
1148
1149 dev_data = dev->data;
1150 cfg = dev->config;
1151
1152 __ASSERT_NO_MSG(dev_data != NULL);
1153 __ASSERT_NO_MSG(cfg != NULL);
1154
1155 dev_data->clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
1156
1157 if (!device_is_ready(dev_data->clock)) {
1158 LOG_ERR("clock control device not ready");
1159 return -ENODEV;
1160 }
1161
1162 /* enable clock */
1163 ret = clock_control_on(dev_data->clock,
1164 (clock_control_subsys_t)&cfg->pclken);
1165 ret |= clock_control_on(dev_data->clock,
1166 (clock_control_subsys_t)&cfg->pclken_tx);
1167 ret |= clock_control_on(dev_data->clock,
1168 (clock_control_subsys_t)&cfg->pclken_rx);
1169 #if DT_INST_CLOCKS_HAS_NAME(0, mac_clk_ptp)
1170 ret |= clock_control_on(dev_data->clock,
1171 (clock_control_subsys_t)&cfg->pclken_ptp);
1172 #endif
1173
1174 if (ret) {
1175 LOG_ERR("Failed to enable ethernet clock");
1176 return -EIO;
1177 }
1178
1179 /* configure pinmux */
1180 ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
1181 if (ret < 0) {
1182 LOG_ERR("Could not configure ethernet pins");
1183 return ret;
1184 }
1185
1186 heth = &dev_data->heth;
1187
1188 generate_mac(dev_data->mac_addr);
1189
1190 heth->Init.MACAddr = dev_data->mac_addr;
1191
1192 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X) || \
1193 defined(CONFIG_ETH_STM32_HAL_API_V2)
1194 heth->Init.TxDesc = dma_tx_desc_tab;
1195 heth->Init.RxDesc = dma_rx_desc_tab;
1196 heth->Init.RxBuffLen = ETH_STM32_RX_BUF_SIZE;
1197 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X || CONFIG_ETH_STM32_HAL_API_V2 */
1198
1199 hal_ret = HAL_ETH_Init(heth);
1200 if (hal_ret == HAL_TIMEOUT) {
1201 /* HAL Init time out. This could be linked to */
1202 /* a recoverable error. Log the issue and continue */
1203 /* driver initialisation */
1204 LOG_ERR("HAL_ETH_Init Timed out");
1205 } else if (hal_ret != HAL_OK) {
1206 LOG_ERR("HAL_ETH_Init failed: %d", hal_ret);
1207 return -EINVAL;
1208 }
1209
1210 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
1211 /* Enable timestamping of RX packets. We enable all packets to be
1212 * timestamped to cover both IEEE 1588 and gPTP.
1213 */
1214 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1215 heth->Instance->MACTSCR |= ETH_MACTSCR_TSENALL;
1216 #else
1217 heth->Instance->PTPTSCR |= ETH_PTPTSCR_TSSARFE;
1218 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1219 #endif /* CONFIG_PTP_CLOCK_STM32_HAL */
1220
1221 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X) || \
1222 defined(CONFIG_ETH_STM32_HAL_API_V2)
1223 /* Tx config init: */
1224 memset(&tx_config, 0, sizeof(ETH_TxPacketConfig));
1225 tx_config.Attributes = ETH_TX_PACKETS_FEATURES_CSUM |
1226 ETH_TX_PACKETS_FEATURES_CRCPAD;
1227 tx_config.ChecksumCtrl = IS_ENABLED(CONFIG_ETH_STM32_HW_CHECKSUM) ?
1228 ETH_CHECKSUM_IPHDR_PAYLOAD_INSERT_PHDR_CALC : ETH_CHECKSUM_DISABLE;
1229 tx_config.CRCPadCtrl = ETH_CRC_PAD_INSERT;
1230 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X || CONFIG_ETH_STM32_HAL_API_V2 */
1231
1232 dev_data->link_up = false;
1233
1234 /* Initialize semaphores */
1235 k_mutex_init(&dev_data->tx_mutex);
1236 k_sem_init(&dev_data->rx_int_sem, 0, K_SEM_MAX_LIMIT);
1237 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X) || \
1238 defined(CONFIG_ETH_STM32_HAL_API_V2)
1239 k_sem_init(&dev_data->tx_int_sem, 0, K_SEM_MAX_LIMIT);
1240 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X || CONFIG_ETH_STM32_HAL_API_V2 */
1241
1242 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X) || \
1243 defined(CONFIG_ETH_STM32_HAL_API_V2)
1244 /* Adjust MDC clock range depending on HCLK frequency: */
1245 HAL_ETH_SetMDIOClockRange(heth);
1246
1247 /* @TODO: read duplex mode and speed from PHY and set it to ETH */
1248
1249 ETH_MACConfigTypeDef mac_config;
1250
1251 HAL_ETH_GetMACConfig(heth, &mac_config);
1252 mac_config.DuplexMode = IS_ENABLED(CONFIG_ETH_STM32_MODE_HALFDUPLEX) ?
