1 /*
2  * Copyright (c) 2022 Intel Corporation.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #define DT_DRV_COMPAT intel_dai_dmic
8 #define LOG_DOMAIN dai_intel_dmic
9 #include <zephyr/logging/log.h>
10 LOG_MODULE_REGISTER(LOG_DOMAIN);
11 
12 #include <errno.h>
13 #include <stdbool.h>
14 #include <stdint.h>
15 #include <zephyr/kernel.h>
16 #include <zephyr/spinlock.h>
17 #include <zephyr/devicetree.h>
18 #include <zephyr/pm/device.h>
19 #include <zephyr/pm/device_runtime.h>
20 
21 #include <zephyr/drivers/dai.h>
22 #include <zephyr/irq.h>
23 
24 #include "dmic.h"
25 #include <dmic_regs.h>
26 
27 /* Base addresses (in PDM scope) of 2ch PDM controllers and coefficient RAM. */
28 static const uint32_t dmic_base[4] = {PDM0, PDM1, PDM2, PDM3};
29 
30 /* global data shared between all dmic instances */
31 struct dai_dmic_global_shared dai_dmic_global;
32 
33 /* Helper macro to read 64-bit data using two 32-bit data read */
34 #define sys_read64(addr)    (((uint64_t)(sys_read32(addr + 4)) << 32) | \
35 			     sys_read32(addr))
36 
37 int dai_dmic_set_config_nhlt(struct dai_intel_dmic *dmic, const void *spec_config);
38 
39 /* Exponent function for small values of x. This function calculates
40  * fairly accurately exponent for x in range -2.0 .. +2.0. The iteration
41  * uses first 11 terms of Taylor series approximation for exponent
42  * function. With the current scaling the numerator just remains under
43  * 64 bits with the 11 terms.
44  *
45  * See https://en.wikipedia.org/wiki/Exponential_function#Computation
46  *
47  * The input is Q3.29
48  * The output is Q9.23
49  */
exp_small_fixed(int32_t x)50 static int32_t exp_small_fixed(int32_t x)
51 {
52 	int64_t p;
53 	int64_t num = Q_SHIFT_RND(x, 29, 23);
54 	int32_t y = (int32_t)num;
55 	int32_t den = 1;
56 	int32_t inc;
57 	int k;
58 
59 	/* Numerator is x^k, denominator is k! */
60 	for (k = 2; k < 12; k++) {
61 		p = num * x; /* Q9.23 x Q3.29 -> Q12.52 */
62 		num = Q_SHIFT_RND(p, 52, 23);
63 		den = den * k;
64 		inc = (int32_t)(num / den);
65 		y += inc;
66 	}
67 
68 	return y + ONE_Q23;
69 }
70 
exp_fixed(int32_t x)71 static int32_t exp_fixed(int32_t x)
72 {
73 	int32_t xs;
74 	int32_t y;
75 	int32_t z;
76 	int i;
77 	int n = 0;
78 
79 	if (x < Q_CONVERT_FLOAT(-11.5, 27)) {
80 		return 0;
81 	}
82 
83 	if (x > Q_CONVERT_FLOAT(7.6245, 27)) {
84 		return INT32_MAX;
85 	}
86 
87 	/* x is Q5.27 */
88 	xs = x;
89 	while (xs >= TWO_Q27 || xs <= MINUS_TWO_Q27) {
90 		xs >>= 1;
91 		n++;
92 	}
93 
94 	/* exp_small_fixed() input is Q3.29, while x1 is Q5.27
95 	 * exp_small_fixed() output is Q9.23, while z is Q12.20
96 	 */
97 	z = Q_SHIFT_RND(exp_small_fixed(Q_SHIFT_LEFT(xs, 27, 29)), 23, 20);
98 	y = ONE_Q20;
99 	for (i = 0; i < (1 << n); i++) {
100 		y = (int32_t)Q_MULTSR_32X32((int64_t)y, z, 20, 20, 20);
101 	}
102 
103 	return y;
104 }
105 
db2lin_fixed(int32_t db)106 static int32_t db2lin_fixed(int32_t db)
107 {
108 	int32_t arg;
109 
110 	if (db < Q_CONVERT_FLOAT(-100.0, 24)) {
111 		return 0;
112 	}
113 
114 	/* Q8.24 x Q5.27, result needs to be Q5.27 */
115 	arg = (int32_t)Q_MULTSR_32X32((int64_t)db, LOG10_DIV20_Q27, 24, 27, 27);
116 	return exp_fixed(arg);
117 }
118 
dai_dmic_update_bits(const struct dai_intel_dmic * dmic,uint32_t reg,uint32_t mask,uint32_t val)119 static void dai_dmic_update_bits(const struct dai_intel_dmic *dmic,
120 				 uint32_t reg, uint32_t mask, uint32_t val)
121 {
122 	uint32_t dest = dmic->reg_base + reg;
123 
124 	sys_write32((sys_read32(dest) & (~mask)) | (val & mask), dest);
125 }
126 
dai_dmic_write(const struct dai_intel_dmic * dmic,uint32_t reg,uint32_t val)127 static inline void dai_dmic_write(const struct dai_intel_dmic *dmic,
