1 /*
2 * SPDX-FileCopyrightText: Copyright 2010-2024 Arm Limited and/or its affiliates <open-source-office@arm.com>
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 *
6 * Licensed under the Apache License, Version 2.0 (the License); you may
7 * not use this file except in compliance with the License.
8 * You may obtain a copy of the License at
9 *
10 * www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 */
18
19 #include <stdlib.h>
20
21 #include <arm_nnfunctions.h>
22 #include <unity.h>
23
24 #include "../TestData/basic/test_data.h"
25 #include "../TestData/conv_2/test_data.h"
26 #include "../TestData/conv_2x2_dilation/test_data.h"
27 #include "../TestData/conv_2x2_dilation_5x5_input/test_data.h"
28 #include "../TestData/conv_2x3_dilation/test_data.h"
29 #include "../TestData/conv_3/test_data.h"
30 #include "../TestData/conv_3x2_dilation/test_data.h"
31 #include "../TestData/conv_3x3_dilation_5x5_input/test_data.h"
32 #include "../TestData/conv_4/test_data.h"
33 #include "../TestData/conv_5/test_data.h"
34 #include "../TestData/conv_dilation_golden/test_data.h"
35 #include "../TestData/conv_out_activation/test_data.h"
36 #include "../TestData/stride2pad1/test_data.h"
37 #include "../Utils/validate.h"
38
basic_arm_convolve_s8(void)39 void basic_arm_convolve_s8(void)
40 {
41 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
42 int8_t output[BASIC_DST_SIZE] = {0};
43
44 cmsis_nn_context ctx;
45 cmsis_nn_conv_params conv_params;
46 cmsis_nn_per_channel_quant_params quant_params;
47 cmsis_nn_dims input_dims;
48 cmsis_nn_dims filter_dims;
49 cmsis_nn_dims bias_dims;
50 cmsis_nn_dims output_dims;
51
52 const int32_t *bias_data = basic_biases;
53 const int8_t *kernel_data = basic_weights;
54 const int8_t *input_data = basic_input;
55 const int8_t *output_ref = basic_output_ref;
56 const int32_t output_ref_size = BASIC_DST_SIZE;
57
58 input_dims.n = BASIC_INPUT_BATCHES;
59 input_dims.w = BASIC_INPUT_W;
60 input_dims.h = BASIC_INPUT_H;
61 input_dims.c = BASIC_IN_CH;
62 filter_dims.w = BASIC_FILTER_X;
63 filter_dims.h = BASIC_FILTER_Y;
64 filter_dims.c = BASIC_IN_CH;
65 output_dims.w = BASIC_OUTPUT_W;
66 output_dims.h = BASIC_OUTPUT_H;
67 output_dims.c = BASIC_OUT_CH;
68
69 conv_params.padding.w = BASIC_PAD_X;
70 conv_params.padding.h = BASIC_PAD_Y;
71 conv_params.stride.w = BASIC_STRIDE_X;
72 conv_params.stride.h = BASIC_STRIDE_Y;
73 conv_params.dilation.w = BASIC_DILATION_X;
74 conv_params.dilation.h = BASIC_DILATION_Y;
75
76 conv_params.input_offset = BASIC_INPUT_OFFSET;
77 conv_params.output_offset = BASIC_OUTPUT_OFFSET;
78 conv_params.activation.min = BASIC_OUT_ACTIVATION_MIN;
79 conv_params.activation.max = BASIC_OUT_ACTIVATION_MAX;
80 quant_params.multiplier = (int32_t *)basic_output_mult;
81 quant_params.shift = (int32_t *)basic_output_shift;
82
83 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
84 ctx.buf = malloc(buf_size);
85 ctx.size = 0;
86
87 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
88 &conv_params,
89 &quant_params,
90 &input_dims,
91 input_data,
92 &filter_dims,
93 kernel_data,
94 &bias_dims,
95 bias_data,
96 NULL,
97 &output_dims,
98 output);
99
100 if (ctx.buf)
101 {
102 // The caller is responsible to clear the scratch buffers for security reasons if applicable.
103 memset(ctx.buf, 0, buf_size);
104 free(ctx.buf);
105 }
106 TEST_ASSERT_EQUAL(expected, result);
107 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
108 memset(output, 0, sizeof(output));
109
110 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
111 ctx.buf = malloc(buf_size);
112 ctx.size = 0;
113
114 result = arm_convolve_wrapper_s8(&ctx,
115 &conv_params,
116 &quant_params,
117 &input_dims,
118 input_data,
119 &filter_dims,
120 kernel_data,
121 &bias_dims,
122 bias_data,
123 &output_dims,
124 output);
125
126 if (ctx.buf)
127 {
128 memset(ctx.buf, 0, buf_size);
129 free(ctx.buf);
130 }
131 TEST_ASSERT_EQUAL(expected, result);
132 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
133 }
134
stride2pad1_arm_convolve_s8(void)135 void stride2pad1_arm_convolve_s8(void)
136 {
137 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
138 int8_t output[STRIDE2PAD1_DST_SIZE] = {0};
139
140 cmsis_nn_context ctx;
141 cmsis_nn_conv_params conv_params;
142 cmsis_nn_per_channel_quant_params quant_params;
143 cmsis_nn_dims input_dims;
144 cmsis_nn_dims filter_dims;
145 cmsis_nn_dims bias_dims;
146 cmsis_nn_dims output_dims;
147
148 const int32_t *bias_data = stride2pad1_biases;
149 const int8_t *kernel_data = stride2pad1_weights;
150 const int8_t *input_data = stride2pad1_input;
151 const int8_t *output_ref = stride2pad1_output_ref;
152 const int32_t output_ref_size = STRIDE2PAD1_DST_SIZE;
153
154 input_dims.n = STRIDE2PAD1_INPUT_BATCHES;
155 input_dims.w = STRIDE2PAD1_INPUT_W;
156 input_dims.h = STRIDE2PAD1_INPUT_H;
157 input_dims.c = STRIDE2PAD1_IN_CH;
158 filter_dims.w = STRIDE2PAD1_FILTER_X;
159 filter_dims.h = STRIDE2PAD1_FILTER_Y;
160 filter_dims.c = STRIDE2PAD1_IN_CH;
161 output_dims.w = STRIDE2PAD1_OUTPUT_W;
162 output_dims.h = STRIDE2PAD1_OUTPUT_H;
163 output_dims.c = STRIDE2PAD1_OUT_CH;
164
165 conv_params.padding.w = STRIDE2PAD1_PAD_X;
166 conv_params.padding.h = STRIDE2PAD1_PAD_Y;
167 conv_params.stride.w = STRIDE2PAD1_STRIDE_X;
168 conv_params.stride.h = STRIDE2PAD1_STRIDE_Y;
169 conv_params.dilation.w = STRIDE2PAD1_DILATION_X;
170 conv_params.dilation.h = STRIDE2PAD1_DILATION_Y;
