1 /*
2 * Copyright (c) 2022 Intel Corporation.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #define DT_DRV_COMPAT intel_dai_dmic
8 #define LOG_DOMAIN dai_intel_dmic
9 #include <zephyr/logging/log.h>
10 LOG_MODULE_REGISTER(LOG_DOMAIN);
11
12 #include <errno.h>
13 #include <stdbool.h>
14 #include <stdint.h>
15 #include <zephyr/kernel.h>
16 #include <zephyr/spinlock.h>
17 #include <zephyr/devicetree.h>
18 #include <zephyr/pm/device.h>
19 #include <zephyr/pm/device_runtime.h>
20
21 #include <zephyr/drivers/dai.h>
22 #include <zephyr/irq.h>
23
24 #include "dmic.h"
25 #include <dmic_regs.h>
26
27 /* Base addresses (in PDM scope) of 2ch PDM controllers and coefficient RAM. */
28 static const uint32_t dmic_base[4] = {PDM0, PDM1, PDM2, PDM3};
29
30 /* global data shared between all dmic instances */
31 struct dai_dmic_global_shared dai_dmic_global;
32
33 /* Helper macro to read 64-bit data using two 32-bit data read */
34 #define sys_read64(addr) (((uint64_t)(sys_read32(addr + 4)) << 32) | \
35 sys_read32(addr))
36
37 int dai_dmic_set_config_nhlt(struct dai_intel_dmic *dmic, const void *spec_config);
38
39 /* Exponent function for small values of x. This function calculates
40 * fairly accurately exponent for x in range -2.0 .. +2.0. The iteration
41 * uses first 11 terms of Taylor series approximation for exponent
42 * function. With the current scaling the numerator just remains under
43 * 64 bits with the 11 terms.
44 *
45 * See https://en.wikipedia.org/wiki/Exponential_function#Computation
46 *
47 * The input is Q3.29
48 * The output is Q9.23
49 */
exp_small_fixed(int32_t x)50 static int32_t exp_small_fixed(int32_t x)
51 {
52 int64_t p;
53 int64_t num = Q_SHIFT_RND(x, 29, 23);
54 int32_t y = (int32_t)num;
55 int32_t den = 1;
56 int32_t inc;
57 int k;
58
59 /* Numerator is x^k, denominator is k! */
60 for (k = 2; k < 12; k++) {
61 p = num * x; /* Q9.23 x Q3.29 -> Q12.52 */
62 num = Q_SHIFT_RND(p, 52, 23);
63 den = den * k;
64 inc = (int32_t)(num / den);
65 y += inc;
66 }
67
68 return y + ONE_Q23;
69 }
70
exp_fixed(int32_t x)71 static int32_t exp_fixed(int32_t x)
72 {
73 int32_t xs;
74 int32_t y;
75 int32_t z;
76 int i;
77 int n = 0;
78
79 if (x < Q_CONVERT_FLOAT(-11.5, 27)) {
80 return 0;
81 }
82
83 if (x > Q_CONVERT_FLOAT(7.6245, 27)) {
84 return INT32_MAX;
85 }
86
87 /* x is Q5.27 */
88 xs = x;
89 while (xs >= TWO_Q27 || xs <= MINUS_TWO_Q27) {
90 xs >>= 1;
91 n++;
92 }
93
94 /* exp_small_fixed() input is Q3.29, while x1 is Q5.27
95 * exp_small_fixed() output is Q9.23, while z is Q12.20
96 */
97 z = Q_SHIFT_RND(exp_small_fixed(Q_SHIFT_LEFT(xs, 27, 29)), 23, 20);
98 y = ONE_Q20;
99 for (i = 0; i < (1 << n); i++) {
100 y = (int32_t)Q_MULTSR_32X32((int64_t)y, z, 20, 20, 20);
101 }
102
103 return y;
104 }
105
db2lin_fixed(int32_t db)106 static int32_t db2lin_fixed(int32_t db)
107 {
108 int32_t arg;
109
110 if (db < Q_CONVERT_FLOAT(-100.0, 24)) {
111 return 0;
112 }
113
114 /* Q8.24 x Q5.27, result needs to be Q5.27 */
115 arg = (int32_t)Q_MULTSR_32X32((int64_t)db, LOG10_DIV20_Q27, 24, 27, 27);
116 return exp_fixed(arg);
117 }
118
dai_dmic_update_bits(const struct dai_intel_dmic * dmic,uint32_t reg,uint32_t mask,uint32_t val)119 static void dai_dmic_update_bits(const struct dai_intel_dmic *dmic,
120 uint32_t reg, uint32_t mask, uint32_t val)
121 {
122 uint32_t dest = dmic->reg_base + reg;
123
124 sys_write32((sys_read32(dest) & (~mask)) | (val & mask), dest);
125 }
126
dai_dmic_write(const struct dai_intel_dmic * dmic,uint32_t reg,uint32_t val)127 static inline void dai_dmic_write(const struct dai_intel_dmic *dmic,
128 uint32_t reg, uint32_t val)
129 {
130 sys_write32(val, dmic->reg_base + reg);
131 }
132
dai_dmic_read(const struct dai_intel_dmic * dmic,uint32_t reg)133 static inline uint32_t dai_dmic_read(const struct dai_intel_dmic *dmic,