128 			   uint32_t reg, uint32_t val)
129 {
130 	sys_write32(val, dmic->reg_base + reg);
131 }
132 
dai_dmic_read(const struct dai_intel_dmic * dmic,uint32_t reg)133 static inline uint32_t dai_dmic_read(const struct dai_intel_dmic *dmic,
134 				     uint32_t reg)
135 {
136 	return sys_read32(dmic->reg_base + reg);
137 }
138 
139 #if CONFIG_DAI_DMIC_HAS_OWNERSHIP
dai_dmic_claim_ownership(const struct dai_intel_dmic * dmic)140 static inline void dai_dmic_claim_ownership(const struct dai_intel_dmic *dmic)
141 {
142 	/* DMIC Owner Select to DSP */
143 	sys_write32(sys_read32(dmic->shim_base + DMICLCTL_OFFSET) |
144 		    FIELD_PREP(DMICLCTL_OSEL, 0x3), dmic->shim_base + DMICLCTL_OFFSET);
145 }
146 
dai_dmic_release_ownership(const struct dai_intel_dmic * dmic)147 static inline void dai_dmic_release_ownership(const struct dai_intel_dmic *dmic)
148 {
149 	/* DMIC Owner Select back to Host CPU + DSP */
150 	sys_write32(sys_read32(dmic->shim_base + DMICLCTL_OFFSET) &
151 			~DMICLCTL_OSEL, dmic->shim_base + DMICLCTL_OFFSET);
152 }
153 
154 #else /* CONFIG_DAI_DMIC_HAS_OWNERSHIP */
155 
dai_dmic_claim_ownership(const struct dai_intel_dmic * dmic)156 static inline void dai_dmic_claim_ownership(const struct dai_intel_dmic *dmic) {}
dai_dmic_release_ownership(const struct dai_intel_dmic * dmic)157 static inline void dai_dmic_release_ownership(const struct dai_intel_dmic *dmic) {}
158 
159 #endif /* CONFIG_DAI_DMIC_HAS_OWNERSHIP */
160 
dai_dmic_base(const struct dai_intel_dmic * dmic)161 static inline uint32_t dai_dmic_base(const struct dai_intel_dmic *dmic)
162 {
163 #if defined(CONFIG_SOC_INTEL_ACE20_LNL) || defined(CONFIG_SOC_INTEL_ACE30)
164 	return dmic->hdamldmic_base;
165 #else
166 	return dmic->shim_base;
167 #endif
168 }
169 
170 #if CONFIG_DAI_DMIC_HAS_MULTIPLE_LINE_SYNC
dai_dmic_set_sync_period(uint32_t period,const struct dai_intel_dmic * dmic)171 static inline void dai_dmic_set_sync_period(uint32_t period, const struct dai_intel_dmic *dmic)
172 {
173 	uint32_t val = CONFIG_DAI_DMIC_HW_IOCLK / period - 1;
174 	uint32_t base = dai_dmic_base(dmic);
175 	/* DMIC Change sync period */
176 #if defined(CONFIG_SOC_INTEL_ACE20_LNL) || defined(CONFIG_SOC_INTEL_ACE30)
177 	sys_write32(sys_read32(base + DMICSYNC_OFFSET) | FIELD_PREP(DMICSYNC_SYNCPRD, val),
178 		    base + DMICSYNC_OFFSET);
179 	sys_write32(sys_read32(base + DMICSYNC_OFFSET) | DMICSYNC_SYNCPU,
180 		    base + DMICSYNC_OFFSET);
181 
182 	if (!WAIT_FOR((sys_read32(base + DMICSYNC_OFFSET) & DMICSYNC_SYNCPU) == 0, 1000,
183 		      k_sleep(K_USEC(100)))) {
184 		LOG_ERR("poll timeout");
185 	}
186 
187 	sys_write32(sys_read32(base + DMICSYNC_OFFSET) | DMICSYNC_CMDSYNC,
188 		    base + DMICSYNC_OFFSET);
189 #else /* All other CAVS and ACE platforms */
190 	sys_write32(sys_read32(base + DMICSYNC_OFFSET) | FIELD_PREP(DMICSYNC_SYNCPRD, val),
191 		    base + DMICSYNC_OFFSET);
192 	sys_write32(sys_read32(base + DMICSYNC_OFFSET) | DMICSYNC_CMDSYNC,
193 		    base + DMICSYNC_OFFSET);
194 #endif
195 }
196 
dai_dmic_clear_sync_period(const struct dai_intel_dmic * dmic)197 static inline void dai_dmic_clear_sync_period(const struct dai_intel_dmic *dmic)
198 {
199 	uint32_t base = dai_dmic_base(dmic);
200 	/* DMIC Clean sync period */
201 	sys_write32(sys_read32(base + DMICSYNC_OFFSET) & ~DMICSYNC_SYNCPRD,
202 			base + DMICSYNC_OFFSET);
203 	sys_write32(sys_read32(base + DMICSYNC_OFFSET) & ~DMICSYNC_CMDSYNC,
204 			base + DMICSYNC_OFFSET);
205 }
206 
207 /* Preparing for command synchronization on multiple link segments */
dai_dmic_sync_prepare(const struct dai_intel_dmic * dmic)208 static inline void dai_dmic_sync_prepare(const struct dai_intel_dmic *dmic)