171
172 conv_params.input_offset = STRIDE2PAD1_INPUT_OFFSET;
173 conv_params.output_offset = STRIDE2PAD1_OUTPUT_OFFSET;
174 conv_params.activation.min = STRIDE2PAD1_OUT_ACTIVATION_MIN;
175 conv_params.activation.max = STRIDE2PAD1_OUT_ACTIVATION_MAX;
176 quant_params.multiplier = (int32_t *)stride2pad1_output_mult;
177 quant_params.shift = (int32_t *)stride2pad1_output_shift;
178
179 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
180 ctx.buf = malloc(buf_size);
181 ctx.size = 0;
182
183 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
184 &conv_params,
185 &quant_params,
186 &input_dims,
187 input_data,
188 &filter_dims,
189 kernel_data,
190 &bias_dims,
191 bias_data,
192 NULL,
193 &output_dims,
194 output);
195
196 if (ctx.buf)
197 {
198 memset(ctx.buf, 0, buf_size);
199 free(ctx.buf);
200 }
201 TEST_ASSERT_EQUAL(expected, result);
202 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
203 memset(output, 0, sizeof(output));
204
205 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
206 ctx.buf = malloc(buf_size);
207 ctx.size = 0;
208
209 result = arm_convolve_wrapper_s8(&ctx,
210 &conv_params,
211 &quant_params,
212 &input_dims,
213 input_data,
214 &filter_dims,
215 kernel_data,
216 &bias_dims,
217 bias_data,
218 &output_dims,
219 output);
220
221 if (ctx.buf)
222 {
223 memset(ctx.buf, 0, buf_size);
224 free(ctx.buf);
225 }
226 TEST_ASSERT_EQUAL(expected, result);
227 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
228 }
229
conv_2_arm_convolve_s8(void)230 void conv_2_arm_convolve_s8(void)
231 {
232 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
233 int8_t output[CONV_2_DST_SIZE] = {0};
234
235 cmsis_nn_context ctx;
236 cmsis_nn_conv_params conv_params;
237 cmsis_nn_per_channel_quant_params quant_params;
238 cmsis_nn_dims input_dims;
239 cmsis_nn_dims filter_dims;
240 cmsis_nn_dims bias_dims;
241 cmsis_nn_dims output_dims;
242
243 const int32_t *bias_data = conv_2_biases;
244 const int8_t *kernel_data = conv_2_weights;
245 const int8_t *input_data = conv_2_input;
246 const int8_t *output_ref = conv_2_output_ref;
247 const int32_t output_ref_size = CONV_2_DST_SIZE;
248
249 input_dims.n = CONV_2_INPUT_BATCHES;
250 input_dims.w = CONV_2_INPUT_W;
251 input_dims.h = CONV_2_INPUT_H;
252 input_dims.c = CONV_2_IN_CH;
253 filter_dims.w = CONV_2_FILTER_X;
254 filter_dims.h = CONV_2_FILTER_Y;
255 filter_dims.c = CONV_2_IN_CH;
256 output_dims.w = CONV_2_OUTPUT_W;
257 output_dims.h = CONV_2_OUTPUT_H;
258 output_dims.c = CONV_2_OUT_CH;
259
260 conv_params.padding.w = CONV_2_PAD_X;
261 conv_params.padding.h = CONV_2_PAD_Y;
262 conv_params.stride.w = CONV_2_STRIDE_X;
263 conv_params.stride.h = CONV_2_STRIDE_Y;
264 conv_params.dilation.w = CONV_2_DILATION_X;
265 conv_params.dilation.h = CONV_2_DILATION_Y;
266
267 conv_params.input_offset = CONV_2_INPUT_OFFSET;
268 conv_params.output_offset = CONV_2_OUTPUT_OFFSET;
269 conv_params.activation.min = CONV_2_OUT_ACTIVATION_MIN;
270 conv_params.activation.max = CONV_2_OUT_ACTIVATION_MAX;
271 quant_params.multiplier = (int32_t *)conv_2_output_mult;
272 quant_params.shift = (int32_t *)conv_2_output_shift;
273
274 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
275 ctx.buf = malloc(buf_size);
276 ctx.size = 0;
277
278 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
279 &conv_params,
280 &quant_params,
281 &input_dims,
282 input_data,
283 &filter_dims,
284 conv_2_weights,
285 &bias_dims,
286 bias_data,
287 NULL,
288 &output_dims,
289 output);
290
291 if (ctx.buf)
292 {
293 memset(ctx.buf, 0, buf_size);
294 free(ctx.buf);
295 }
296 TEST_ASSERT_EQUAL(expected, result);
297 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
298 memset(output, 0, sizeof(output));
299
300 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
301 ctx.buf = malloc(buf_size);
302 ctx.size = 0;
303
304 result = arm_convolve_wrapper_s8(&ctx,
305 &conv_params,
306 &quant_params,
307 &input_dims,
308 input_data,
309 &filter_dims,
310 kernel_data,
311 &bias_dims,
312 bias_data,
313 &output_dims,
314 output);
315
316 if (ctx.buf)
317 {
318 memset(ctx.buf, 0, buf_size);
319 free(ctx.buf);
320 }
321 TEST_ASSERT_EQUAL(expected, result);
322 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
323 }
324
conv_3_arm_convolve_s8(void)325 void conv_3_arm_convolve_s8(void)
326 {
327 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
328 int8_t output[CONV_3_DST_SIZE] = {0};
329
330 cmsis_nn_context ctx;
331 cmsis_nn_conv_params conv_params;
332 cmsis_nn_per_channel_quant_params quant_params;
333 cmsis_nn_dims input_dims;
334 cmsis_nn_dims filter_dims;
335 cmsis_nn_dims bias_dims;
336 cmsis_nn_dims output_dims;
337
338 const int32_t *bias_data = conv_3_biases;
339 const int8_t *kernel_data = conv_3_weights;
340 const int8_t *input_data = conv_3_input;
341 const int8_t *output_ref = conv_3_output_ref;
342 const int32_t output_ref_size = CONV_3_DST_SIZE;
343
344 input_dims.n = CONV_3_INPUT_BATCHES;
345 input_dims.w = CONV_3_INPUT_W;
346 input_dims.h = CONV_3_INPUT_H;
347 input_dims.c = CONV_3_IN_CH;
348 filter_dims.w = CONV_3_FILTER_X;
349 filter_dims.h = CONV_3_FILTER_Y;
350 filter_dims.c = CONV_3_IN_CH;
351 output_dims.w = CONV_3_OUTPUT_W;
352 output_dims.h = CONV_3_OUTPUT_H;
353 output_dims.c = CONV_3_OUT_CH;
354
355 conv_params.padding.w = CONV_3_PAD_X;
356 conv_params.padding.h = CONV_3_PAD_Y;
357 conv_params.stride.w = CONV_3_STRIDE_X;