1253 ETH_HALFDUPLEX_MODE : ETH_FULLDUPLEX_MODE;
1254 mac_config.Speed = IS_ENABLED(CONFIG_ETH_STM32_SPEED_10M) ?
1255 ETH_SPEED_10M : ETH_SPEED_100M;
1256 hal_ret = HAL_ETH_SetMACConfig(heth, &mac_config);
1257 if (hal_ret != HAL_OK) {
1258 LOG_ERR("HAL_ETH_SetMACConfig: failed: %d", hal_ret);
1259 }
1260 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X || CONFIG_ETH_STM32_HAL_API_V2 */
1261
1262 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
1263
1264 /* prepare tx buffer header */
1265 for (uint16_t i = 0; i < ETH_TXBUFNB; ++i) {
1266 dma_tx_buffer_header[i].tx_buff.buffer = dma_tx_buffer[i];
1267 }
1268
1269 hal_ret = HAL_ETH_Start_IT(heth);
1270 #elif defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1271 for (uint32_t i = 0; i < ETH_RX_DESC_CNT; i++) {
1272 hal_ret = HAL_ETH_DescAssignMemory(heth, i, dma_rx_buffer[i],
1273 NULL);
1274 if (hal_ret != HAL_OK) {
1275 LOG_ERR("HAL_ETH_DescAssignMemory: failed: %d, i: %d",
1276 hal_ret, i);
1277 return -EINVAL;
1278 }
1279 }
1280
1281 hal_ret = HAL_ETH_Start_IT(heth);
1282 #else
1283 HAL_ETH_DMATxDescListInit(heth, dma_tx_desc_tab,
1284 &dma_tx_buffer[0][0], ETH_TXBUFNB);
1285 HAL_ETH_DMARxDescListInit(heth, dma_rx_desc_tab,
1286 &dma_rx_buffer[0][0], ETH_RXBUFNB);
1287
1288 hal_ret = HAL_ETH_Start(heth);
1289 #endif /* CONFIG_ETH_STM32_HAL_API_V2 */
1290
1291 if (hal_ret != HAL_OK) {
1292 LOG_ERR("HAL_ETH_Start{_IT} failed");
1293 }
1294
1295 setup_mac_filter(heth);
1296
1297
1298
1299 LOG_DBG("MAC %02x:%02x:%02x:%02x:%02x:%02x",
1300 dev_data->mac_addr[0], dev_data->mac_addr[1],
1301 dev_data->mac_addr[2], dev_data->mac_addr[3],
1302 dev_data->mac_addr[4], dev_data->mac_addr[5]);
1303
1304 return 0;
1305 }
1306
1307 #if defined(CONFIG_ETH_STM32_MULTICAST_FILTER)
1308
1309 #if defined(CONFIG_NET_NATIVE_IPV6)
add_ipv6_multicast_addr(const struct in6_addr * addr)1310 static void add_ipv6_multicast_addr(const struct in6_addr *addr)
1311 {
1312 uint32_t i;
1313
1314 for (i = 0; i < NET_IF_MAX_IPV6_MADDR; i++) {
1315 if (net_ipv6_is_addr_unspecified(&multicast_ipv6_joined_addrs[i])) {
1316 net_ipv6_addr_copy_raw((uint8_t *)&multicast_ipv6_joined_addrs[i],
1317 (uint8_t *)addr);
1318 break;
1319 }
1320 }
1321 }
1322
remove_ipv6_multicast_addr(const struct in6_addr * addr)1323 static void remove_ipv6_multicast_addr(const struct in6_addr *addr)
1324 {
1325 uint32_t i;
1326
1327 for (i = 0; i < NET_IF_MAX_IPV6_MADDR; i++) {
1328 if (net_ipv6_addr_cmp(&multicast_ipv6_joined_addrs[i], addr)) {
1329 net_ipv6_addr_copy_raw((uint8_t *)&multicast_ipv6_joined_addrs[i],
1330 (uint8_t *)net_ipv6_unspecified_address);
1331 break;
1332 }
1333 }
1334 }
1335 #endif /* CONFIG_NET_NATIVE_IPV6 */
1336
1337 #if defined(CONFIG_NET_NATIVE_IPV4)
add_ipv4_multicast_addr(const struct in_addr * addr)1338 static void add_ipv4_multicast_addr(const struct in_addr *addr)
1339 {
1340 uint32_t i;
1341
1342 for (i = 0; i < NET_IF_MAX_IPV4_MADDR; i++) {
1343 if (net_ipv4_is_addr_unspecified(&multicast_ipv4_joined_addrs[i])) {
1344 net_ipv4_addr_copy_raw((uint8_t *)&multicast_ipv4_joined_addrs[i],
1345 (uint8_t *)addr);
1346 break;
1347 }
1348 }
1349 }
1350
remove_ipv4_multicast_addr(const struct in_addr * addr)1351 static void remove_ipv4_multicast_addr(const struct in_addr *addr)
1352 {
1353 uint32_t i;
1354
1355 for (i = 0; i < NET_IF_MAX_IPV4_MADDR; i++) {