209 {
210 	uint32_t base = dai_dmic_base(dmic);
211 
212 	sys_write32(sys_read32(base + DMICSYNC_OFFSET) | DMICSYNC_CMDSYNC,
213 		    base + DMICSYNC_OFFSET);
214 }
215 
216 /* Trigering synchronization of command execution */
dmic_sync_trigger(const struct dai_intel_dmic * dmic)217 static void dmic_sync_trigger(const struct dai_intel_dmic *dmic)
218 {
219 	uint32_t base = dai_dmic_base(dmic);
220 
221 	__ASSERT_NO_MSG((sys_read32(base + DMICSYNC_OFFSET) & DMICSYNC_CMDSYNC) != 0);
222 
223 	sys_write32(sys_read32(base + DMICSYNC_OFFSET) |
224 		    DMICSYNC_SYNCGO, base + DMICSYNC_OFFSET);
225 
226 	/* waiting for CMDSYNC bit clearing */
227 	if (!WAIT_FOR((sys_read32(base + DMICSYNC_OFFSET) & DMICSYNC_CMDSYNC) == 0,
228 		      1000, k_sleep(K_USEC(100)))) {
229 		LOG_ERR("poll timeout");
230 	}
231 }
232 
233 #else /* CONFIG_DAI_DMIC_HAS_MULTIPLE_LINE_SYNC */
234 
dai_dmic_set_sync_period(uint32_t period,const struct dai_intel_dmic * dmic)235 static inline void dai_dmic_set_sync_period(uint32_t period, const struct dai_intel_dmic *dmic) {}
dai_dmic_clear_sync_period(const struct dai_intel_dmic * dmic)236 static inline void dai_dmic_clear_sync_period(const struct dai_intel_dmic *dmic) {}
dai_dmic_sync_prepare(const struct dai_intel_dmic * dmic)237 static inline void dai_dmic_sync_prepare(const struct dai_intel_dmic *dmic) {}
dmic_sync_trigger(const struct dai_intel_dmic * dmic)238 static void dmic_sync_trigger(const struct dai_intel_dmic *dmic) {}
239 
240 #endif /* CONFIG_DAI_DMIC_HAS_MULTIPLE_LINE_SYNC */
241 
dai_dmic_start_fifo_packers(struct dai_intel_dmic * dmic,int fifo_index)242 static void dai_dmic_start_fifo_packers(struct dai_intel_dmic *dmic, int fifo_index)
243 {
244 
245 	/* Start FIFO packers and clear FIFO initialize bits */
246 	dai_dmic_update_bits(dmic, fifo_index * PDM_CHANNEL_REGS_SIZE + OUTCONTROL,
247 			     OUTCONTROL_SIP | OUTCONTROL_FINIT,
248 			     OUTCONTROL_SIP);
249 }
250 
dai_dmic_stop_fifo_packers(struct dai_intel_dmic * dmic,int fifo_index)251 static void dai_dmic_stop_fifo_packers(struct dai_intel_dmic *dmic,
252 					int fifo_index)
253 {
254 	/* Stop FIFO packers and set FIFO initialize bits */
255 	dai_dmic_update_bits(dmic, fifo_index * PDM_CHANNEL_REGS_SIZE + OUTCONTROL,
256 			     OUTCONTROL_SIP | OUTCONTROL_FINIT,
257 			     OUTCONTROL_FINIT);
258 }
259 
dai_dmic_dis_clk_gating(const struct dai_intel_dmic * dmic)260 static inline void dai_dmic_dis_clk_gating(const struct dai_intel_dmic *dmic)
261 {
262 	/* Disable DMIC clock gating */
263 #if (CONFIG_SOC_INTEL_ACE20_LNL || CONFIG_SOC_INTEL_ACE30)
264 	sys_write32((sys_read32(dmic->vshim_base + DMICLVSCTL_OFFSET) | DMICLVSCTL_DCGD),
265 		    dmic->vshim_base + DMICLVSCTL_OFFSET);
266 #else
267 	sys_write32((sys_read32(dmic->shim_base + DMICLCTL_OFFSET) | DMICLCTL_DCGD),
268 		    dmic->shim_base + DMICLCTL_OFFSET);
269 #endif
270 }
271 
dai_dmic_en_clk_gating(const struct dai_intel_dmic * dmic)272 static inline void dai_dmic_en_clk_gating(const struct dai_intel_dmic *dmic)
273 {
274 	/* Enable DMIC clock gating */
275 #if (CONFIG_SOC_INTEL_ACE20_LNL || CONFIG_SOC_INTEL_ACE30)
276 	sys_write32((sys_read32(dmic->vshim_base + DMICLVSCTL_OFFSET) & ~DMICLVSCTL_DCGD),
277 		    dmic->vshim_base + DMICLVSCTL_OFFSET);
278 #else /* All other CAVS and ACE platforms */
279 	sys_write32((sys_read32(dmic->shim_base + DMICLCTL_OFFSET) & ~DMICLCTL_DCGD),
280 		    dmic->shim_base + DMICLCTL_OFFSET);
281 #endif
282 
283 }
284 
dai_dmic_program_channel_map(const struct dai_intel_dmic * dmic,const struct dai_config * cfg,uint32_t index)285 static inline void dai_dmic_program_channel_map(const struct dai_intel_dmic *dmic,