358 conv_params.stride.h = CONV_3_STRIDE_Y;
359 conv_params.dilation.w = CONV_3_DILATION_X;
360 conv_params.dilation.h = CONV_3_DILATION_Y;
361
362 conv_params.input_offset = CONV_3_INPUT_OFFSET;
363 conv_params.output_offset = CONV_3_OUTPUT_OFFSET;
364 conv_params.activation.min = CONV_3_OUT_ACTIVATION_MIN;
365 conv_params.activation.max = CONV_3_OUT_ACTIVATION_MAX;
366 quant_params.multiplier = (int32_t *)conv_3_output_mult;
367 quant_params.shift = (int32_t *)conv_3_output_shift;
368
369 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
370 ctx.buf = malloc(buf_size);
371 ctx.size = 0;
372
373 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
374 &conv_params,
375 &quant_params,
376 &input_dims,
377 input_data,
378 &filter_dims,
379 conv_3_weights,
380 &bias_dims,
381 bias_data,
382 NULL,
383 &output_dims,
384 output);
385
386 if (ctx.buf)
387 {
388 memset(ctx.buf, 0, buf_size);
389 free(ctx.buf);
390 }
391 TEST_ASSERT_EQUAL(expected, result);
392 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
393 memset(output, 0, sizeof(output));
394
395 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
396 ctx.buf = malloc(buf_size);
397 ctx.size = 0;
398
399 result = arm_convolve_wrapper_s8(&ctx,
400 &conv_params,
401 &quant_params,
402 &input_dims,
403 input_data,
404 &filter_dims,
405 kernel_data,
406 &bias_dims,
407 bias_data,
408 &output_dims,
409 output);
410
411 if (ctx.buf)
412 {
413 memset(ctx.buf, 0, buf_size);
414 free(ctx.buf);
415 }
416 TEST_ASSERT_EQUAL(expected, result);
417 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
418 }
419
conv_4_arm_convolve_s8(void)420 void conv_4_arm_convolve_s8(void)
421 {
422 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
423 int8_t output[CONV_4_DST_SIZE] = {0};
424
425 cmsis_nn_context ctx;
426 cmsis_nn_conv_params conv_params;
427 cmsis_nn_per_channel_quant_params quant_params;
428 cmsis_nn_dims input_dims;
429 cmsis_nn_dims filter_dims;
430 cmsis_nn_dims bias_dims;
431 cmsis_nn_dims output_dims;
432
433 const int32_t *bias_data = conv_4_biases;
434 const int8_t *kernel_data = conv_4_weights;
435 const int8_t *input_data = conv_4_input;
436 const int8_t *output_ref = conv_4_output_ref;
437 const int32_t output_ref_size = CONV_4_DST_SIZE;
438
439 input_dims.n = CONV_4_INPUT_BATCHES;
440 input_dims.w = CONV_4_INPUT_W;
441 input_dims.h = CONV_4_INPUT_H;
442 input_dims.c = CONV_4_IN_CH;
443 filter_dims.w = CONV_4_FILTER_X;
444 filter_dims.h = CONV_4_FILTER_Y;
445 filter_dims.c = CONV_4_IN_CH;
446 output_dims.w = CONV_4_OUTPUT_W;
447 output_dims.h = CONV_4_OUTPUT_H;
448 output_dims.c = CONV_4_OUT_CH;
449
450 conv_params.padding.w = CONV_4_PAD_X;
451 conv_params.padding.h = CONV_4_PAD_Y;
452 conv_params.stride.w = CONV_4_STRIDE_X;
453 conv_params.stride.h = CONV_4_STRIDE_Y;
454 conv_params.dilation.w = CONV_4_DILATION_X;
455 conv_params.dilation.h = CONV_4_DILATION_Y;
456
457 conv_params.input_offset = CONV_4_INPUT_OFFSET;
458 conv_params.output_offset = CONV_4_OUTPUT_OFFSET;
459 conv_params.activation.min = CONV_4_OUT_ACTIVATION_MIN;
460 conv_params.activation.max = CONV_4_OUT_ACTIVATION_MAX;
461 quant_params.multiplier = (int32_t *)conv_4_output_mult;
462 quant_params.shift = (int32_t *)conv_4_output_shift;
463
464 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
465 ctx.buf = malloc(buf_size);
466 ctx.size = 0;
467
468 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
469 &conv_params,
470 &quant_params,
471 &input_dims,
472 input_data,
473 &filter_dims,
474 conv_4_weights,
475 &bias_dims,
476 bias_data,
477 NULL,
478 &output_dims,
479 output);
480
481 if (ctx.buf)
482 {
483 memset(ctx.buf, 0, buf_size);
484 free(ctx.buf);
485 }
486 TEST_ASSERT_EQUAL(expected, result);
487 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
488 memset(output, 0, sizeof(output));
489
490 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
491 ctx.buf = malloc(buf_size);
492 ctx.size = 0;
493
494 result = arm_convolve_wrapper_s8(&ctx,
495 &conv_params,
496 &quant_params,
497 &input_dims,
498 input_data,
499 &filter_dims,
500 kernel_data,
501 &bias_dims,
502 bias_data,
503 &output_dims,
504 output);
505
506 if (ctx.buf)
507 {
508 memset(ctx.buf, 0, buf_size);
509 free(ctx.buf);
510 }
511 TEST_ASSERT_EQUAL(expected, result);
512 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
513 }
514
conv_out_activation_arm_convolve_s8(void)515 void conv_out_activation_arm_convolve_s8(void)
516 {
517 int8_t output[CONV_OUT_ACTIVATION_DST_SIZE] = {0};
518
519 cmsis_nn_context ctx;
520 cmsis_nn_conv_params conv_params;
521 cmsis_nn_per_channel_quant_params quant_params;
522 cmsis_nn_dims input_dims;
523 cmsis_nn_dims filter_dims;
524 cmsis_nn_dims bias_dims;
525 cmsis_nn_dims output_dims;
526
527 const int32_t *bias_data = conv_out_activation_biases;
528 const int8_t *kernel_data = conv_out_activation_weights;
529 const int8_t *input_data = conv_out_activation_input;
530 const int8_t *output_ref = conv_out_activation_output_ref;
531 const int32_t output_ref_size = CONV_OUT_ACTIVATION_DST_SIZE;
532
533 input_dims.n = CONV_OUT_ACTIVATION_INPUT_BATCHES;
534 input_dims.w = CONV_OUT_ACTIVATION_INPUT_W;
535 input_dims.h = CONV_OUT_ACTIVATION_INPUT_H;
536 input_dims.c = CONV_OUT_ACTIVATION_IN_CH;
537 filter_dims.w = CONV_OUT_ACTIVATION_FILTER_X;
538 filter_dims.h = CONV_OUT_ACTIVATION_FILTER_Y;
539 filter_dims.c = CONV_OUT_ACTIVATION_IN_CH;