1356 if (net_ipv4_addr_cmp(&multicast_ipv4_joined_addrs[i], addr)) {
1357 multicast_ipv4_joined_addrs[i].s_addr = 0;
1358 break;
1359 }
1360 }
1361 }
1362 #endif /* CONFIG_NET_NATIVE_IPV4 */
1363
reverse(uint32_t val)1364 static uint32_t reverse(uint32_t val)
1365 {
1366 uint32_t res = 0;
1367 int i;
1368
1369 for (i = 0; i < 32; i++) {
1370 if (val & BIT(i)) {
1371 res |= BIT(31 - i);
1372 }
1373 }
1374
1375 return res;
1376 }
1377
net_if_stm32_mcast_cb(struct net_if * iface,const struct net_addr * addr,bool is_joined)1378 static void net_if_stm32_mcast_cb(struct net_if *iface,
1379 const struct net_addr *addr,
1380 bool is_joined)
1381 {
1382 ARG_UNUSED(addr);
1383
1384 const struct device *dev;
1385 struct eth_stm32_hal_dev_data *dev_data;
1386 ETH_HandleTypeDef *heth;
1387 struct net_eth_addr mac_addr;
1388 uint32_t crc;
1389 uint32_t hash_table[2];
1390 uint32_t hash_index;
1391 int i;
1392
1393 dev = net_if_get_device(iface);
1394
1395 dev_data = (struct eth_stm32_hal_dev_data *)dev->data;
1396
1397 heth = &dev_data->heth;
1398
1399 hash_table[0] = 0;
1400 hash_table[1] = 0;
1401
1402 if (is_joined) {
1403 /* Save a copy of the hash table which we update with
1404 * the hash for a single multicast address for join
1405 */
1406 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1407 hash_table[0] = heth->Instance->MACHT0R;
1408 hash_table[1] = heth->Instance->MACHT1R;
1409 #else
1410 hash_table[0] = heth->Instance->MACHTLR;
1411 hash_table[1] = heth->Instance->MACHTHR;
1412 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1413 }
1414
1415 k_mutex_lock(&multicast_addr_lock, K_FOREVER);
1416
1417 #if defined(CONFIG_NET_NATIVE_IPV6)
1418 if (is_joined) {
1419 /* When joining only update the hash filter with the joining
1420 * multicast address.
1421 */
1422 add_ipv6_multicast_addr(&addr->in6_addr);
1423
1424 net_eth_ipv6_mcast_to_mac_addr(&addr->in6_addr, &mac_addr);
1425 crc = reverse(crc32_ieee(mac_addr.addr,
1426 sizeof(struct net_eth_addr)));
1427 hash_index = (crc >> 26) & 0x3f;
1428 hash_table[hash_index / 32] |= (1 << (hash_index % 32));
1429 } else {
1430 /* When leaving its better to compute the full hash table
1431 * for all the multicast addresses that we're aware of.
1432 */
1433 remove_ipv6_multicast_addr(&addr->in6_addr);
1434
1435 for (i = 0; i < NET_IF_MAX_IPV6_MADDR; i++) {
1436 if (net_ipv6_is_addr_unspecified(&multicast_ipv6_joined_addrs[i])) {
1437 continue;
1438 }
1439
1440 net_eth_ipv6_mcast_to_mac_addr(&multicast_ipv6_joined_addrs[i],
1441 &mac_addr);
1442 crc = reverse(crc32_ieee(mac_addr.addr,
1443 sizeof(struct net_eth_addr)));
1444 hash_index = (crc >> 26) & 0x3f;
1445 hash_table[hash_index / 32] |= (1 << (hash_index % 32));
1446 }
1447 }
1448 #endif /* CONFIG_NET_IPV6 */
1449
1450 #if defined(CONFIG_NET_NATIVE_IPV4)
1451 if (is_joined) {
1452 /* When joining only update the hash filter with the joining
1453 * multicast address.
1454 */
1455 add_ipv4_multicast_addr(&addr->in_addr);
1456
1457 net_eth_ipv4_mcast_to_mac_addr(&addr->in_addr, &mac_addr);
1458 crc = reverse(crc32_ieee(mac_addr.addr,
1459 sizeof(struct net_eth_addr)));
1460 hash_index = (crc >> 26) & 0x3f;
1461 hash_table[hash_index / 32] |= (1 << (hash_index % 32));
1462 } else {
1463 /* When leaving its better to compute the full hash table
1464 * for all the multicast addresses that we're aware of.