134 uint32_t reg)
135 {
136 return sys_read32(dmic->reg_base + reg);
137 }
138
139 #if CONFIG_DAI_DMIC_HAS_OWNERSHIP
dai_dmic_claim_ownership(const struct dai_intel_dmic * dmic)140 static inline void dai_dmic_claim_ownership(const struct dai_intel_dmic *dmic)
141 {
142 /* DMIC Owner Select to DSP */
143 sys_write32(sys_read32(dmic->shim_base + DMICLCTL_OFFSET) |
144 FIELD_PREP(DMICLCTL_OSEL, 0x3), dmic->shim_base + DMICLCTL_OFFSET);
145 }
146
dai_dmic_release_ownership(const struct dai_intel_dmic * dmic)147 static inline void dai_dmic_release_ownership(const struct dai_intel_dmic *dmic)
148 {
149 /* DMIC Owner Select back to Host CPU + DSP */
150 sys_write32(sys_read32(dmic->shim_base + DMICLCTL_OFFSET) &
151 ~DMICLCTL_OSEL, dmic->shim_base + DMICLCTL_OFFSET);
152 }
153
154 #else /* CONFIG_DAI_DMIC_HAS_OWNERSHIP */
155
dai_dmic_claim_ownership(const struct dai_intel_dmic * dmic)156 static inline void dai_dmic_claim_ownership(const struct dai_intel_dmic *dmic) {}
dai_dmic_release_ownership(const struct dai_intel_dmic * dmic)157 static inline void dai_dmic_release_ownership(const struct dai_intel_dmic *dmic) {}
158
159 #endif /* CONFIG_DAI_DMIC_HAS_OWNERSHIP */
160
dai_dmic_base(const struct dai_intel_dmic * dmic)161 static inline uint32_t dai_dmic_base(const struct dai_intel_dmic *dmic)
162 {
163 #if defined(CONFIG_SOC_INTEL_ACE20_LNL) || defined(CONFIG_SOC_INTEL_ACE30)
164 return dmic->hdamldmic_base;
165 #else
166 return dmic->shim_base;
167 #endif
168 }
169
170 #if CONFIG_DAI_DMIC_HAS_MULTIPLE_LINE_SYNC
dai_dmic_set_sync_period(uint32_t period,const struct dai_intel_dmic * dmic)171 static inline void dai_dmic_set_sync_period(uint32_t period, const struct dai_intel_dmic *dmic)
172 {
173 uint32_t val = CONFIG_DAI_DMIC_HW_IOCLK / period - 1;
174 uint32_t base = dai_dmic_base(dmic);
175 /* DMIC Change sync period */
176 #if defined(CONFIG_SOC_INTEL_ACE20_LNL) || defined(CONFIG_SOC_INTEL_ACE30)
177 sys_write32(sys_read32(base + DMICSYNC_OFFSET) | FIELD_PREP(DMICSYNC_SYNCPRD, val),
178 base + DMICSYNC_OFFSET);
179 sys_write32(sys_read32(base + DMICSYNC_OFFSET) | DMICSYNC_SYNCPU,
180 base + DMICSYNC_OFFSET);
181
182 if (!WAIT_FOR((sys_read32(base + DMICSYNC_OFFSET) & DMICSYNC_SYNCPU) == 0, 1000,
183 k_sleep(K_USEC(100)))) {
184 LOG_ERR("poll timeout");
185 }
186
187 sys_write32(sys_read32(base + DMICSYNC_OFFSET) | DMICSYNC_CMDSYNC,
188 base + DMICSYNC_OFFSET);
189 #else /* All other CAVS and ACE platforms */
190 sys_write32(sys_read32(base + DMICSYNC_OFFSET) | FIELD_PREP(DMICSYNC_SYNCPRD, val),
191 base + DMICSYNC_OFFSET);
192 sys_write32(sys_read32(base + DMICSYNC_OFFSET) | DMICSYNC_CMDSYNC,
193 base + DMICSYNC_OFFSET);
194 #endif
195 }
196
dai_dmic_clear_sync_period(const struct dai_intel_dmic * dmic)197 static inline void dai_dmic_clear_sync_period(const struct dai_intel_dmic *dmic)
198 {
199 uint32_t base = dai_dmic_base(dmic);
200 /* DMIC Clean sync period */
201 sys_write32(sys_read32(base + DMICSYNC_OFFSET) & ~DMICSYNC_SYNCPRD,
202 base + DMICSYNC_OFFSET);
203 sys_write32(sys_read32(base + DMICSYNC_OFFSET) & ~DMICSYNC_CMDSYNC,
204 base + DMICSYNC_OFFSET);
205 }
206
207 /* Preparing for command synchronization on multiple link segments */
dai_dmic_sync_prepare(const struct dai_intel_dmic * dmic)208 static inline void dai_dmic_sync_prepare(const struct dai_intel_dmic *dmic)
209 {
210 uint32_t base = dai_dmic_base(dmic);
211
212 sys_write32(sys_read32(base + DMICSYNC_OFFSET) | DMICSYNC_CMDSYNC,
213 base + DMICSYNC_OFFSET);
214 }
215
216 /* Trigering synchronization of command execution */
dmic_sync_trigger(const struct dai_intel_dmic * dmic)217 static void dmic_sync_trigger(const struct dai_intel_dmic *dmic)
218 {
219 uint32_t base = dai_dmic_base(dmic);
220
221 __ASSERT_NO_MSG((sys_read32(base + DMICSYNC_OFFSET) & DMICSYNC_CMDSYNC) != 0);
222