540 output_dims.w = CONV_OUT_ACTIVATION_OUTPUT_W;
541 output_dims.h = CONV_OUT_ACTIVATION_OUTPUT_H;
542 output_dims.c = CONV_OUT_ACTIVATION_OUT_CH;
543
544 conv_params.padding.w = CONV_OUT_ACTIVATION_PAD_X;
545 conv_params.padding.h = CONV_OUT_ACTIVATION_PAD_Y;
546 conv_params.stride.w = CONV_OUT_ACTIVATION_STRIDE_X;
547 conv_params.stride.h = CONV_OUT_ACTIVATION_STRIDE_Y;
548 conv_params.dilation.w = CONV_OUT_ACTIVATION_DILATION_X;
549 conv_params.dilation.h = CONV_OUT_ACTIVATION_DILATION_Y;
550
551 conv_params.input_offset = CONV_OUT_ACTIVATION_INPUT_OFFSET;
552 conv_params.output_offset = CONV_OUT_ACTIVATION_OUTPUT_OFFSET;
553 conv_params.activation.min = CONV_OUT_ACTIVATION_OUT_ACTIVATION_MIN;
554 conv_params.activation.max = CONV_OUT_ACTIVATION_OUT_ACTIVATION_MAX;
555 quant_params.multiplier = (int32_t *)conv_out_activation_output_mult;
556 quant_params.shift = (int32_t *)conv_out_activation_output_shift;
557
558 int32_t buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
559 ctx.buf = malloc(buf_size);
560
561 arm_cmsis_nn_status result = arm_convolve_wrapper_s8(&ctx,
562 &conv_params,
563 &quant_params,
564 &input_dims,
565 input_data,
566 &filter_dims,
567 kernel_data,
568 &bias_dims,
569 bias_data,
570 &output_dims,
571 output);
572 if (ctx.buf)
573 {
574 memset(ctx.buf, 0, buf_size);
575 free(ctx.buf);
576 }
577 TEST_ASSERT_EQUAL(ARM_CMSIS_NN_SUCCESS, result);
578 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
579 }
580
conv_2x2_dilation_arm_convolve_s8(void)581 void conv_2x2_dilation_arm_convolve_s8(void)
582 {
583 int8_t output[CONV_2X2_DILATION_DST_SIZE] = {0};
584
585 cmsis_nn_context ctx;
586 cmsis_nn_conv_params conv_params;
587 cmsis_nn_per_channel_quant_params quant_params;
588 cmsis_nn_dims input_dims;
589 cmsis_nn_dims filter_dims;
590 cmsis_nn_dims bias_dims;
591 cmsis_nn_dims output_dims;
592
593 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
594 const int32_t *bias_data = conv_2x2_dilation_biases;
595 const int8_t *kernel_data = conv_2x2_dilation_weights;
596 const int8_t *input_data = conv_2x2_dilation_input;
597 const int8_t *output_ref = conv_2x2_dilation_output_ref;
598 const int32_t output_ref_size = CONV_2X2_DILATION_DST_SIZE;
599
600 input_dims.n = CONV_2X2_DILATION_INPUT_BATCHES;
601 input_dims.w = CONV_2X2_DILATION_INPUT_W;
602 input_dims.h = CONV_2X2_DILATION_INPUT_H;
603 input_dims.c = CONV_2X2_DILATION_IN_CH;
604 filter_dims.w = CONV_2X2_DILATION_FILTER_X;
605 filter_dims.h = CONV_2X2_DILATION_FILTER_Y;
606 filter_dims.c = CONV_2X2_DILATION_IN_CH;
607 output_dims.w = CONV_2X2_DILATION_OUTPUT_W;
608 output_dims.h = CONV_2X2_DILATION_OUTPUT_H;
609 output_dims.c = CONV_2X2_DILATION_OUT_CH;
610
611 conv_params.padding.w = CONV_2X2_DILATION_PAD_X;
612 conv_params.padding.h = CONV_2X2_DILATION_PAD_Y;
613 conv_params.stride.w = CONV_2X2_DILATION_STRIDE_X;
614 conv_params.stride.h = CONV_2X2_DILATION_STRIDE_Y;
615 conv_params.dilation.w = CONV_2X2_DILATION_DILATION_X;
616 conv_params.dilation.h = CONV_2X2_DILATION_DILATION_Y;
617
618 conv_params.input_offset = CONV_2X2_DILATION_INPUT_OFFSET;
619 conv_params.output_offset = CONV_2X2_DILATION_OUTPUT_OFFSET;
620 conv_params.activation.min = CONV_2X2_DILATION_OUT_ACTIVATION_MIN;
621 conv_params.activation.max = CONV_2X2_DILATION_OUT_ACTIVATION_MAX;
622 quant_params.multiplier = (int32_t *)conv_2x2_dilation_output_mult;
623 quant_params.shift = (int32_t *)conv_2x2_dilation_output_shift;
624
625 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
626 ctx.buf = malloc(buf_size);
627 ctx.size = 0;
628
629 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
630 &conv_params,
631 &quant_params,
632 &input_dims,
633 input_data,
634 &filter_dims,
635 kernel_data,
636 &bias_dims,
637 bias_data,
638 NULL,
639 &output_dims,
640 output);
641
642 if (ctx.buf)
643 {
644 memset(ctx.buf, 0, buf_size);
645 free(ctx.buf);
646 }
647 TEST_ASSERT_EQUAL(expected, result);
648 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
649 memset(output, 0, sizeof(output));
650
651 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
652 ctx.buf = malloc(buf_size);
653 ctx.size = 0;
654
655 result = arm_convolve_wrapper_s8(&ctx,
656 &conv_params,
657 &quant_params,
658 &input_dims,
659 input_data,
660 &filter_dims,
661 kernel_data,
662 &bias_dims,
663 bias_data,
664 &output_dims,
665 output);
666
667 if (ctx.buf)
668 {
669 memset(ctx.buf, 0, buf_size);
670 free(ctx.buf);
671 }
672 TEST_ASSERT_EQUAL(expected, result);
673 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
674 }
675
conv_2x2_dilation_5x5_input_arm_convolve_s8(void)676 void conv_2x2_dilation_5x5_input_arm_convolve_s8(void)
677 {
678 int8_t output[CONV_2X2_DILATION_5X5_INPUT_DST_SIZE] = {0};
679
680 cmsis_nn_context ctx;
681 cmsis_nn_conv_params conv_params;
682 cmsis_nn_per_channel_quant_params quant_params;
683 cmsis_nn_dims input_dims;
684 cmsis_nn_dims filter_dims;
685 cmsis_nn_dims bias_dims;
686 cmsis_nn_dims output_dims;
687
688 const int32_t *bias_data = conv_2x2_dilation_5x5_input_biases;
689 const int8_t *kernel_data = conv_2x2_dilation_5x5_input_weights;
690 const int8_t *input_data = conv_2x2_dilation_5x5_input_input;
691 const int8_t *output_ref = conv_2x2_dilation_5x5_input_output_ref;
692 const int32_t output_ref_size = CONV_2X2_DILATION_5X5_INPUT_DST_SIZE;
693 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