286 						const struct dai_config *cfg,
287 						uint32_t index)
288 {
289 #if defined(CONFIG_SOC_INTEL_ACE20_LNL) || defined(CONFIG_SOC_INTEL_ACE30)
290 	uint16_t pcmsycm = cfg->link_config;
291 	uint32_t reg_add = dmic->shim_base + DMICXPCMSyCM_OFFSET + 0x0004*index;
292 
293 	sys_write16(pcmsycm, reg_add);
294 #else
295 	ARG_UNUSED(dmic);
296 	ARG_UNUSED(cfg);
297 	ARG_UNUSED(index);
298 #endif /* defined(CONFIG_SOC_INTEL_ACE20_LNL) || defined(CONFIG_SOC_INTEL_ACE30) */
299 }
300 
dai_dmic_en_power(const struct dai_intel_dmic * dmic)301 static inline void dai_dmic_en_power(const struct dai_intel_dmic *dmic)
302 {
303 	uint32_t base = dai_dmic_base(dmic);
304 	/* Enable DMIC power */
305 	sys_write32((sys_read32(base + DMICLCTL_OFFSET) | DMICLCTL_SPA),
306 			base + DMICLCTL_OFFSET);
307 
308 #if defined(CONFIG_SOC_INTEL_ACE20_LNL) || defined(CONFIG_SOC_INTEL_ACE30)
309 	while (!(sys_read32(base + DMICLCTL_OFFSET) & DMICLCTL_CPA)) {
310 		k_sleep(K_USEC(100));
311 	}
312 #endif
313 }
314 
dai_dmic_dis_power(const struct dai_intel_dmic * dmic)315 static inline void dai_dmic_dis_power(const struct dai_intel_dmic *dmic)
316 {
317 	uint32_t base = dai_dmic_base(dmic);
318 	/* Disable DMIC power */
319 	sys_write32((sys_read32(base + DMICLCTL_OFFSET) & (~DMICLCTL_SPA)),
320 		     base + DMICLCTL_OFFSET);
321 }
322 
dai_dmic_probe(struct dai_intel_dmic * dmic)323 static int dai_dmic_probe(struct dai_intel_dmic *dmic)
324 {
325 	LOG_INF("dmic_probe()");
326 
327 	/* Set state, note there is no playback direction support */
328 	dmic->state = DAI_STATE_NOT_READY;
329 
330 	/* Enable DMIC power */
331 	dai_dmic_en_power(dmic);
332 
333 	/* Disable dynamic clock gating for dmic before touching any reg */
334 	dai_dmic_dis_clk_gating(dmic);
335 
336 	/* DMIC Change sync period */
337 	dai_dmic_set_sync_period(CONFIG_DAI_DMIC_PLATFORM_SYNC_PERIOD, dmic);
338 
339 	/* DMIC Owner Select to DSP */
340 	dai_dmic_claim_ownership(dmic);
341 
342 	return 0;
343 }
344 
dai_dmic_remove(struct dai_intel_dmic * dmic)345 static int dai_dmic_remove(struct dai_intel_dmic *dmic)
346 {
347 	uint32_t active_fifos_mask = dai_dmic_global.active_fifos_mask;
348 	uint32_t pause_mask = dai_dmic_global.pause_mask;
349 
350 	LOG_INF("dmic_remove(), dmic_active_fifos_mask = 0x%x, dmic_pause_mask = 0x%x",
351 		active_fifos_mask, pause_mask);
352 
353 	/* The next end tasks must be passed if another DAI FIFO still runs.
354 	 * Note: dai_put() function that calls remove() applies the spinlock
355 	 * so it is not needed here to protect access to mask bits.
356 	 */
357 	if (active_fifos_mask || pause_mask) {
358 		return 0;
359 	}
360 
361 	/* Disable DMIC clock and power */
362 	dai_dmic_en_clk_gating(dmic);
363 	dai_dmic_dis_power(dmic);
364 
365 	/* DMIC Clean sync period */
366 	dai_dmic_clear_sync_period(dmic);
367 
368 	/* DMIC Owner Select back to Host CPU + DSP */
369 	dai_dmic_release_ownership(dmic);
370 
371 	return 0;
372 }
373 
dai_dmic_timestamp_config(const struct device * dev,struct dai_ts_cfg * cfg)374 static int dai_dmic_timestamp_config(const struct device *dev, struct dai_ts_cfg *cfg)
375 {
376 	cfg->walclk_rate = CONFIG_DAI_DMIC_HW_IOCLK;
377 
378 	return 0;
379 }
380 
dai_timestamp_dmic_start(const struct device * dev,struct dai_ts_cfg * cfg)381 static int dai_timestamp_dmic_start(const struct device *dev, struct dai_ts_cfg *cfg)
382 {
383 	uint32_t addr = TS_DMIC_LOCAL_TSCTRL;
384 	uint32_t cdmas;
385 
386 	/* Set DMIC timestamp registers */
387 
388 	/* First point CDMAS to GPDMA channel that is used by DMIC
389 	 * also clear NTK to be sure there is no old timestamp.