1465 */
1466 remove_ipv4_multicast_addr(&addr->in_addr);
1467
1468 for (i = 0; i < NET_IF_MAX_IPV4_MADDR; i++) {
1469 if (net_ipv4_is_addr_unspecified(&multicast_ipv4_joined_addrs[i])) {
1470 continue;
1471 }
1472
1473 net_eth_ipv4_mcast_to_mac_addr(&multicast_ipv4_joined_addrs[i],
1474 &mac_addr);
1475 crc = reverse(crc32_ieee(mac_addr.addr,
1476 sizeof(struct net_eth_addr)));
1477 hash_index = (crc >> 26) & 0x3f;
1478 hash_table[hash_index / 32] |= (1 << (hash_index % 32));
1479 }
1480 }
1481 #endif /* CONFIG_NET_IPV4 */
1482
1483 k_mutex_unlock(&multicast_addr_lock);
1484
1485 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1486 heth->Instance->MACHT0R = hash_table[0];
1487 heth->Instance->MACHT1R = hash_table[1];
1488 #else
1489 heth->Instance->MACHTLR = hash_table[0];
1490 heth->Instance->MACHTHR = hash_table[1];
1491 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1492 }
1493
1494 #endif /* CONFIG_ETH_STM32_MULTICAST_FILTER */
1495
eth_iface_init(struct net_if * iface)1496 static void eth_iface_init(struct net_if *iface)
1497 {
1498 const struct device *dev;
1499 struct eth_stm32_hal_dev_data *dev_data;
1500 bool is_first_init = false;
1501
1502 __ASSERT_NO_MSG(iface != NULL);
1503
1504 dev = net_if_get_device(iface);
1505 __ASSERT_NO_MSG(dev != NULL);
1506
1507 dev_data = dev->data;
1508 __ASSERT_NO_MSG(dev_data != NULL);
1509
1510 /* For VLAN, this value is only used to get the correct L2 driver.
1511 * The iface pointer in context should contain the main interface
1512 * if the VLANs are enabled.
1513 */
1514 if (dev_data->iface == NULL) {
1515 dev_data->iface = iface;
1516 is_first_init = true;
1517 }
1518
1519 #if defined(CONFIG_ETH_STM32_MULTICAST_FILTER)
1520 net_if_mcast_mon_register(&mcast_monitor, iface, net_if_stm32_mcast_cb);
1521 #endif /* CONFIG_ETH_STM32_MULTICAST_FILTER */
1522
1523 /* Register Ethernet MAC Address with the upper layer */
1524 net_if_set_link_addr(iface, dev_data->mac_addr,
1525 sizeof(dev_data->mac_addr),
1526 NET_LINK_ETHERNET);
1527
1528 #if defined(CONFIG_NET_DSA)
1529 dsa_register_master_tx(iface, ð_tx);
1530 #endif
1531
1532 ethernet_init(iface);
1533
1534 net_if_carrier_off(iface);
1535
1536 net_lldp_set_lldpdu(iface);
1537
1538 if (is_first_init) {
1539 const struct eth_stm32_hal_dev_cfg *cfg = dev->config;
1540 /* Now that the iface is setup, we are safe to enable IRQs. */
1541 __ASSERT_NO_MSG(cfg->config_func != NULL);
1542 cfg->config_func();
1543
1544 /* Start interruption-poll thread */
1545 k_thread_create(&dev_data->rx_thread, dev_data->rx_thread_stack,
1546 K_KERNEL_STACK_SIZEOF(dev_data->rx_thread_stack),
1547 rx_thread, (void *) dev, NULL, NULL,
1548 K_PRIO_COOP(CONFIG_ETH_STM32_HAL_RX_THREAD_PRIO),
1549 0, K_NO_WAIT);
1550
1551 k_thread_name_set(&dev_data->rx_thread, "stm_eth");
1552 }
1553 }
1554
eth_stm32_hal_get_capabilities(const struct device * dev)1555 static enum ethernet_hw_caps eth_stm32_hal_get_capabilities(const struct device *dev)
1556 {
1557 ARG_UNUSED(dev);
1558
1559 return ETHERNET_LINK_10BASE_T | ETHERNET_LINK_100BASE_T
1560 #if defined(CONFIG_NET_VLAN)
1561 | ETHERNET_HW_VLAN
1562 #endif
1563 #if defined(CONFIG_NET_PROMISCUOUS_MODE)
1564 | ETHERNET_PROMISC_MODE
1565 #endif
1566 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
1567 | ETHERNET_PTP
1568 #endif
1569 #if defined(CONFIG_NET_LLDP)
1570 | ETHERNET_LLDP
1571 #endif
1572 #if defined(CONFIG_ETH_STM32_HW_CHECKSUM)
1573 | ETHERNET_HW_RX_CHKSUM_OFFLOAD
1574 | ETHERNET_HW_TX_CHKSUM_OFFLOAD
1575 #endif
1576 #if defined(CONFIG_NET_DSA)
1577 | ETHERNET_DSA_MASTER_PORT
1578 #endif
1579 ;
1580 }
1581
eth_stm32_hal_set_config(const struct device * dev,enum ethernet_config_type type,const struct ethernet_config * config)1582 static int eth_stm32_hal_set_config(const struct device *dev,
1583 enum ethernet_config_type type,
1584 const struct ethernet_config *config)
1585 {
1586 int ret = -ENOTSUP;
1587 struct eth_stm32_hal_dev_data *dev_data;
1588 ETH_HandleTypeDef *heth;
1589
1590 dev_data = dev->data;
1591 heth = &dev_data->heth;
1592
1593 switch (type) {