223 sys_write32(sys_read32(base + DMICSYNC_OFFSET) |
224 DMICSYNC_SYNCGO, base + DMICSYNC_OFFSET);
225
226 /* waiting for CMDSYNC bit clearing */
227 if (!WAIT_FOR((sys_read32(base + DMICSYNC_OFFSET) & DMICSYNC_CMDSYNC) == 0,
228 1000, k_sleep(K_USEC(100)))) {
229 LOG_ERR("poll timeout");
230 }
231 }
232
233 #else /* CONFIG_DAI_DMIC_HAS_MULTIPLE_LINE_SYNC */
234
dai_dmic_set_sync_period(uint32_t period,const struct dai_intel_dmic * dmic)235 static inline void dai_dmic_set_sync_period(uint32_t period, const struct dai_intel_dmic *dmic) {}
dai_dmic_clear_sync_period(const struct dai_intel_dmic * dmic)236 static inline void dai_dmic_clear_sync_period(const struct dai_intel_dmic *dmic) {}
dai_dmic_sync_prepare(const struct dai_intel_dmic * dmic)237 static inline void dai_dmic_sync_prepare(const struct dai_intel_dmic *dmic) {}
dmic_sync_trigger(const struct dai_intel_dmic * dmic)238 static void dmic_sync_trigger(const struct dai_intel_dmic *dmic) {}
239
240 #endif /* CONFIG_DAI_DMIC_HAS_MULTIPLE_LINE_SYNC */
241
dai_dmic_start_fifo_packers(struct dai_intel_dmic * dmic,int fifo_index)242 static void dai_dmic_start_fifo_packers(struct dai_intel_dmic *dmic, int fifo_index)
243 {
244
245 /* Start FIFO packers and clear FIFO initialize bits */
246 dai_dmic_update_bits(dmic, fifo_index * PDM_CHANNEL_REGS_SIZE + OUTCONTROL,
247 OUTCONTROL_SIP | OUTCONTROL_FINIT,
248 OUTCONTROL_SIP);
249 }
250
dai_dmic_stop_fifo_packers(struct dai_intel_dmic * dmic,int fifo_index)251 static void dai_dmic_stop_fifo_packers(struct dai_intel_dmic *dmic,
252 int fifo_index)
253 {
254 /* Stop FIFO packers and set FIFO initialize bits */
255 dai_dmic_update_bits(dmic, fifo_index * PDM_CHANNEL_REGS_SIZE + OUTCONTROL,
256 OUTCONTROL_SIP | OUTCONTROL_FINIT,
257 OUTCONTROL_FINIT);
258 }
259
260 /* On DMIC IRQ event trace the status register that contains the status and
261 * error bit fields.
262 */
dai_dmic_irq_handler(const void * data)263 static void dai_dmic_irq_handler(const void *data)
264 {
265 struct dai_intel_dmic *dmic = ((struct device *)data)->data;
266 uint32_t val0;
267 uint32_t val1;
268
269 /* Trace OUTSTAT0 register */
270 val0 = dai_dmic_read(dmic, OUTSTAT);
271 val1 = dai_dmic_read(dmic, OUTSTAT + PDM_CHANNEL_REGS_SIZE);
272 LOG_DBG("dmic_irq_handler(), OUTSTAT0 = 0x%x, OUTSTAT1 = 0x%x", val0, val1);
273
274 if (val0 & OUTSTAT_ROR) {
275 LOG_ERR("dmic_irq_handler(): full fifo A or PDM overrun");
276 dai_dmic_write(dmic, OUTSTAT, val0);
277 dai_dmic_stop_fifo_packers(dmic, 0);
278 }
279
280 if (val1 & OUTSTAT_ROR) {
281 LOG_ERR("dmic_irq_handler(): full fifo B or PDM overrun");
282 dai_dmic_write(dmic, OUTSTAT + PDM_CHANNEL_REGS_SIZE, val1);
283 dai_dmic_stop_fifo_packers(dmic, 1);
284 }
285 }
286
dai_dmic_dis_clk_gating(const struct dai_intel_dmic * dmic)287 static inline void dai_dmic_dis_clk_gating(const struct dai_intel_dmic *dmic)
288 {
289 /* Disable DMIC clock gating */
290 #if (CONFIG_SOC_INTEL_ACE20_LNL || CONFIG_SOC_INTEL_ACE30)
291 sys_write32((sys_read32(dmic->vshim_base + DMICLVSCTL_OFFSET) | DMICLVSCTL_DCGD),
292 dmic->vshim_base + DMICLVSCTL_OFFSET);
293 #else
294 sys_write32((sys_read32(dmic->shim_base + DMICLCTL_OFFSET) | DMICLCTL_DCGD),
295 dmic->shim_base + DMICLCTL_OFFSET);
296 #endif
297 }
298
dai_dmic_en_clk_gating(const struct dai_intel_dmic * dmic)299 static inline void dai_dmic_en_clk_gating(const struct dai_intel_dmic *dmic)
300 {
301 /* Enable DMIC clock gating */
302 #if (CONFIG_SOC_INTEL_ACE20_LNL || CONFIG_SOC_INTEL_ACE30)
303 sys_write32((sys_read32(dmic->vshim_base + DMICLVSCTL_OFFSET) & ~DMICLVSCTL_DCGD),
304 dmic->vshim_base + DMICLVSCTL_OFFSET);
305 #else /* All other CAVS and ACE platforms */
306 sys_write32((sys_read32(dmic->shim_base + DMICLCTL_OFFSET) & ~DMICLCTL_DCGD),
307 dmic->shim_base + DMICLCTL_OFFSET);
308 #endif
309
310 }
311