390 	 */
391 	cdmas = FIELD_PREP(TS_LOCAL_TSCTRL_CDMAS, cfg->dma_chan_index +
392 		cfg->dma_chan_count * cfg->dma_id);
393 	sys_write32(TS_LOCAL_TSCTRL_NTK | cdmas, addr);
394 
395 	/* Request on demand timestamp */
396 	sys_write32(TS_LOCAL_TSCTRL_ODTS | cdmas, addr);
397 
398 	return 0;
399 }
400 
dai_timestamp_dmic_stop(const struct device * dev,struct dai_ts_cfg * cfg)401 static int dai_timestamp_dmic_stop(const struct device *dev, struct dai_ts_cfg *cfg)
402 {
403 	/* Clear NTK and write zero to CDMAS */
404 	sys_write32(TS_LOCAL_TSCTRL_NTK, TS_DMIC_LOCAL_TSCTRL);
405 	return 0;
406 }
407 
dai_timestamp_dmic_get(const struct device * dev,struct dai_ts_cfg * cfg,struct dai_ts_data * tsd)408 static int dai_timestamp_dmic_get(const struct device *dev, struct dai_ts_cfg *cfg,
409 				  struct dai_ts_data *tsd)
410 {
411 	/* Read DMIC timestamp registers */
412 	uint32_t tsctrl = TS_DMIC_LOCAL_TSCTRL;
413 	uint32_t ntk;
414 
415 	/* Read SSP timestamp registers */
416 	ntk = sys_read32(tsctrl) & TS_LOCAL_TSCTRL_NTK;
417 	if (!ntk) {
418 		goto out;
419 	}
420 
421 	/* NTK was set, get wall clock */
422 	tsd->walclk = sys_read64(TS_DMIC_LOCAL_WALCLK);
423 
424 	/* Sample */
425 	tsd->sample = sys_read64(TS_DMIC_LOCAL_SAMPLE);
426 
427 	/* Clear NTK to enable successive timestamps */
428 	sys_write32(TS_LOCAL_TSCTRL_NTK, tsctrl);
429 
430 out:
431 	tsd->walclk_rate = cfg->walclk_rate;
432 	if (!ntk) {
433 		return -ENODATA;
434 	}
435 
436 	return 0;
437 }
438 
439 /* this ramps volume changes over time */
dai_dmic_gain_ramp(struct dai_intel_dmic * dmic)440 static void dai_dmic_gain_ramp(struct dai_intel_dmic *dmic)
441 {
442 	k_spinlock_key_t key;
443 	int32_t gval;
444 	uint32_t val;
445 	int i;
446 
447 	/* Currently there's no DMIC HW internal mutings and wait times
448 	 * applied into this start sequence. It can be implemented here if
449 	 * start of audio capture would contain clicks and/or noise and it
450 	 * is not suppressed by gain ramp somewhere in the capture pipe.
451 	 */
452 	LOG_DBG("DMIC gain ramp");
453 
454 	/*
455 	 * At run-time dmic->gain is only changed in this function, and this
456 	 * function runs in the pipeline task context, so it cannot run
457 	 * concurrently on multiple cores, since there's always only one
458 	 * task associated with each DAI, so we don't need to hold the lock to
459 	 * read the value here.
460 	 */
461 	if (dmic->gain == DMIC_HW_FIR_GAIN_MAX << 11) {
462 		return;
463 	}
464 
465 	key = k_spin_lock(&dmic->lock);
466 
467 	/* Increment gain with logarithmic step.
468 	 * Gain is Q2.30 and gain modifier is Q12.20.
469 	 */
470 	dmic->startcount++;
471 	dmic->gain = q_multsr_sat_32x32(dmic->gain, dmic->gain_coef, Q_SHIFT_GAIN_X_GAIN_COEF);
472 
473 	/* Gain is stored as Q2.30, while HW register is Q1.19 so shift
474 	 * the value right by 11.
475 	 */
476 	gval = dmic->gain >> 11;
477 
478 	/* Note that DMIC gain value zero has a special purpose. Value zero
479 	 * sets gain bypass mode in HW. Zero value will be applied after ramp
480 	 * is complete. It is because exact 1.0 gain is not possible with Q1.19.
481 	 */
482 	if (gval > DMIC_HW_FIR_GAIN_MAX) {
483 		gval = 0;
484 		dmic->gain = DMIC_HW_FIR_GAIN_MAX << 11;
485 	}
486 
487 	/* Write gain to registers */
488 	for (i = 0; i < CONFIG_DAI_DMIC_HW_CONTROLLERS; i++) {
489 		if (!dmic->enable[i]) {
490 			continue;
491 		}
492 
493 		if (dmic->startcount == DMIC_UNMUTE_CIC) {
494 			dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
495 					     CIC_CONTROL_MIC_MUTE, 0);
496 		}
497 
498 		if (dmic->startcount == DMIC_UNMUTE_FIR) {
499 			dai_dmic_update_bits(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
500 					     dmic->dai_config_params.dai_index + FIR_CONTROL,
501 					     FIR_CONTROL_MUTE, 0);
502 		}
503 
504 		if (gval != 0) {
505 			val = FIELD_PREP(OUT_GAIN, gval);
506 			dai_dmic_write(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
507 				       dmic->dai_config_params.dai_index + OUT_GAIN_LEFT, val);
508 			dai_dmic_write(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
509 				       dmic->dai_config_params.dai_index + OUT_GAIN_RIGHT, val);
510 		} else {
511 			dai_dmic_write(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
512 				       dmic->dai_config_params.dai_index + OUT_GAIN_LEFT,
513 				       dmic->gain_left);
514 			dai_dmic_write(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
515 				       dmic->dai_config_params.dai_index + OUT_GAIN_RIGHT,
516 				       dmic->gain_right);
517 		}
518 	}
519 
520 	k_spin_unlock(&dmic->lock, key);
521 }
522 
dai_dmic_start(struct dai_intel_dmic * dmic)523 static void dai_dmic_start(struct dai_intel_dmic *dmic)
524 {
525 	k_spinlock_key_t key;
526 	int i;
527 	int mic_a;
528 	int mic_b;
529 	int start_fir;
530 
531 	/* enable port */
532 	key = k_spin_lock(&dmic->lock);
533 
534 #ifdef CONFIG_SOC_SERIES_INTEL_ADSP_ACE
535 	for (i = 0; i < CONFIG_DAI_DMIC_HW_CONTROLLERS; i++) {
536 		dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL, CIC_CONTROL_SOFT_RESET, 0);
537 	}
538 #endif
539 
540 	dmic->startcount = 0;
541 
542 	/* Compute unmute ramp gain update coefficient. */
543 	dmic->gain_coef = db2lin_fixed(LOGRAMP_CONST_TERM / dmic->unmute_time_ms);
544 
545 	/* Initial gain value, convert Q12.20 to Q2.30 */
546 	dmic->gain = Q_SHIFT_LEFT(db2lin_fixed(LOGRAMP_START_DB), 20, 30);
547 
548 	dai_dmic_sync_prepare(dmic);
549 
550 	dai_dmic_start_fifo_packers(dmic, dmic->dai_config_params.dai_index);
551 
552 	for (i = 0; i < CONFIG_DAI_DMIC_HW_CONTROLLERS; i++) {
553 		mic_a = dmic->enable[i] & 1;
554 		mic_b = (dmic->enable[i] & 2) >> 1;
555 		start_fir = dmic->enable[i] > 0;
556 
557 		/* If both microphones are needed start them simultaneously
558 		 * to start them in sync. The reset may be cleared for another
559 		 * FIFO already. If only one mic, start them independently.