1594 case ETHERNET_CONFIG_TYPE_MAC_ADDRESS:
1595 memcpy(dev_data->mac_addr, config->mac_address.addr, 6);
1596 heth->Instance->MACA0HR = (dev_data->mac_addr[5] << 8) |
1597 dev_data->mac_addr[4];
1598 heth->Instance->MACA0LR = (dev_data->mac_addr[3] << 24) |
1599 (dev_data->mac_addr[2] << 16) |
1600 (dev_data->mac_addr[1] << 8) |
1601 dev_data->mac_addr[0];
1602 net_if_set_link_addr(dev_data->iface, dev_data->mac_addr,
1603 sizeof(dev_data->mac_addr),
1604 NET_LINK_ETHERNET);
1605 ret = 0;
1606 break;
1607 case ETHERNET_CONFIG_TYPE_PROMISC_MODE:
1608 #if defined(CONFIG_NET_PROMISCUOUS_MODE)
1609 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1610 if (config->promisc_mode) {
1611 heth->Instance->MACPFR |= ETH_MACPFR_PR;
1612 } else {
1613 heth->Instance->MACPFR &= ~ETH_MACPFR_PR;
1614 }
1615 #else
1616 if (config->promisc_mode) {
1617 heth->Instance->MACFFR |= ETH_MACFFR_PM;
1618 } else {
1619 heth->Instance->MACFFR &= ~ETH_MACFFR_PM;
1620 }
1621 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1622 ret = 0;
1623 #endif /* CONFIG_NET_PROMISCUOUS_MODE */
1624 break;
1625 default:
1626 break;
1627 }
1628
1629 return ret;
1630 }
1631
1632 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
eth_stm32_get_ptp_clock(const struct device * dev)1633 static const struct device *eth_stm32_get_ptp_clock(const struct device *dev)
1634 {
1635 struct eth_stm32_hal_dev_data *dev_data = dev->data;
1636
1637 return dev_data->ptp_clock;
1638 }
1639 #endif /* CONFIG_PTP_CLOCK_STM32_HAL */
1640
1641 #if defined(CONFIG_NET_STATISTICS_ETHERNET)
eth_stm32_hal_get_stats(const struct device * dev)1642 static struct net_stats_eth *eth_stm32_hal_get_stats(const struct device *dev)
1643 {
1644 struct eth_stm32_hal_dev_data *dev_data = dev->data;
1645
1646 return &dev_data->stats;
1647 }
1648 #endif /* CONFIG_NET_STATISTICS_ETHERNET */
1649
1650 static const struct ethernet_api eth_api = {
1651 .iface_api.init = eth_iface_init,
1652 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
1653 .get_ptp_clock = eth_stm32_get_ptp_clock,
1654 #endif /* CONFIG_PTP_CLOCK_STM32_HAL */
1655 .get_capabilities = eth_stm32_hal_get_capabilities,
1656 .set_config = eth_stm32_hal_set_config,
1657 #if defined(CONFIG_NET_DSA)
1658 .send = dsa_tx,
1659 #else
1660 .send = eth_tx,
1661 #endif
1662 #if defined(CONFIG_NET_STATISTICS_ETHERNET)
1663 .get_stats = eth_stm32_hal_get_stats,
1664 #endif /* CONFIG_NET_STATISTICS_ETHERNET */
1665 };
1666
eth0_irq_config(void)1667 static void eth0_irq_config(void)
1668 {
1669 IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), eth_isr,
1670 DEVICE_DT_INST_GET(0), 0);
1671 irq_enable(DT_INST_IRQN(0));
1672 }
1673
1674 PINCTRL_DT_INST_DEFINE(0);
1675
1676 static const struct eth_stm32_hal_dev_cfg eth0_config = {
1677 .config_func = eth0_irq_config,
1678 .pclken = {.bus = DT_INST_CLOCKS_CELL_BY_NAME(0, stmmaceth, bus),
1679 .enr = DT_INST_CLOCKS_CELL_BY_NAME(0, stmmaceth, bits)},
1680 .pclken_tx = {.bus = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_tx, bus),
1681 .enr = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_tx, bits)},
1682 .pclken_rx = {.bus = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_rx, bus),
1683 .enr = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_rx, bits)},
1684 #if DT_INST_CLOCKS_HAS_NAME(0, mac_clk_ptp)
1685 .pclken_ptp = {.bus = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_ptp, bus),
1686 .enr = DT_INST_CLOCKS_CELL_BY_NAME(0, mac_clk_ptp, bits)},
1687 #endif
1688 .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
1689 };
1690
1691 static struct eth_stm32_hal_dev_data eth0_data = {
1692 .heth = {
1693 .Instance = (ETH_TypeDef *)DT_INST_REG_ADDR(0),
1694 .Init = {
1695 #if !defined(CONFIG_SOC_SERIES_STM32H7X) && !defined(CONFIG_SOC_SERIES_STM32H5X) && \
1696 !defined(CONFIG_ETH_STM32_HAL_API_V2)
1697 #if defined(CONFIG_ETH_STM32_AUTO_NEGOTIATION_ENABLE)
1698 .AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE,
1699 #else
1700 .AutoNegotiation = ETH_AUTONEGOTIATION_DISABLE,
1701 .Speed = IS_ENABLED(CONFIG_ETH_STM32_SPEED_10M) ?