694
695 input_dims.n = CONV_2X2_DILATION_5X5_INPUT_INPUT_BATCHES;
696 input_dims.w = CONV_2X2_DILATION_5X5_INPUT_INPUT_W;
697 input_dims.h = CONV_2X2_DILATION_5X5_INPUT_INPUT_H;
698 input_dims.c = CONV_2X2_DILATION_5X5_INPUT_IN_CH;
699 filter_dims.w = CONV_2X2_DILATION_5X5_INPUT_FILTER_X;
700 filter_dims.h = CONV_2X2_DILATION_5X5_INPUT_FILTER_Y;
701 filter_dims.c = CONV_2X2_DILATION_5X5_INPUT_IN_CH;
702 output_dims.w = CONV_2X2_DILATION_5X5_INPUT_OUTPUT_W;
703 output_dims.h = CONV_2X2_DILATION_5X5_INPUT_OUTPUT_H;
704 output_dims.c = CONV_2X2_DILATION_5X5_INPUT_OUT_CH;
705
706 conv_params.padding.w = CONV_2X2_DILATION_5X5_INPUT_PAD_X;
707 conv_params.padding.h = CONV_2X2_DILATION_5X5_INPUT_PAD_Y;
708 conv_params.stride.w = CONV_2X2_DILATION_5X5_INPUT_STRIDE_X;
709 conv_params.stride.h = CONV_2X2_DILATION_5X5_INPUT_STRIDE_Y;
710 conv_params.dilation.w = CONV_2X2_DILATION_5X5_INPUT_DILATION_X;
711 conv_params.dilation.h = CONV_2X2_DILATION_5X5_INPUT_DILATION_Y;
712
713 conv_params.input_offset = CONV_2X2_DILATION_5X5_INPUT_INPUT_OFFSET;
714 conv_params.output_offset = CONV_2X2_DILATION_5X5_INPUT_OUTPUT_OFFSET;
715 conv_params.activation.min = CONV_2X2_DILATION_5X5_INPUT_OUT_ACTIVATION_MIN;
716 conv_params.activation.max = CONV_2X2_DILATION_5X5_INPUT_OUT_ACTIVATION_MAX;
717 quant_params.multiplier = (int32_t *)conv_2x2_dilation_5x5_input_output_mult;
718 quant_params.shift = (int32_t *)conv_2x2_dilation_5x5_input_output_shift;
719
720 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
721 ctx.buf = malloc(buf_size);
722
723 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
724 &conv_params,
725 &quant_params,
726 &input_dims,
727 input_data,
728 &filter_dims,
729 kernel_data,
730 &bias_dims,
731 bias_data,
732 NULL,
733 &output_dims,
734 output);
735 if (ctx.buf)
736 {
737 memset(ctx.buf, 0, buf_size);
738 free(ctx.buf);
739 }
740 TEST_ASSERT_EQUAL(expected, result);
741 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
742 memset(output, 0, sizeof(output));
743
744 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
745 ctx.buf = malloc(buf_size);
746 ctx.size = 0;
747
748 result = arm_convolve_wrapper_s8(&ctx,
749 &conv_params,
750 &quant_params,
751 &input_dims,
752 input_data,
753 &filter_dims,
754 kernel_data,
755 &bias_dims,
756 bias_data,
757 &output_dims,
758 output);
759
760 if (ctx.buf)
761 {
762 memset(ctx.buf, 0, buf_size);
763 free(ctx.buf);
764 }
765 TEST_ASSERT_EQUAL(expected, result);
766 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
767 }
768
conv_3x3_dilation_5x5_input_arm_convolve_s8(void)769 void conv_3x3_dilation_5x5_input_arm_convolve_s8(void)
770 {
771 int8_t output[CONV_3X3_DILATION_5X5_INPUT_DST_SIZE] = {0};
772
773 cmsis_nn_context ctx;
774 cmsis_nn_conv_params conv_params;
775 cmsis_nn_per_channel_quant_params quant_params;
776 cmsis_nn_dims input_dims;
777 cmsis_nn_dims filter_dims;
778 cmsis_nn_dims bias_dims;
779 cmsis_nn_dims output_dims;
780
781 const int32_t *bias_data = conv_3x3_dilation_5x5_input_biases;
782 const int8_t *kernel_data = conv_3x3_dilation_5x5_input_weights;
783 const int8_t *input_data = conv_3x3_dilation_5x5_input_input;
784 const int8_t *output_ref = conv_3x3_dilation_5x5_input_output_ref;
785 const int32_t output_ref_size = CONV_3X3_DILATION_5X5_INPUT_DST_SIZE;
786 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
787
788 input_dims.n = CONV_3X3_DILATION_5X5_INPUT_INPUT_BATCHES;
789 input_dims.w = CONV_3X3_DILATION_5X5_INPUT_INPUT_W;
790 input_dims.h = CONV_3X3_DILATION_5X5_INPUT_INPUT_H;
791 input_dims.c = CONV_3X3_DILATION_5X5_INPUT_IN_CH;
792 filter_dims.w = CONV_3X3_DILATION_5X5_INPUT_FILTER_X;
793 filter_dims.h = CONV_3X3_DILATION_5X5_INPUT_FILTER_Y;
794 filter_dims.c = CONV_3X3_DILATION_5X5_INPUT_IN_CH;
795 output_dims.w = CONV_3X3_DILATION_5X5_INPUT_OUTPUT_W;
796 output_dims.h = CONV_3X3_DILATION_5X5_INPUT_OUTPUT_H;
797 output_dims.c = CONV_3X3_DILATION_5X5_INPUT_OUT_CH;
798
799 conv_params.padding.w = CONV_3X3_DILATION_5X5_INPUT_PAD_X;
800 conv_params.padding.h = CONV_3X3_DILATION_5X5_INPUT_PAD_Y;
801 conv_params.stride.w = CONV_3X3_DILATION_5X5_INPUT_STRIDE_X;
802 conv_params.stride.h = CONV_3X3_DILATION_5X5_INPUT_STRIDE_Y;
803 conv_params.dilation.w = CONV_3X3_DILATION_5X5_INPUT_DILATION_X;
804 conv_params.dilation.h = CONV_3X3_DILATION_5X5_INPUT_DILATION_Y;
805
806 conv_params.input_offset = CONV_3X3_DILATION_5X5_INPUT_INPUT_OFFSET;
807 conv_params.output_offset = CONV_3X3_DILATION_5X5_INPUT_OUTPUT_OFFSET;
808 conv_params.activation.min = CONV_3X3_DILATION_5X5_INPUT_OUT_ACTIVATION_MIN;
809 conv_params.activation.max = CONV_3X3_DILATION_5X5_INPUT_OUT_ACTIVATION_MAX;
810 quant_params.multiplier = (int32_t *)conv_3x3_dilation_5x5_input_output_mult;
811 quant_params.shift = (int32_t *)conv_3x3_dilation_5x5_input_output_shift;
812
813 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
814 ctx.buf = malloc(buf_size);
815
816 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
817 &conv_params,
818 &quant_params,
819 &input_dims,
820 input_data,
821 &filter_dims,
822 kernel_data,
823 &bias_dims,
824 bias_data,
825 NULL,
826 &output_dims,
827 output);
828 if (ctx.buf)
829 {
830 memset(ctx.buf, 0, buf_size);
831 free(ctx.buf);
832 }
833 TEST_ASSERT_EQUAL(expected, result);
834 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
835 memset(output, 0, sizeof(output));
836