dai_dmic_program_channel_map(const struct dai_intel_dmic * dmic,const struct dai_config * cfg,uint32_t index)312 static inline void dai_dmic_program_channel_map(const struct dai_intel_dmic *dmic,
313 const struct dai_config *cfg,
314 uint32_t index)
315 {
316 #if defined(CONFIG_SOC_INTEL_ACE20_LNL) || defined(CONFIG_SOC_INTEL_ACE30)
317 uint16_t pcmsycm = cfg->link_config;
318 uint32_t reg_add = dmic->shim_base + DMICXPCMSyCM_OFFSET + 0x0004*index;
319
320 sys_write16(pcmsycm, reg_add);
321 #else
322 ARG_UNUSED(dmic);
323 ARG_UNUSED(cfg);
324 ARG_UNUSED(index);
325 #endif /* defined(CONFIG_SOC_INTEL_ACE20_LNL) || defined(CONFIG_SOC_INTEL_ACE30) */
326 }
327
dai_dmic_en_power(const struct dai_intel_dmic * dmic)328 static inline void dai_dmic_en_power(const struct dai_intel_dmic *dmic)
329 {
330 uint32_t base = dai_dmic_base(dmic);
331 /* Enable DMIC power */
332 sys_write32((sys_read32(base + DMICLCTL_OFFSET) | DMICLCTL_SPA),
333 base + DMICLCTL_OFFSET);
334
335 #if defined(CONFIG_SOC_INTEL_ACE20_LNL) || defined(CONFIG_SOC_INTEL_ACE30)
336 while (!(sys_read32(base + DMICLCTL_OFFSET) & DMICLCTL_CPA)) {
337 k_sleep(K_USEC(100));
338 }
339 #endif
340 }
341
dai_dmic_dis_power(const struct dai_intel_dmic * dmic)342 static inline void dai_dmic_dis_power(const struct dai_intel_dmic *dmic)
343 {
344 uint32_t base = dai_dmic_base(dmic);
345 /* Disable DMIC power */
346 sys_write32((sys_read32(base + DMICLCTL_OFFSET) & (~DMICLCTL_SPA)),
347 base + DMICLCTL_OFFSET);
348 }
349
dai_dmic_probe(struct dai_intel_dmic * dmic)350 static int dai_dmic_probe(struct dai_intel_dmic *dmic)
351 {
352 LOG_INF("dmic_probe()");
353
354 /* Set state, note there is no playback direction support */
355 dmic->state = DAI_STATE_NOT_READY;
356
357 /* Enable DMIC power */
358 dai_dmic_en_power(dmic);
359
360 /* Disable dynamic clock gating for dmic before touching any reg */
361 dai_dmic_dis_clk_gating(dmic);
362
363 /* DMIC Change sync period */
364 dai_dmic_set_sync_period(CONFIG_DAI_DMIC_PLATFORM_SYNC_PERIOD, dmic);
365
366 /* DMIC Owner Select to DSP */
367 dai_dmic_claim_ownership(dmic);
368
369 irq_enable(dmic->irq);
370
371 return 0;
372 }
373
dai_dmic_remove(struct dai_intel_dmic * dmic)374 static int dai_dmic_remove(struct dai_intel_dmic *dmic)
375 {
376 uint32_t active_fifos_mask = dai_dmic_global.active_fifos_mask;
377 uint32_t pause_mask = dai_dmic_global.pause_mask;
378
379 LOG_INF("dmic_remove()");
380
381 irq_disable(dmic->irq);
382
383 LOG_INF("dmic_remove(), dmic_active_fifos_mask = 0x%x, dmic_pause_mask = 0x%x",
384 active_fifos_mask, pause_mask);
385
386 /* The next end tasks must be passed if another DAI FIFO still runs.
387 * Note: dai_put() function that calls remove() applies the spinlock
388 * so it is not needed here to protect access to mask bits.
389 */
390 if (active_fifos_mask || pause_mask) {
391 return 0;
392 }
393
394 /* Disable DMIC clock and power */
395 dai_dmic_en_clk_gating(dmic);
396 dai_dmic_dis_power(dmic);
397
398 /* DMIC Clean sync period */
399 dai_dmic_clear_sync_period(dmic);
400
401 /* DMIC Owner Select back to Host CPU + DSP */
402 dai_dmic_release_ownership(dmic);
403
404 return 0;
405 }
406
dai_dmic_timestamp_config(const struct device * dev,struct dai_ts_cfg * cfg)407 static int dai_dmic_timestamp_config(const struct device *dev, struct dai_ts_cfg *cfg)
408 {
409 cfg->walclk_rate = CONFIG_DAI_DMIC_HW_IOCLK;
410
411 return 0;
412 }
413
dai_timestamp_dmic_start(const struct device * dev,struct dai_ts_cfg * cfg)414 static int dai_timestamp_dmic_start(const struct device *dev, struct dai_ts_cfg *cfg)
415 {
416 uint32_t addr = TS_DMIC_LOCAL_TSCTRL;
417 uint32_t cdmas;
418
419 /* Set DMIC timestamp registers */
420
421 /* First point CDMAS to GPDMA channel that is used by DMIC
422 * also clear NTK to be sure there is no old timestamp.