1702 ETH_SPEED_10M : ETH_SPEED_100M,
1703 .DuplexMode = IS_ENABLED(CONFIG_ETH_STM32_MODE_HALFDUPLEX) ?
1704 ETH_MODE_HALFDUPLEX : ETH_MODE_FULLDUPLEX,
1705 #endif /* !CONFIG_ETH_STM32_AUTO_NEGOTIATION_ENABLE */
1706 .PhyAddress = PHY_ADDR,
1707 .RxMode = ETH_RXINTERRUPT_MODE,
1708 .ChecksumMode = IS_ENABLED(CONFIG_ETH_STM32_HW_CHECKSUM) ?
1709 ETH_CHECKSUM_BY_HARDWARE : ETH_CHECKSUM_BY_SOFTWARE,
1710 #endif /* !CONFIG_SOC_SERIES_STM32H7X */
1711 .MediaInterface = IS_ENABLED(CONFIG_ETH_STM32_HAL_MII) ?
1712 ETH_MEDIA_INTERFACE_MII : ETH_MEDIA_INTERFACE_RMII,
1713 },
1714 },
1715 };
1716
1717 ETH_NET_DEVICE_DT_INST_DEFINE(0, eth_initialize,
1718 NULL, ð0_data, ð0_config,
1719 CONFIG_ETH_INIT_PRIORITY, ð_api, ETH_STM32_HAL_MTU);
1720
1721 #if defined(CONFIG_PTP_CLOCK_STM32_HAL)
1722
1723 struct ptp_context {
1724 struct eth_stm32_hal_dev_data *eth_dev_data;
1725 };
1726
1727 static struct ptp_context ptp_stm32_0_context;
1728
ptp_clock_stm32_set(const struct device * dev,struct net_ptp_time * tm)1729 static int ptp_clock_stm32_set(const struct device *dev,
1730 struct net_ptp_time *tm)
1731 {
1732 struct ptp_context *ptp_context = dev->data;
1733 struct eth_stm32_hal_dev_data *eth_dev_data = ptp_context->eth_dev_data;
1734 ETH_HandleTypeDef *heth = ð_dev_data->heth;
1735 unsigned int key;
1736
1737 key = irq_lock();
1738
1739 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1740 heth->Instance->MACSTSUR = tm->second;
1741 heth->Instance->MACSTNUR = tm->nanosecond;
1742 heth->Instance->MACTSCR |= ETH_MACTSCR_TSINIT;
1743 while (heth->Instance->MACTSCR & ETH_MACTSCR_TSINIT_Msk) {
1744 /* spin lock */
1745 }
1746 #else
1747 heth->Instance->PTPTSHUR = tm->second;
1748 heth->Instance->PTPTSLUR = tm->nanosecond;
1749 heth->Instance->PTPTSCR |= ETH_PTPTSCR_TSSTI;
1750 while (heth->Instance->PTPTSCR & ETH_PTPTSCR_TSSTI_Msk) {
1751 /* spin lock */
1752 }
1753 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1754
1755 irq_unlock(key);
1756
1757 return 0;
1758 }
1759
ptp_clock_stm32_get(const struct device * dev,struct net_ptp_time * tm)1760 static int ptp_clock_stm32_get(const struct device *dev,
1761 struct net_ptp_time *tm)
1762 {
1763 struct ptp_context *ptp_context = dev->data;
1764 struct eth_stm32_hal_dev_data *eth_dev_data = ptp_context->eth_dev_data;
1765 ETH_HandleTypeDef *heth = ð_dev_data->heth;
1766 unsigned int key;
1767 uint32_t second_2;
1768
1769 key = irq_lock();
1770
1771 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1772 tm->second = heth->Instance->MACSTSR;
1773 tm->nanosecond = heth->Instance->MACSTNR;
1774 second_2 = heth->Instance->MACSTSR;
1775 #else
1776 tm->second = heth->Instance->PTPTSHR;
1777 tm->nanosecond = heth->Instance->PTPTSLR;
1778 second_2 = heth->Instance->PTPTSHR;
1779 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1780
1781 irq_unlock(key);
1782
1783 if (tm->second != second_2 && tm->nanosecond < NSEC_PER_SEC / 2) {
1784 /* Second rollover has happened during first measurement: second register
1785 * was read before second boundary and nanosecond register was read after.
1786 * We will use second_2 as a new second value.