837 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
838 ctx.buf = malloc(buf_size);
839 ctx.size = 0;
840
841 result = arm_convolve_wrapper_s8(&ctx,
842 &conv_params,
843 &quant_params,
844 &input_dims,
845 input_data,
846 &filter_dims,
847 kernel_data,
848 &bias_dims,
849 bias_data,
850 &output_dims,
851 output);
852
853 if (ctx.buf)
854 {
855 memset(ctx.buf, 0, buf_size);
856 free(ctx.buf);
857 }
858 TEST_ASSERT_EQUAL(expected, result);
859 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
860 }
861
conv_2x3_dilation_arm_convolve_s8(void)862 void conv_2x3_dilation_arm_convolve_s8(void)
863 {
864 int8_t output[CONV_2X3_DILATION_DST_SIZE] = {0};
865
866 cmsis_nn_context ctx;
867 cmsis_nn_conv_params conv_params;
868 cmsis_nn_per_channel_quant_params quant_params;
869 cmsis_nn_dims input_dims;
870 cmsis_nn_dims filter_dims;
871 cmsis_nn_dims bias_dims;
872 cmsis_nn_dims output_dims;
873
874 const int32_t *bias_data = conv_2x3_dilation_biases;
875 const int8_t *kernel_data = conv_2x3_dilation_weights;
876 const int8_t *input_data = conv_2x3_dilation_input;
877 const int8_t *output_ref = conv_2x3_dilation_output_ref;
878 const int32_t output_ref_size = CONV_2X3_DILATION_DST_SIZE;
879 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
880
881 input_dims.n = CONV_2X3_DILATION_INPUT_BATCHES;
882 input_dims.w = CONV_2X3_DILATION_INPUT_W;
883 input_dims.h = CONV_2X3_DILATION_INPUT_H;
884 input_dims.c = CONV_2X3_DILATION_IN_CH;
885 filter_dims.w = CONV_2X3_DILATION_FILTER_X;
886 filter_dims.h = CONV_2X3_DILATION_FILTER_Y;
887 filter_dims.c = CONV_2X3_DILATION_IN_CH;
888 output_dims.w = CONV_2X3_DILATION_OUTPUT_W;
889 output_dims.h = CONV_2X3_DILATION_OUTPUT_H;
890 output_dims.c = CONV_2X3_DILATION_OUT_CH;
891
892 conv_params.padding.w = CONV_2X3_DILATION_PAD_X;
893 conv_params.padding.h = CONV_2X3_DILATION_PAD_Y;
894 conv_params.stride.w = CONV_2X3_DILATION_STRIDE_X;
895 conv_params.stride.h = CONV_2X3_DILATION_STRIDE_Y;
896 conv_params.dilation.w = CONV_2X3_DILATION_DILATION_X;
897 conv_params.dilation.h = CONV_2X3_DILATION_DILATION_Y;
898
899 conv_params.input_offset = CONV_2X3_DILATION_INPUT_OFFSET;
900 conv_params.output_offset = CONV_2X3_DILATION_OUTPUT_OFFSET;
901 conv_params.activation.min = CONV_2X3_DILATION_OUT_ACTIVATION_MIN;
902 conv_params.activation.max = CONV_2X3_DILATION_OUT_ACTIVATION_MAX;
903 quant_params.multiplier = (int32_t *)conv_2x3_dilation_output_mult;
904 quant_params.shift = (int32_t *)conv_2x3_dilation_output_shift;
905
906 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
907 ctx.buf = malloc(buf_size);
908
909 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
910 &conv_params,
911 &quant_params,
912 &input_dims,
913 input_data,
914 &filter_dims,
915 kernel_data,
916 &bias_dims,
917 bias_data,
918 NULL,
919 &output_dims,
920 output);
921 if (ctx.buf)
922 {
923 memset(ctx.buf, 0, buf_size);
924 free(ctx.buf);
925 }
926 TEST_ASSERT_EQUAL(expected, result);
927 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
928 memset(output, 0, sizeof(output));
929
930 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
931 ctx.buf = malloc(buf_size);
932 ctx.size = 0;
933
934 result = arm_convolve_wrapper_s8(&ctx,
935 &conv_params,
936 &quant_params,
937 &input_dims,
938 input_data,
939 &filter_dims,
940 kernel_data,
941 &bias_dims,
942 bias_data,
943 &output_dims,
944 output);
945
946 if (ctx.buf)
947 {
948 memset(ctx.buf, 0, buf_size);
949 free(ctx.buf);
950 }
951 TEST_ASSERT_EQUAL(expected, result);
952 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
953 }
954
conv_3x2_dilation_arm_convolve_s8(void)955 void conv_3x2_dilation_arm_convolve_s8(void)
956 {
957 int8_t output[CONV_3X2_DILATION_DST_SIZE] = {0};
958
959 cmsis_nn_context ctx;
960 cmsis_nn_conv_params conv_params;
961 cmsis_nn_per_channel_quant_params quant_params;
962 cmsis_nn_dims input_dims;
963 cmsis_nn_dims filter_dims;
964 cmsis_nn_dims bias_dims;
965 cmsis_nn_dims output_dims;
966
967 const int32_t *bias_data = conv_3x2_dilation_biases;
968 const int8_t *kernel_data = conv_3x2_dilation_weights;
969 const int8_t *input_data = conv_3x2_dilation_input;
970 const int8_t *output_ref = conv_3x2_dilation_output_ref;
971 const int32_t output_ref_size = CONV_3X2_DILATION_DST_SIZE;
972 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
973
974 input_dims.n = CONV_3X2_DILATION_INPUT_BATCHES;
975 input_dims.w = CONV_3X2_DILATION_INPUT_W;
976 input_dims.h = CONV_3X2_DILATION_INPUT_H;
977 input_dims.c = CONV_3X2_DILATION_IN_CH;
978 filter_dims.w = CONV_3X2_DILATION_FILTER_X;
979 filter_dims.h = CONV_3X2_DILATION_FILTER_Y;
980 filter_dims.c = CONV_3X2_DILATION_IN_CH;
981 output_dims.w = CONV_3X2_DILATION_OUTPUT_W;
982 output_dims.h = CONV_3X2_DILATION_OUTPUT_H;
983 output_dims.c = CONV_3X2_DILATION_OUT_CH;
984
985 conv_params.padding.w = CONV_3X2_DILATION_PAD_X;
986 conv_params.padding.h = CONV_3X2_DILATION_PAD_Y;
987 conv_params.stride.w = CONV_3X2_DILATION_STRIDE_X;
988 conv_params.stride.h = CONV_3X2_DILATION_STRIDE_Y;
989 conv_params.dilation.w = CONV_3X2_DILATION_DILATION_X;
990 conv_params.dilation.h = CONV_3X2_DILATION_DILATION_Y;
991
992 conv_params.input_offset = CONV_3X2_DILATION_INPUT_OFFSET;
993 conv_params.output_offset = CONV_3X2_DILATION_OUTPUT_OFFSET;
994 conv_params.activation.min = CONV_3X2_DILATION_OUT_ACTIVATION_MIN;
995 conv_params.activation.max = CONV_3X2_DILATION_OUT_ACTIVATION_MAX;