423 */
424 cdmas = FIELD_PREP(TS_LOCAL_TSCTRL_CDMAS, cfg->dma_chan_index +
425 cfg->dma_chan_count * cfg->dma_id);
426 sys_write32(TS_LOCAL_TSCTRL_NTK | cdmas, addr);
427
428 /* Request on demand timestamp */
429 sys_write32(TS_LOCAL_TSCTRL_ODTS | cdmas, addr);
430
431 return 0;
432 }
433
dai_timestamp_dmic_stop(const struct device * dev,struct dai_ts_cfg * cfg)434 static int dai_timestamp_dmic_stop(const struct device *dev, struct dai_ts_cfg *cfg)
435 {
436 /* Clear NTK and write zero to CDMAS */
437 sys_write32(TS_LOCAL_TSCTRL_NTK, TS_DMIC_LOCAL_TSCTRL);
438 return 0;
439 }
440
dai_timestamp_dmic_get(const struct device * dev,struct dai_ts_cfg * cfg,struct dai_ts_data * tsd)441 static int dai_timestamp_dmic_get(const struct device *dev, struct dai_ts_cfg *cfg,
442 struct dai_ts_data *tsd)
443 {
444 /* Read DMIC timestamp registers */
445 uint32_t tsctrl = TS_DMIC_LOCAL_TSCTRL;
446 uint32_t ntk;
447
448 /* Read SSP timestamp registers */
449 ntk = sys_read32(tsctrl) & TS_LOCAL_TSCTRL_NTK;
450 if (!ntk) {
451 goto out;
452 }
453
454 /* NTK was set, get wall clock */
455 tsd->walclk = sys_read64(TS_DMIC_LOCAL_WALCLK);
456
457 /* Sample */
458 tsd->sample = sys_read64(TS_DMIC_LOCAL_SAMPLE);
459
460 /* Clear NTK to enable successive timestamps */
461 sys_write32(TS_LOCAL_TSCTRL_NTK, tsctrl);
462
463 out:
464 tsd->walclk_rate = cfg->walclk_rate;
465 if (!ntk) {
466 return -ENODATA;
467 }
468
469 return 0;
470 }
471
472 /* this ramps volume changes over time */
dai_dmic_gain_ramp(struct dai_intel_dmic * dmic)473 static void dai_dmic_gain_ramp(struct dai_intel_dmic *dmic)
474 {
475 k_spinlock_key_t key;
476 int32_t gval;
477 uint32_t val;
478 int i;
479
480 /* Currently there's no DMIC HW internal mutings and wait times
481 * applied into this start sequence. It can be implemented here if
482 * start of audio capture would contain clicks and/or noise and it
483 * is not suppressed by gain ramp somewhere in the capture pipe.
484 */
485 LOG_DBG("DMIC gain ramp");
486
487 /*
488 * At run-time dmic->gain is only changed in this function, and this
489 * function runs in the pipeline task context, so it cannot run
490 * concurrently on multiple cores, since there's always only one
491 * task associated with each DAI, so we don't need to hold the lock to
492 * read the value here.
493 */
494 if (dmic->gain == DMIC_HW_FIR_GAIN_MAX << 11) {
495 return;
496 }
497
498 key = k_spin_lock(&dmic->lock);
499
500 /* Increment gain with logarithmic step.
501 * Gain is Q2.30 and gain modifier is Q12.20.
502 */
503 dmic->startcount++;
504 dmic->gain = q_multsr_sat_32x32(dmic->gain, dmic->gain_coef, Q_SHIFT_GAIN_X_GAIN_COEF);
505
506 /* Gain is stored as Q2.30, while HW register is Q1.19 so shift
507 * the value right by 11.
508 */
509 gval = dmic->gain >> 11;
510
511 /* Note that DMIC gain value zero has a special purpose. Value zero
512 * sets gain bypass mode in HW. Zero value will be applied after ramp
513 * is complete. It is because exact 1.0 gain is not possible with Q1.19.