1787 */
1788 tm->second = second_2;
1789 }
1790
1791 return 0;
1792 }
1793
ptp_clock_stm32_adjust(const struct device * dev,int increment)1794 static int ptp_clock_stm32_adjust(const struct device *dev, int increment)
1795 {
1796 struct ptp_context *ptp_context = dev->data;
1797 struct eth_stm32_hal_dev_data *eth_dev_data = ptp_context->eth_dev_data;
1798 ETH_HandleTypeDef *heth = ð_dev_data->heth;
1799 int key, ret;
1800
1801 if ((increment <= (int32_t)(-NSEC_PER_SEC)) ||
1802 (increment >= (int32_t)NSEC_PER_SEC)) {
1803 ret = -EINVAL;
1804 } else {
1805 key = irq_lock();
1806
1807 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1808 heth->Instance->MACSTSUR = 0;
1809 if (increment >= 0) {
1810 heth->Instance->MACSTNUR = increment;
1811 } else {
1812 heth->Instance->MACSTNUR = ETH_MACSTNUR_ADDSUB | (NSEC_PER_SEC + increment);
1813 }
1814 heth->Instance->MACTSCR |= ETH_MACTSCR_TSUPDT;
1815 while (heth->Instance->MACTSCR & ETH_MACTSCR_TSUPDT_Msk) {
1816 /* spin lock */
1817 }
1818 #else
1819 heth->Instance->PTPTSHUR = 0;
1820 if (increment >= 0) {
1821 heth->Instance->PTPTSLUR = increment;
1822 } else {
1823 heth->Instance->PTPTSLUR = ETH_PTPTSLUR_TSUPNS | (-increment);
1824 }
1825 heth->Instance->PTPTSCR |= ETH_PTPTSCR_TSSTU;
1826 while (heth->Instance->PTPTSCR & ETH_PTPTSCR_TSSTU_Msk) {
1827 /* spin lock */
1828 }
1829 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1830
1831 ret = 0;
1832 irq_unlock(key);
1833 }
1834
1835 return ret;
1836 }
1837
ptp_clock_stm32_rate_adjust(const struct device * dev,double ratio)1838 static int ptp_clock_stm32_rate_adjust(const struct device *dev, double ratio)
1839 {
1840 struct ptp_context *ptp_context = dev->data;
1841 struct eth_stm32_hal_dev_data *eth_dev_data = ptp_context->eth_dev_data;
1842 ETH_HandleTypeDef *heth = ð_dev_data->heth;
1843 int key, ret;
1844 uint32_t addend_val;
1845
1846 /* No change needed */
1847 if (ratio == 1.0L) {
1848 return 0;
1849 }
1850
1851 key = irq_lock();
1852
1853 ratio *= (double)eth_dev_data->clk_ratio_adj;
1854
1855 /* Limit possible ratio */
1856 if (ratio * 100 < CONFIG_ETH_STM32_HAL_PTP_CLOCK_ADJ_MIN_PCT ||
1857 ratio * 100 > CONFIG_ETH_STM32_HAL_PTP_CLOCK_ADJ_MAX_PCT) {
1858 ret = -EINVAL;
1859 goto error;
1860 }
1861
1862 /* Save new ratio */
1863 eth_dev_data->clk_ratio_adj = ratio;
1864
1865 /* Update addend register */
1866 addend_val = UINT32_MAX * (double)eth_dev_data->clk_ratio * ratio;
1867
1868 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1869 heth->Instance->MACTSAR = addend_val;
1870 heth->Instance->MACTSCR |= ETH_MACTSCR_TSADDREG;
1871 while (heth->Instance->MACTSCR & ETH_MACTSCR_TSADDREG_Msk) {
1872 /* spin lock */
1873 }
1874 #else
1875 heth->Instance->PTPTSAR = addend_val;
1876 heth->Instance->PTPTSCR |= ETH_PTPTSCR_TSARU;
1877 while (heth->Instance->PTPTSCR & ETH_PTPTSCR_TSARU_Msk) {
1878 /* spin lock */
1879 }
1880 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1881
1882 ret = 0;
1883
1884 error:
1885 irq_unlock(key);
1886
1887 return ret;
1888 }
1889
1890 static const struct ptp_clock_driver_api api = {
1891 .set = ptp_clock_stm32_set,
1892 .get = ptp_clock_stm32_get,
1893 .adjust = ptp_clock_stm32_adjust,
1894 .rate_adjust = ptp_clock_stm32_rate_adjust,
1895 };
1896
ptp_stm32_init(const struct device * port)1897 static int ptp_stm32_init(const struct device *port)
1898 {
1899 const struct device *const dev = DEVICE_DT_GET(DT_NODELABEL(mac));
1900 struct eth_stm32_hal_dev_data *eth_dev_data = dev->data;
1901 const struct eth_stm32_hal_dev_cfg *eth_cfg = dev->config;
1902 struct ptp_context *ptp_context = port->data;
1903 ETH_HandleTypeDef *heth = ð_dev_data->heth;
1904 int ret;
1905 uint32_t ptp_hclk_rate;
1906 uint32_t ss_incr_ns;
1907 uint32_t addend_val;
1908
1909 eth_dev_data->ptp_clock = port;
1910 ptp_context->eth_dev_data = eth_dev_data;
1911
1912 /* Mask the Timestamp Trigger interrupt */
1913 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1914 heth->Instance->MACIER &= ~(ETH_MACIER_TSIE);
1915 #else
1916 heth->Instance->MACIMR &= ~(ETH_MACIMR_TSTIM);
1917 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1918
1919 /* Enable timestamping */