996 quant_params.multiplier = (int32_t *)conv_3x2_dilation_output_mult;
997 quant_params.shift = (int32_t *)conv_3x2_dilation_output_shift;
998
999 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
1000 ctx.buf = malloc(buf_size);
1001
1002 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
1003 &conv_params,
1004 &quant_params,
1005 &input_dims,
1006 input_data,
1007 &filter_dims,
1008 kernel_data,
1009 &bias_dims,
1010 bias_data,
1011 NULL,
1012 &output_dims,
1013 output);
1014 if (ctx.buf)
1015 {
1016 memset(ctx.buf, 0, buf_size);
1017 free(ctx.buf);
1018 }
1019 TEST_ASSERT_EQUAL(expected, result);
1020 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
1021 memset(output, 0, sizeof(output));
1022
1023 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
1024 ctx.buf = malloc(buf_size);
1025 ctx.size = 0;
1026
1027 result = arm_convolve_wrapper_s8(&ctx,
1028 &conv_params,
1029 &quant_params,
1030 &input_dims,
1031 input_data,
1032 &filter_dims,
1033 kernel_data,
1034 &bias_dims,
1035 bias_data,
1036 &output_dims,
1037 output);
1038
1039 if (ctx.buf)
1040 {
1041 memset(ctx.buf, 0, buf_size);
1042 free(ctx.buf);
1043 }
1044 TEST_ASSERT_EQUAL(expected, result);
1045 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
1046 }
1047
conv_dilation_golden_arm_convolve_s8(void)1048 void conv_dilation_golden_arm_convolve_s8(void)
1049 {
1050 int8_t output[CONV_DILATION_GOLDEN_DST_SIZE] = {0};
1051
1052 cmsis_nn_context ctx;
1053 cmsis_nn_conv_params conv_params;
1054 cmsis_nn_per_channel_quant_params quant_params;
1055 cmsis_nn_dims input_dims;
1056 cmsis_nn_dims filter_dims;
1057 cmsis_nn_dims bias_dims;
1058 cmsis_nn_dims output_dims;
1059
1060 const int32_t *bias_data = conv_dilation_golden_biases;
1061 const int8_t *kernel_data = conv_dilation_golden_weights;
1062 const int8_t *input_data = conv_dilation_golden_input;
1063 const int8_t *output_ref = conv_dilation_golden_output_ref;
1064 const int32_t output_ref_size = CONV_DILATION_GOLDEN_DST_SIZE;
1065 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
1066
1067 input_dims.n = CONV_DILATION_GOLDEN_INPUT_BATCHES;
1068 input_dims.w = CONV_DILATION_GOLDEN_INPUT_W;
1069 input_dims.h = CONV_DILATION_GOLDEN_INPUT_H;
1070 input_dims.c = CONV_DILATION_GOLDEN_IN_CH;
1071 filter_dims.w = CONV_DILATION_GOLDEN_FILTER_X;
1072 filter_dims.h = CONV_DILATION_GOLDEN_FILTER_Y;
1073 filter_dims.c = CONV_DILATION_GOLDEN_IN_CH;
1074 output_dims.w = CONV_DILATION_GOLDEN_OUTPUT_W;
1075 output_dims.h = CONV_DILATION_GOLDEN_OUTPUT_H;
1076 output_dims.c = CONV_DILATION_GOLDEN_OUT_CH;
1077
1078 conv_params.padding.w = CONV_DILATION_GOLDEN_PAD_X;
1079 conv_params.padding.h = CONV_DILATION_GOLDEN_PAD_Y;
1080 conv_params.stride.w = CONV_DILATION_GOLDEN_STRIDE_X;
1081 conv_params.stride.h = CONV_DILATION_GOLDEN_STRIDE_Y;
1082 conv_params.dilation.w = CONV_DILATION_GOLDEN_DILATION_X;
1083 conv_params.dilation.h = CONV_DILATION_GOLDEN_DILATION_Y;
1084
1085 conv_params.input_offset = CONV_DILATION_GOLDEN_INPUT_OFFSET;
1086 conv_params.output_offset = CONV_DILATION_GOLDEN_OUTPUT_OFFSET;
1087 conv_params.activation.min = CONV_DILATION_GOLDEN_OUT_ACTIVATION_MIN;
1088 conv_params.activation.max = CONV_DILATION_GOLDEN_OUT_ACTIVATION_MAX;
1089 quant_params.multiplier = (int32_t *)conv_dilation_golden_output_mult;
1090 quant_params.shift = (int32_t *)conv_dilation_golden_output_shift;
1091
1092 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
1093 ctx.buf = malloc(buf_size);
1094
1095 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
1096 &conv_params,
1097 &quant_params,
1098 &input_dims,
1099 input_data,
1100 &filter_dims,
1101 kernel_data,
1102 &bias_dims,
1103 bias_data,
1104 NULL,
1105 &output_dims,
1106 output);
1107 if (ctx.buf)
1108 {
1109 memset(ctx.buf, 0, buf_size);
1110 free(ctx.buf);
1111 }
1112 TEST_ASSERT_EQUAL(expected, result);
1113 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
1114 memset(output, 0, sizeof(output));
1115
1116 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
1117 ctx.buf = malloc(buf_size);
1118 ctx.size = 0;
1119
1120 result = arm_convolve_wrapper_s8(&ctx,
1121 &conv_params,
1122 &quant_params,
1123 &input_dims,
1124 input_data,
1125 &filter_dims,
1126 kernel_data,
1127 &bias_dims,
1128 bias_data,
1129 &output_dims,
1130 output);
1131
1132 if (ctx.buf)
1133 {
1134 memset(ctx.buf, 0, buf_size);
1135 free(ctx.buf);
1136 }
1137 TEST_ASSERT_EQUAL(expected, result);
1138 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
1139 }
1140
conv_5_arm_convolve_s8(void)1141 void conv_5_arm_convolve_s8(void)
1142 {
1143 const arm_cmsis_nn_status expected = ARM_CMSIS_NN_SUCCESS;
1144 int8_t output[CONV_5_DST_SIZE] = {0};
1145
1146 cmsis_nn_context ctx;
1147 cmsis_nn_conv_params conv_params;
1148 cmsis_nn_per_channel_quant_params quant_params;
1149 cmsis_nn_dims input_dims;
1150 cmsis_nn_dims filter_dims;
1151 cmsis_nn_dims bias_dims;
1152 cmsis_nn_dims output_dims;
1153
1154 const int32_t *bias_data = conv_5_biases;
1155 const int8_t *kernel_data = conv_5_weights;
1156 const int8_t *input_data = conv_5_input;
1157 const int8_t *output_ref = conv_5_output_ref;
1158 const int32_t output_ref_size = CONV_5_DST_SIZE;
1159
1160 input_dims.n = CONV_5_INPUT_BATCHES;
1161 input_dims.w = CONV_5_INPUT_W;
1162 input_dims.h = CONV_5_INPUT_H;
1163 input_dims.c = CONV_5_IN_CH;
1164 filter_dims.w = CONV_5_FILTER_X;