514 */
515 if (gval > DMIC_HW_FIR_GAIN_MAX) {
516 gval = 0;
517 dmic->gain = DMIC_HW_FIR_GAIN_MAX << 11;
518 }
519
520 /* Write gain to registers */
521 for (i = 0; i < CONFIG_DAI_DMIC_HW_CONTROLLERS; i++) {
522 if (!dmic->enable[i]) {
523 continue;
524 }
525
526 if (dmic->startcount == DMIC_UNMUTE_CIC) {
527 dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
528 CIC_CONTROL_MIC_MUTE, 0);
529 }
530
531 if (dmic->startcount == DMIC_UNMUTE_FIR) {
532 dai_dmic_update_bits(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
533 dmic->dai_config_params.dai_index + FIR_CONTROL,
534 FIR_CONTROL_MUTE, 0);
535 }
536
537 if (gval != 0) {
538 val = FIELD_PREP(OUT_GAIN, gval);
539 dai_dmic_write(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
540 dmic->dai_config_params.dai_index + OUT_GAIN_LEFT, val);
541 dai_dmic_write(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
542 dmic->dai_config_params.dai_index + OUT_GAIN_RIGHT, val);
543 } else {
544 dai_dmic_write(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
545 dmic->dai_config_params.dai_index + OUT_GAIN_LEFT,
546 dmic->gain_left);
547 dai_dmic_write(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
548 dmic->dai_config_params.dai_index + OUT_GAIN_RIGHT,
549 dmic->gain_right);
550 }
551 }
552
553 k_spin_unlock(&dmic->lock, key);
554 }
555
dai_dmic_start(struct dai_intel_dmic * dmic)556 static void dai_dmic_start(struct dai_intel_dmic *dmic)
557 {
558 k_spinlock_key_t key;
559 int i;
560 int mic_a;
561 int mic_b;
562 int start_fir;
563
564 /* enable port */
565 key = k_spin_lock(&dmic->lock);
566
567 #ifdef CONFIG_SOC_SERIES_INTEL_ADSP_ACE
568 for (i = 0; i < CONFIG_DAI_DMIC_HW_CONTROLLERS; i++) {
569 dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL, CIC_CONTROL_SOFT_RESET, 0);
570 }
571 #endif
572
573 dmic->startcount = 0;
574
575 /* Compute unmute ramp gain update coefficient. */
576 dmic->gain_coef = db2lin_fixed(LOGRAMP_CONST_TERM / dmic->unmute_time_ms);
577
578 /* Initial gain value, convert Q12.20 to Q2.30 */
579 dmic->gain = Q_SHIFT_LEFT(db2lin_fixed(LOGRAMP_START_DB), 20, 30);
580
581 dai_dmic_sync_prepare(dmic);
582
583 dai_dmic_start_fifo_packers(dmic, dmic->dai_config_params.dai_index);
584
585 for (i = 0; i < CONFIG_DAI_DMIC_HW_CONTROLLERS; i++) {
586 mic_a = dmic->enable[i] & 1;
587 mic_b = (dmic->enable[i] & 2) >> 1;
588 start_fir = dmic->enable[i] > 0;
589
590 /* If both microphones are needed start them simultaneously
591 * to start them in sync. The reset may be cleared for another
592 * FIFO already. If only one mic, start them independently.
593 * This makes sure we do not clear start/en for another DAI.
594 */
595 if (mic_a && mic_b) {
596 dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
597 CIC_CONTROL_CIC_START_A |
598 CIC_CONTROL_CIC_START_B,
599 FIELD_PREP(CIC_CONTROL_CIC_START_A, 1) |
600 FIELD_PREP(CIC_CONTROL_CIC_START_B, 1));
601 dai_dmic_update_bits(dmic, dmic_base[i] + MIC_CONTROL,
602 MIC_CONTROL_PDM_EN_A |
603 MIC_CONTROL_PDM_EN_B,
604 FIELD_PREP(MIC_CONTROL_PDM_EN_A, 1) |
605 FIELD_PREP(MIC_CONTROL_PDM_EN_B, 1));
606 } else if (mic_a) {
607 dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
608 CIC_CONTROL_CIC_START_A,
609 FIELD_PREP(CIC_CONTROL_CIC_START_A, 1));
610 dai_dmic_update_bits(dmic, dmic_base[i] + MIC_CONTROL,
611 MIC_CONTROL_PDM_EN_A,
612 FIELD_PREP(MIC_CONTROL_PDM_EN_A, 1));
613 } else if (mic_b) {
614 dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
615 CIC_CONTROL_CIC_START_B,
616 FIELD_PREP(CIC_CONTROL_CIC_START_B, 1));
617 dai_dmic_update_bits(dmic, dmic_base[i] + MIC_CONTROL,
618 MIC_CONTROL_PDM_EN_B,
619 FIELD_PREP(MIC_CONTROL_PDM_EN_B, 1));
620 }
621
622 dai_dmic_update_bits(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
623 dmic->dai_config_params.dai_index + FIR_CONTROL,
624 FIR_CONTROL_START,
625 FIELD_PREP(FIR_CONTROL_START, start_fir));
626 }
627
628 #ifndef CONFIG_SOC_SERIES_INTEL_ADSP_ACE
629 /* Clear soft reset for all/used PDM controllers. This should
630 * start capture in sync.
631 */
632 for (i = 0; i < CONFIG_DAI_DMIC_HW_CONTROLLERS; i++) {
633 dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
634 CIC_CONTROL_SOFT_RESET, 0);
635
636 LOG_INF("dmic_start(), cic 0x%08x",
637 dai_dmic_read(dmic, dmic_base[i] + CIC_CONTROL));
638 }
639 #endif
640
641 /* Set bit dai->index */
642 dai_dmic_global.active_fifos_mask |= BIT(dmic->dai_config_params.dai_index);
643 dai_dmic_global.pause_mask &= ~BIT(dmic->dai_config_params.dai_index);
644
645 dmic->state = DAI_STATE_RUNNING;
646 k_spin_unlock(&dmic->lock, key);
647
648 dmic_sync_trigger(dmic);
649
650 LOG_INF("dmic_start(), dmic_active_fifos_mask = 0x%x",
651 dai_dmic_global.active_fifos_mask);
652 }
653
dai_dmic_stop(struct dai_intel_dmic * dmic,bool stop_is_pause)654 static void dai_dmic_stop(struct dai_intel_dmic *dmic, bool stop_is_pause)
655 {
656 k_spinlock_key_t key;
657 int i;
658
659 LOG_DBG("dmic_stop()");
660 key = k_spin_lock(&dmic->lock);
661
662 dai_dmic_stop_fifo_packers(dmic, dmic->dai_config_params.dai_index);
663
664 /* Set soft reset and mute on for all PDM controllers. */
665 LOG_INF("dmic_stop(), dmic_active_fifos_mask = 0x%x",
666 dai_dmic_global.active_fifos_mask);
667
668 /* Clear bit dmic->dai_config_params.dai_index for active FIFO.