560 		 * This makes sure we do not clear start/en for another DAI.
561 		 */
562 		if (mic_a && mic_b) {
563 			dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
564 					     CIC_CONTROL_CIC_START_A |
565 					     CIC_CONTROL_CIC_START_B,
566 					     FIELD_PREP(CIC_CONTROL_CIC_START_A, 1) |
567 					     FIELD_PREP(CIC_CONTROL_CIC_START_B, 1));
568 			dai_dmic_update_bits(dmic, dmic_base[i] + MIC_CONTROL,
569 					     MIC_CONTROL_PDM_EN_A |
570 					     MIC_CONTROL_PDM_EN_B,
571 					     FIELD_PREP(MIC_CONTROL_PDM_EN_A, 1) |
572 					     FIELD_PREP(MIC_CONTROL_PDM_EN_B, 1));
573 		} else if (mic_a) {
574 			dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
575 					     CIC_CONTROL_CIC_START_A,
576 					     FIELD_PREP(CIC_CONTROL_CIC_START_A, 1));
577 			dai_dmic_update_bits(dmic, dmic_base[i] + MIC_CONTROL,
578 					     MIC_CONTROL_PDM_EN_A,
579 					     FIELD_PREP(MIC_CONTROL_PDM_EN_A, 1));
580 		} else if (mic_b) {
581 			dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
582 					     CIC_CONTROL_CIC_START_B,
583 					     FIELD_PREP(CIC_CONTROL_CIC_START_B, 1));
584 			dai_dmic_update_bits(dmic, dmic_base[i] + MIC_CONTROL,
585 					     MIC_CONTROL_PDM_EN_B,
586 					     FIELD_PREP(MIC_CONTROL_PDM_EN_B, 1));
587 		}
588 
589 		dai_dmic_update_bits(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
590 				     dmic->dai_config_params.dai_index + FIR_CONTROL,
591 				     FIR_CONTROL_START,
592 				     FIELD_PREP(FIR_CONTROL_START, start_fir));
593 	}
594 
595 #ifndef CONFIG_SOC_SERIES_INTEL_ADSP_ACE
596 	/* Clear soft reset for all/used PDM controllers. This should
597 	 * start capture in sync.
598 	 */
599 	for (i = 0; i < CONFIG_DAI_DMIC_HW_CONTROLLERS; i++) {
600 		dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
601 				     CIC_CONTROL_SOFT_RESET, 0);
602 
603 		LOG_INF("dmic_start(), cic 0x%08x",
604 			dai_dmic_read(dmic, dmic_base[i] + CIC_CONTROL));
605 	}
606 #endif
607 
608 	/* Set bit dai->index */
609 	dai_dmic_global.active_fifos_mask |= BIT(dmic->dai_config_params.dai_index);
610 	dai_dmic_global.pause_mask &= ~BIT(dmic->dai_config_params.dai_index);
611 
612 	dmic->state = DAI_STATE_RUNNING;
613 	k_spin_unlock(&dmic->lock, key);
614 
615 	dmic_sync_trigger(dmic);
616 
617 	LOG_INF("dmic_start(), dmic_active_fifos_mask = 0x%x",
618 		dai_dmic_global.active_fifos_mask);
619 }
620 
dai_dmic_stop(struct dai_intel_dmic * dmic,bool stop_is_pause)621 static void dai_dmic_stop(struct dai_intel_dmic *dmic, bool stop_is_pause)
622 {
623 	k_spinlock_key_t key;
624 	int i;
625 
626 	LOG_DBG("dmic_stop()");
627 	key = k_spin_lock(&dmic->lock);
628 
629 	dai_dmic_stop_fifo_packers(dmic, dmic->dai_config_params.dai_index);
630 
631 	/* Set soft reset and mute on for all PDM controllers. */
632 	LOG_INF("dmic_stop(), dmic_active_fifos_mask = 0x%x",
633 			dai_dmic_global.active_fifos_mask);
634 
635 	/* Clear bit dmic->dai_config_params.dai_index for active FIFO.
636 	 * If stop for pause, set pause mask bit.
637 	 * If stop is not for pausing, it is safe to clear the pause bit.