1920 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1921 heth->Instance->MACTSCR |= ETH_MACTSCR_TSENA;
1922 #else
1923 heth->Instance->PTPTSCR |= ETH_PTPTSCR_TSE;
1924 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1925
1926 /* Query ethernet clock rate */
1927 ret = clock_control_get_rate(eth_dev_data->clock,
1928 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1929 (clock_control_subsys_t)ð_cfg->pclken,
1930 #else
1931 (clock_control_subsys_t)ð_cfg->pclken_ptp,
1932 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1933 &ptp_hclk_rate);
1934 if (ret) {
1935 LOG_ERR("Failed to query ethernet clock");
1936 return -EIO;
1937 }
1938
1939 /* Program the subsecond increment register based on the PTP clock freq */
1940 if (NSEC_PER_SEC % CONFIG_ETH_STM32_HAL_PTP_CLOCK_SRC_HZ != 0) {
1941 LOG_ERR("PTP clock period must be an integer nanosecond value");
1942 return -EINVAL;
1943 }
1944 ss_incr_ns = NSEC_PER_SEC / CONFIG_ETH_STM32_HAL_PTP_CLOCK_SRC_HZ;
1945 if (ss_incr_ns > UINT8_MAX) {
1946 LOG_ERR("PTP clock period is more than %d nanoseconds", UINT8_MAX);
1947 return -EINVAL;
1948 }
1949 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1950 heth->Instance->MACSSIR = ss_incr_ns << ETH_MACMACSSIR_SSINC_Pos;
1951 #else
1952 heth->Instance->PTPSSIR = ss_incr_ns;
1953 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1954
1955 /* Program timestamp addend register */
1956 eth_dev_data->clk_ratio =
1957 ((double)CONFIG_ETH_STM32_HAL_PTP_CLOCK_SRC_HZ) / ((double)ptp_hclk_rate);
1958 /*
1959 * clk_ratio is a ratio between desired PTP clock frequency and HCLK rate.
1960 * Because HCLK is defined by a physical oscillator, it might drift due
1961 * to manufacturing tolerances and environmental effects (e.g. temperature).
1962 * clk_ratio_adj compensates for such inaccuracies. It starts off as 1.0
1963 * and gets adjusted by calling ptp_clock_stm32_rate_adjust().
1964 */
1965 eth_dev_data->clk_ratio_adj = 1.0f;
1966 addend_val =
1967 UINT32_MAX * eth_dev_data->clk_ratio * eth_dev_data->clk_ratio_adj;
1968 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1969 heth->Instance->MACTSAR = addend_val;
1970 heth->Instance->MACTSCR |= ETH_MACTSCR_TSADDREG;
1971 while (heth->Instance->MACTSCR & ETH_MACTSCR_TSADDREG_Msk) {
1972 k_yield();
1973 }
1974 #else
1975 heth->Instance->PTPTSAR = addend_val;
1976 heth->Instance->PTPTSCR |= ETH_PTPTSCR_TSARU;
1977 while (heth->Instance->PTPTSCR & ETH_PTPTSCR_TSARU_Msk) {
1978 k_yield();
1979 }
1980 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1981
1982 /* Enable fine timestamp correction method */
1983 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1984 heth->Instance->MACTSCR |= ETH_MACTSCR_TSCFUPDT;
1985 #else
1986 heth->Instance->PTPTSCR |= ETH_PTPTSCR_TSFCU;
1987 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1988
1989 /* Enable nanosecond rollover into a new second */
1990 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1991 heth->Instance->MACTSCR |= ETH_MACTSCR_TSCTRLSSR;
1992 #else
1993 heth->Instance->PTPTSCR |= ETH_PTPTSCR_TSSSR;
1994 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
1995
1996 /* Initialize timestamp */
1997 #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32H5X)
1998 heth->Instance->MACSTSUR = 0;
1999 heth->Instance->MACSTNUR = 0;
2000 heth->Instance->MACTSCR |= ETH_MACTSCR_TSINIT;
2001 while (heth->Instance->MACTSCR & ETH_MACTSCR_TSINIT_Msk) {
2002 k_yield();
2003 }
2004 #else
2005 heth->Instance->PTPTSHUR = 0;
2006 heth->Instance->PTPTSLUR = 0;
2007 heth->Instance->PTPTSCR |= ETH_PTPTSCR_TSSTI;
2008 while (heth->Instance->PTPTSCR & ETH_PTPTSCR_TSSTI_Msk) {
2009 k_yield();
2010 }
2011 #endif /* CONFIG_SOC_SERIES_STM32H7X || CONFIG_SOC_SERIES_STM32H5X */
2012
2013 #if defined(CONFIG_ETH_STM32_HAL_API_V2)
2014 /* Set PTP Configuration done */
2015 heth->IsPtpConfigured = HAL_ETH_PTP_CONFIGURATED;
2016 #endif
2017
2018 return 0;
2019 }
2020
2021 DEVICE_DEFINE(stm32_ptp_clock_0, PTP_CLOCK_NAME, ptp_stm32_init,
2022 NULL, &ptp_stm32_0_context, NULL, POST_KERNEL,
2023 CONFIG_ETH_STM32_HAL_PTP_CLOCK_INIT_PRIO, &api);
2024
2025 #endif /* CONFIG_PTP_CLOCK_STM32_HAL */
2026