669 * If stop for pause, set pause mask bit.
670 * If stop is not for pausing, it is safe to clear the pause bit.
671 */
672 dai_dmic_global.active_fifos_mask &= ~BIT(dmic->dai_config_params.dai_index);
673 if (stop_is_pause) {
674 dai_dmic_global.pause_mask |= BIT(dmic->dai_config_params.dai_index);
675 } else {
676 dai_dmic_global.pause_mask &= ~BIT(dmic->dai_config_params.dai_index);
677 }
678
679 for (i = 0; i < CONFIG_DAI_DMIC_HW_CONTROLLERS; i++) {
680 /* Don't stop CIC yet if one FIFO remains active */
681 if (dai_dmic_global.active_fifos_mask == 0) {
682 dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
683 CIC_CONTROL_SOFT_RESET |
684 CIC_CONTROL_MIC_MUTE,
685 CIC_CONTROL_SOFT_RESET |
686 CIC_CONTROL_MIC_MUTE);
687 }
688 dai_dmic_update_bits(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
689 dmic->dai_config_params.dai_index + FIR_CONTROL,
690 FIR_CONTROL_MUTE,
691 FIR_CONTROL_MUTE);
692 }
693
694 k_spin_unlock(&dmic->lock, key);
695 }
696
dai_dmic_get_properties(const struct device * dev,enum dai_dir dir,int stream_id)697 const struct dai_properties *dai_dmic_get_properties(const struct device *dev,
698 enum dai_dir dir,
699 int stream_id)
700 {
701 const struct dai_intel_dmic *dmic = (const struct dai_intel_dmic *)dev->data;
702 struct dai_properties *prop = (struct dai_properties *)dev->config;
703
704 prop->fifo_address = dmic->fifo.offset;
705 prop->fifo_depth = dmic->fifo.depth;
706 prop->dma_hs_id = dmic->fifo.handshake;
707 prop->reg_init_delay = 0;
708
709 return prop;
710 }
711
dai_dmic_trigger(const struct device * dev,enum dai_dir dir,enum dai_trigger_cmd cmd)712 static int dai_dmic_trigger(const struct device *dev, enum dai_dir dir,
713 enum dai_trigger_cmd cmd)
714 {
715 struct dai_intel_dmic *dmic = (struct dai_intel_dmic *)dev->data;
716
717 LOG_DBG("dmic_trigger()");
718
719 if (dir != DAI_DIR_RX) {
720 LOG_ERR("dmic_trigger(): direction != DAI_DIR_RX");
721 return -EINVAL;
722 }
723
724 switch (cmd) {
725 case DAI_TRIGGER_START:
726 if (dmic->state == DAI_STATE_PAUSED ||
727 dmic->state == DAI_STATE_PRE_RUNNING) {
728 dai_dmic_start(dmic);
729 dmic->state = DAI_STATE_RUNNING;
730 } else {
731 LOG_ERR("dmic_trigger(): state is not prepare or paused, dmic->state = %u",
732 dmic->state);
733 }
734 break;
735 case DAI_TRIGGER_STOP:
736 dai_dmic_stop(dmic, false);
737 dmic->state = DAI_STATE_PRE_RUNNING;
738 break;
739 case DAI_TRIGGER_PAUSE:
740 dai_dmic_stop(dmic, true);
741 dmic->state = DAI_STATE_PAUSED;
742 break;
743 case DAI_TRIGGER_COPY:
744 dai_dmic_gain_ramp(dmic);
745 break;
746 default:
747 break;
748 }
749
750 return 0;
751 }
752
dai_dmic_get_config(const struct device * dev,struct dai_config * cfg,enum dai_dir dir)753 static int dai_dmic_get_config(const struct device *dev, struct dai_config *cfg, enum dai_dir dir)
754 {
755 struct dai_intel_dmic *dmic = (struct dai_intel_dmic *)dev->data;
756
757 if (dir != DAI_DIR_RX) {
758 return -EINVAL;
759 }
760
761 if (!cfg) {
762 return -EINVAL;
763 }
764
765 *cfg = dmic->dai_config_params;
766
767 return 0;
768 }
769
dai_dmic_set_config(const struct device * dev,const struct dai_config * cfg,const void * bespoke_cfg)770 static int dai_dmic_set_config(const struct device *dev,
771 const struct dai_config *cfg, const void *bespoke_cfg)
772
773 {
774 struct dai_intel_dmic *dmic = (struct dai_intel_dmic *)dev->data;
775 int ret = 0;
776 int di = dmic->dai_config_params.dai_index;
777 k_spinlock_key_t key;
778
779 LOG_INF("dmic_set_config()");
780
781 if (di >= CONFIG_DAI_DMIC_HW_FIFOS) {
782 LOG_ERR("dmic_set_config(): DAI index exceeds number of FIFOs");
783 return -EINVAL;
784 }
785
786 if (!bespoke_cfg) {
787 LOG_ERR("dmic_set_config(): NULL config");
788 return -EINVAL;
789 }
790
791 dai_dmic_program_channel_map(dmic, cfg, di);
792
793 key = k_spin_lock(&dmic->lock);
794
795 #if CONFIG_DAI_INTEL_DMIC_TPLG_PARAMS
796 #error DMIC TPLG is not yet implemented
797