638 	 */
639 	dai_dmic_global.active_fifos_mask &= ~BIT(dmic->dai_config_params.dai_index);
640 	if (stop_is_pause) {
641 		dai_dmic_global.pause_mask |= BIT(dmic->dai_config_params.dai_index);
642 	} else {
643 		dai_dmic_global.pause_mask &= ~BIT(dmic->dai_config_params.dai_index);
644 	}
645 
646 	for (i = 0; i < CONFIG_DAI_DMIC_HW_CONTROLLERS; i++) {
647 		/* Don't stop CIC yet if one FIFO remains active */
648 		if (dai_dmic_global.active_fifos_mask == 0) {
649 			dai_dmic_update_bits(dmic, dmic_base[i] + CIC_CONTROL,
650 					     CIC_CONTROL_SOFT_RESET |
651 					     CIC_CONTROL_MIC_MUTE,
652 					     CIC_CONTROL_SOFT_RESET |
653 					     CIC_CONTROL_MIC_MUTE);
654 		}
655 		dai_dmic_update_bits(dmic, dmic_base[i] + FIR_CHANNEL_REGS_SIZE *
656 				     dmic->dai_config_params.dai_index + FIR_CONTROL,
657 				     FIR_CONTROL_MUTE,
658 				     FIR_CONTROL_MUTE);
659 	}
660 
661 	k_spin_unlock(&dmic->lock, key);
662 }
663 
dai_dmic_get_properties(const struct device * dev,enum dai_dir dir,int stream_id)664 const struct dai_properties *dai_dmic_get_properties(const struct device *dev,
665 						     enum dai_dir dir,
666 						     int stream_id)
667 {
668 	const struct dai_intel_dmic *dmic = (const struct dai_intel_dmic *)dev->data;
669 	struct dai_properties *prop = (struct dai_properties *)dev->config;
670 
671 	prop->fifo_address = dmic->fifo.offset;
672 	prop->fifo_depth = dmic->fifo.depth;
673 	prop->dma_hs_id = dmic->fifo.handshake;
674 	prop->reg_init_delay = 0;
675 
676 	return prop;
677 }
678 
dai_dmic_trigger(const struct device * dev,enum dai_dir dir,enum dai_trigger_cmd cmd)679 static int dai_dmic_trigger(const struct device *dev, enum dai_dir dir,
680 			    enum dai_trigger_cmd cmd)
681 {
682 	struct dai_intel_dmic *dmic = (struct dai_intel_dmic *)dev->data;
683 
684 	LOG_DBG("dmic_trigger()");
685 
686 	if (dir != DAI_DIR_RX) {
687 		LOG_ERR("dmic_trigger(): direction != DAI_DIR_RX");
688 		return -EINVAL;
689 	}
690 
691 	switch (cmd) {
692 	case DAI_TRIGGER_START:
693 		if (dmic->state == DAI_STATE_PAUSED ||
694 		    dmic->state == DAI_STATE_PRE_RUNNING) {
695 			dai_dmic_start(dmic);
696 			dmic->state = DAI_STATE_RUNNING;
697 		} else {
698 			LOG_ERR("dmic_trigger(): state is not prepare or paused, dmic->state = %u",
699 				dmic->state);
700 		}
701 		break;
702 	case DAI_TRIGGER_STOP:
703 		dai_dmic_stop(dmic, false);
704 		dmic->state = DAI_STATE_PRE_RUNNING;
705 		break;
706 	case DAI_TRIGGER_PAUSE:
707 		dai_dmic_stop(dmic, true);
708 		dmic->state = DAI_STATE_PAUSED;
709 		break;
710 	case DAI_TRIGGER_COPY:
711 		dai_dmic_gain_ramp(dmic);
712 		break;
713 	default:
714 		break;
715 	}
716 
717 	return 0;
718 }
719 
dai_dmic_get_config(const struct device * dev,struct dai_config * cfg,enum dai_dir dir)720 static int dai_dmic_get_config(const struct device *dev, struct dai_config *cfg, enum dai_dir dir)
721 {
722 	struct dai_intel_dmic *dmic = (struct dai_intel_dmic *)dev->data;
723 
724 	if (dir != DAI_DIR_RX) {
725 		return -EINVAL;
726 	}
727 
728 	if (!cfg) {
729 		return -EINVAL;
730 	}
731 
732 	*cfg = dmic->dai_config_params;
733 
734 	return 0;
735 }
736 
dai_dmic_set_config(const struct device * dev,const struct dai_config * cfg,const void * bespoke_cfg)737 static int dai_dmic_set_config(const struct device *dev,
738 		const struct dai_config *cfg, const void *bespoke_cfg)
739 
740 {
741 	struct dai_intel_dmic *dmic = (struct dai_intel_dmic *)dev->data;
742 	int ret = 0;
743 	int di = dmic->dai_config_params.dai_index;
744 	k_spinlock_key_t key;
745 
746 	LOG_INF("dmic_set_config()");
747 
748 	if (di >= CONFIG_DAI_DMIC_HW_FIFOS) {
749 		LOG_ERR("dmic_set_config(): DAI index exceeds number of FIFOs");
750 		return -EINVAL;
751 	}
752 
753 	if (!bespoke_cfg) {
754 		LOG_ERR("dmic_set_config(): NULL config");
755 		return -EINVAL;
756 	}
757 
758 	dai_dmic_program_channel_map(dmic, cfg, di);
759 
760 	key = k_spin_lock(&dmic->lock);
761 
762 #if CONFIG_DAI_INTEL_DMIC_TPLG_PARAMS
763 #error DMIC TPLG is not yet implemented
764 
765 #elif CONFIG_DAI_INTEL_DMIC_NHLT