798 #elif CONFIG_DAI_INTEL_DMIC_NHLT
799 ret = dai_dmic_set_config_nhlt(dmic, bespoke_cfg);
800
801 /* There's no unmute ramp duration in blob, so the default rate dependent is used. */
802 dmic->unmute_time_ms = dmic_get_unmute_ramp_from_samplerate(dmic->dai_config_params.rate);
803 #else
804 #error No DMIC config selected
805 #endif
806
807 if (ret < 0) {
808 LOG_ERR("dmic_set_config(): Failed to set the requested configuration.");
809 goto out;
810 }
811
812 dmic->state = DAI_STATE_PRE_RUNNING;
813
814 out:
815 k_spin_unlock(&dmic->lock, key);
816 return ret;
817 }
818
dai_dmic_probe_wrapper(const struct device * dev)819 static int dai_dmic_probe_wrapper(const struct device *dev)
820 {
821 struct dai_intel_dmic *dmic = (struct dai_intel_dmic *)dev->data;
822 k_spinlock_key_t key;
823 int ret = 0;
824
825 key = k_spin_lock(&dmic->lock);
826
827 if (dmic->sref == 0) {
828 ret = dai_dmic_probe(dmic);
829 }
830
831 if (!ret) {
832 dmic->sref++;
833 }
834
835 k_spin_unlock(&dmic->lock, key);
836
837 return ret;
838 }
839
dai_dmic_remove_wrapper(const struct device * dev)840 static int dai_dmic_remove_wrapper(const struct device *dev)
841 {
842 struct dai_intel_dmic *dmic = (struct dai_intel_dmic *)dev->data;
843 k_spinlock_key_t key;
844 int ret = 0;
845
846 key = k_spin_lock(&dmic->lock);
847
848 if (--dmic->sref == 0) {
849 ret = dai_dmic_remove(dmic);
850 }
851
852 k_spin_unlock(&dmic->lock, key);
853
854 return ret;
855 }
856
dmic_pm_action(const struct device * dev,enum pm_device_action action)857 static int dmic_pm_action(const struct device *dev, enum pm_device_action action)
858 {
859 switch (action) {
860 case PM_DEVICE_ACTION_SUSPEND:
861 dai_dmic_remove_wrapper(dev);
862 break;
863 case PM_DEVICE_ACTION_RESUME:
864 dai_dmic_probe_wrapper(dev);
865 break;
866 case PM_DEVICE_ACTION_TURN_OFF:
867 case PM_DEVICE_ACTION_TURN_ON:
868 /* All device pm is handled during resume and suspend */
869 break;
870 default:
871 return -ENOTSUP;
872 }
873
874 return 0;
875 }
876
877 DEVICE_API(dai, dai_dmic_ops) = {
878 .probe = pm_device_runtime_get,
879 .remove = pm_device_runtime_put,
880 .config_set = dai_dmic_set_config,
881 .config_get = dai_dmic_get_config,
882 .get_properties = dai_dmic_get_properties,
883 .trigger = dai_dmic_trigger,
884 .ts_config = dai_dmic_timestamp_config,
885 .ts_start = dai_timestamp_dmic_start,
886 .ts_stop = dai_timestamp_dmic_stop,
887 .ts_get = dai_timestamp_dmic_get
888 };
889
dai_dmic_initialize_device(const struct device * dev)890 static int dai_dmic_initialize_device(const struct device *dev)
891 {
892 IRQ_CONNECT(
893 DT_INST_IRQN(0),
894 IRQ_DEFAULT_PRIORITY,
895 dai_dmic_irq_handler,
896 DEVICE_DT_INST_GET(0),
897 0);
898
899 return pm_device_driver_init(dev, dmic_pm_action);
900 };
901
902
903 #define DAI_INTEL_DMIC_DEVICE_INIT(n) \
904 static struct dai_properties dai_intel_dmic_properties_##n; \
905 \
906 static struct dai_intel_dmic dai_intel_dmic_data_##n = \
907 { .dai_config_params = \
908 { \
909 .type = DAI_INTEL_DMIC, \
910 .dai_index = n \
911 }, \
912 .reg_base = DT_INST_REG_ADDR_BY_IDX(n, 0), \
913 .shim_base = DT_INST_PROP(n, shim), \
914 IF_ENABLED(DT_NODE_EXISTS(DT_NODELABEL(hdamlddmic)), \
915 (.hdamldmic_base = DT_REG_ADDR(DT_NODELABEL(hdamlddmic)),)) \
916 IF_ENABLED(DT_NODE_EXISTS(DT_NODELABEL(dmicvss)), \
917 (.vshim_base = DT_REG_ADDR(DT_NODELABEL(dmicvss)),)) \
918 .irq = DT_INST_IRQN(n), \
919 .fifo = \
920 { \
921 .offset = DT_INST_REG_ADDR_BY_IDX(n, 0) \
922 + DT_INST_PROP(n, fifo), \
923 .handshake = DMA_HANDSHAKE_DMIC_CH##n \
924 }, \
925 }; \
926 \
927 PM_DEVICE_DT_INST_DEFINE(n, dmic_pm_action); \
928 \
929 DEVICE_DT_INST_DEFINE(n, \
930 dai_dmic_initialize_device, \
931 PM_DEVICE_DT_INST_GET(n), \
932 &dai_intel_dmic_data_##n, \
933 &dai_intel_dmic_properties_##n, \
934 POST_KERNEL, \
935 CONFIG_DAI_INIT_PRIORITY, \
936 &dai_dmic_ops);
937
938 DT_INST_FOREACH_STATUS_OKAY(DAI_INTEL_DMIC_DEVICE_INIT)
939