766 	ret = dai_dmic_set_config_nhlt(dmic, bespoke_cfg);
767 
768 	/* There's no unmute ramp duration in blob, so the default rate dependent is used. */
769 	dmic->unmute_time_ms = dmic_get_unmute_ramp_from_samplerate(dmic->dai_config_params.rate);
770 #else
771 #error No DMIC config selected
772 #endif
773 
774 	if (ret < 0) {
775 		LOG_ERR("dmic_set_config(): Failed to set the requested configuration.");
776 		goto out;
777 	}
778 
779 	dmic->state = DAI_STATE_PRE_RUNNING;
780 
781 out:
782 	k_spin_unlock(&dmic->lock, key);
783 	return ret;
784 }
785 
dai_dmic_probe_wrapper(const struct device * dev)786 static int dai_dmic_probe_wrapper(const struct device *dev)
787 {
788 	struct dai_intel_dmic *dmic = (struct dai_intel_dmic *)dev->data;
789 	k_spinlock_key_t key;
790 	int ret = 0;
791 
792 	key = k_spin_lock(&dmic->lock);
793 
794 	if (dmic->sref == 0) {
795 		ret = dai_dmic_probe(dmic);
796 	}
797 
798 	if (!ret) {
799 		dmic->sref++;
800 	}
801 
802 	k_spin_unlock(&dmic->lock, key);
803 
804 	return ret;
805 }
806 
dai_dmic_remove_wrapper(const struct device * dev)807 static int dai_dmic_remove_wrapper(const struct device *dev)
808 {
809 	struct dai_intel_dmic *dmic = (struct dai_intel_dmic *)dev->data;
810 	k_spinlock_key_t key;
811 	int ret = 0;
812 
813 	key = k_spin_lock(&dmic->lock);
814 
815 	if (--dmic->sref == 0) {
816 		ret = dai_dmic_remove(dmic);
817 	}
818 
819 	k_spin_unlock(&dmic->lock, key);
820 
821 	return ret;
822 }
823 
dmic_pm_action(const struct device * dev,enum pm_device_action action)824 static int dmic_pm_action(const struct device *dev, enum pm_device_action action)
825 {
826 	switch (action) {
827 	case PM_DEVICE_ACTION_SUSPEND:
828 		dai_dmic_remove_wrapper(dev);
829 		break;
830 	case PM_DEVICE_ACTION_RESUME:
831 		dai_dmic_probe_wrapper(dev);
832 		break;
833 	case PM_DEVICE_ACTION_TURN_OFF:
834 	case PM_DEVICE_ACTION_TURN_ON:
835 		/* All device pm is handled during resume and suspend */
836 		break;
837 	default:
838 		return -ENOTSUP;
839 	}
840 
841 	return 0;
842 }
843 
844 DEVICE_API(dai, dai_dmic_ops) = {
845 	.probe			= pm_device_runtime_get,
846 	.remove			= pm_device_runtime_put,
847 	.config_set		= dai_dmic_set_config,
848 	.config_get		= dai_dmic_get_config,
849 	.get_properties		= dai_dmic_get_properties,
850 	.trigger		= dai_dmic_trigger,
851 	.ts_config		= dai_dmic_timestamp_config,
852 	.ts_start		= dai_timestamp_dmic_start,
853 	.ts_stop		= dai_timestamp_dmic_stop,
854 	.ts_get			= dai_timestamp_dmic_get
855 };
856 
dai_dmic_initialize_device(const struct device * dev)857 static int dai_dmic_initialize_device(const struct device *dev)
858 {
859 	return pm_device_driver_init(dev, dmic_pm_action);
860 };
861 
862 
863 #define DAI_INTEL_DMIC_DEVICE_INIT(n)					\
864 	static struct dai_properties dai_intel_dmic_properties_##n;	\
865 									\
866 	static struct dai_intel_dmic dai_intel_dmic_data_##n =		\
867 	{	.dai_config_params =					\
868 		{							\
869 			.type = DAI_INTEL_DMIC,				\
870 			.dai_index = n					\
871 		},							\
872 		.reg_base = DT_INST_REG_ADDR_BY_IDX(n, 0),		\
873 		.shim_base = DT_INST_PROP(n, shim),			\
874 		IF_ENABLED(DT_NODE_EXISTS(DT_NODELABEL(hdamlddmic)),	\
875 			(.hdamldmic_base = DT_REG_ADDR(DT_NODELABEL(hdamlddmic)),))	\
876 		IF_ENABLED(DT_NODE_EXISTS(DT_NODELABEL(dmicvss)),	\
877 			(.vshim_base = DT_REG_ADDR(DT_NODELABEL(dmicvss)),))	\
878 		.irq = DT_INST_IRQN(n),					\
879 		.fifo =							\
880 		{							\
881 			.offset = DT_INST_REG_ADDR_BY_IDX(n, 0)		\
882 				+ DT_INST_PROP(n, fifo),		\
883 			.handshake = DMA_HANDSHAKE_DMIC_CH##n		\
884 		},							\
885 	};								\
886 									\
887 	PM_DEVICE_DT_INST_DEFINE(n, dmic_pm_action);			\
888 									\
889 	DEVICE_DT_INST_DEFINE(n,					\
890 		dai_dmic_initialize_device,				\
891 		PM_DEVICE_DT_INST_GET(n),				\
892 		&dai_intel_dmic_data_##n,				\
893 		&dai_intel_dmic_properties_##n,				\
894 		POST_KERNEL,						\
895 		CONFIG_DAI_INIT_PRIORITY,				\
896 		&dai_dmic_ops);
897 
898 DT_INST_FOREACH_STATUS_OKAY(DAI_INTEL_DMIC_DEVICE_INIT)
899