1165 filter_dims.h = CONV_5_FILTER_Y;
1166 filter_dims.c = CONV_5_IN_CH;
1167 output_dims.w = CONV_5_OUTPUT_W;
1168 output_dims.h = CONV_5_OUTPUT_H;
1169 output_dims.c = CONV_5_OUT_CH;
1170
1171 conv_params.padding.w = CONV_5_PAD_X;
1172 conv_params.padding.h = CONV_5_PAD_Y;
1173 conv_params.stride.w = CONV_5_STRIDE_X;
1174 conv_params.stride.h = CONV_5_STRIDE_Y;
1175 conv_params.dilation.w = CONV_5_DILATION_X;
1176 conv_params.dilation.h = CONV_5_DILATION_Y;
1177
1178 conv_params.input_offset = CONV_5_INPUT_OFFSET;
1179 conv_params.output_offset = CONV_5_OUTPUT_OFFSET;
1180 conv_params.activation.min = CONV_5_OUT_ACTIVATION_MIN;
1181 conv_params.activation.max = CONV_5_OUT_ACTIVATION_MAX;
1182 quant_params.multiplier = (int32_t *)conv_5_output_mult;
1183 quant_params.shift = (int32_t *)conv_5_output_shift;
1184
1185 int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
1186 ctx.buf = malloc(buf_size);
1187 ctx.size = 0;
1188
1189 arm_cmsis_nn_status result = arm_convolve_s8(&ctx,
1190 &conv_params,
1191 &quant_params,
1192 &input_dims,
1193 input_data,
1194 &filter_dims,
1195 conv_5_weights,
1196 &bias_dims,
1197 bias_data,
1198 NULL,
1199 &output_dims,
1200 output);
1201
1202 if (ctx.buf)
1203 {
1204 memset(ctx.buf, 0, buf_size);
1205 free(ctx.buf);
1206 }
1207 TEST_ASSERT_EQUAL(expected, result);
1208 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
1209 memset(output, 0, sizeof(output));
1210
1211 buf_size = arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
1212 ctx.buf = malloc(buf_size);
1213 ctx.size = 0;
1214
1215 result = arm_convolve_wrapper_s8(&ctx,
1216 &conv_params,
1217 &quant_params,
1218 &input_dims,
1219 input_data,
1220 &filter_dims,
1221 kernel_data,
1222 &bias_dims,
1223 bias_data,
1224 &output_dims,
1225 output);
1226
1227 if (ctx.buf)
1228 {
1229 memset(ctx.buf, 0, buf_size);
1230 free(ctx.buf);
1231 }
1232 TEST_ASSERT_EQUAL(expected, result);
1233 TEST_ASSERT_TRUE(validate(output, output_ref, output_ref_size));
1234 }
1235
buffer_size_arm_convolve_s8(void)1236 void buffer_size_arm_convolve_s8(void)
1237 {
1238 cmsis_nn_conv_params conv_params;
1239 cmsis_nn_dims input_dims;
1240 cmsis_nn_dims filter_dims;
1241 cmsis_nn_dims output_dims;
1242
1243 input_dims.n = CONV_5_INPUT_BATCHES;
1244 input_dims.w = CONV_5_INPUT_W;
1245 input_dims.h = CONV_5_INPUT_H;
1246 input_dims.c = CONV_5_IN_CH;
1247 filter_dims.w = CONV_5_FILTER_X;
1248 filter_dims.h = CONV_5_FILTER_Y;
1249 filter_dims.c = CONV_5_IN_CH;
1250 output_dims.w = CONV_5_OUTPUT_W;
1251 output_dims.h = CONV_5_OUTPUT_H;
1252 output_dims.c = CONV_5_OUT_CH;
1253
1254 conv_params.padding.w = CONV_5_PAD_X;
1255 conv_params.padding.h = CONV_5_PAD_Y;
1256 conv_params.stride.w = CONV_5_STRIDE_X;
1257 conv_params.stride.h = CONV_5_STRIDE_Y;
1258 conv_params.dilation.w = CONV_5_DILATION_X;
1259 conv_params.dilation.h = CONV_5_DILATION_Y;
1260
1261 conv_params.input_offset = CONV_5_INPUT_OFFSET;
1262 conv_params.output_offset = CONV_5_OUTPUT_OFFSET;
1263 conv_params.activation.min = CONV_5_OUT_ACTIVATION_MIN;
1264 conv_params.activation.max = CONV_5_OUT_ACTIVATION_MAX;
1265
1266 const int32_t buf_size = arm_convolve_s8_get_buffer_size(&input_dims, &filter_dims);
1267 const int32_t wrapper_buf_size =
1268 arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
1269
1270 TEST_ASSERT_EQUAL(wrapper_buf_size, buf_size);
1271 }
1272
buffer_size_mve_arm_convolve_s8(void)1273 void buffer_size_mve_arm_convolve_s8(void)
1274 {
1275 #if defined(ARM_MATH_MVEI)
1276 cmsis_nn_conv_params conv_params;
1277 cmsis_nn_dims input_dims;
1278 cmsis_nn_dims filter_dims;
1279 cmsis_nn_dims output_dims;
1280
1281 input_dims.n = CONV_5_INPUT_BATCHES;
1282 input_dims.w = CONV_5_INPUT_W;
1283 input_dims.h = CONV_5_INPUT_H;
1284 input_dims.c = CONV_5_IN_CH;
1285 filter_dims.w = CONV_5_FILTER_X;
1286 filter_dims.h = CONV_5_FILTER_Y;
1287 filter_dims.c = CONV_5_IN_CH;
1288 output_dims.w = CONV_5_OUTPUT_W;
1289 output_dims.h = CONV_5_OUTPUT_H;
1290 output_dims.c = CONV_5_OUT_CH;
1291
1292 conv_params.padding.w = CONV_5_PAD_X;
1293 conv_params.padding.h = CONV_5_PAD_Y;
1294 conv_params.stride.w = CONV_5_STRIDE_X;
1295 conv_params.stride.h = CONV_5_STRIDE_Y;
1296 conv_params.dilation.w = CONV_5_DILATION_X;
1297 conv_params.dilation.h = CONV_5_DILATION_Y;
1298
1299 conv_params.input_offset = CONV_5_INPUT_OFFSET;
1300 conv_params.output_offset = CONV_5_OUTPUT_OFFSET;
1301 conv_params.activation.min = CONV_5_OUT_ACTIVATION_MIN;
1302 conv_params.activation.max = CONV_5_OUT_ACTIVATION_MAX;
1303
1304 const int32_t wrapper_buf_size =
1305 arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
1306 const int32_t mve_wrapper_buf_size =
1307 arm_convolve_wrapper_s8_get_buffer_size_mve(&conv_params, &input_dims, &filter_dims, &output_dims);
1308
1309 TEST_ASSERT_EQUAL(wrapper_buf_size, mve_wrapper_buf_size);
1310 #endif
1311 }
1312
buffer_size_dsp_arm_convolve_s8(void)1313 void buffer_size_dsp_arm_convolve_s8(void)
1314 {
1315 #if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
1316 cmsis_nn_conv_params conv_params;
1317 cmsis_nn_dims input_dims;
1318 cmsis_nn_dims filter_dims;
1319 cmsis_nn_dims output_dims;
1320
1321 input_dims.n = CONV_5_INPUT_BATCHES;
1322 input_dims.w = CONV_5_INPUT_W;
1323 input_dims.h = CONV_5_INPUT_H;
1324 input_dims.c = CONV_5_IN_CH;
1325 filter_dims.w = CONV_5_FILTER_X;
1326 filter_dims.h = CONV_5_FILTER_Y;
1327 filter_dims.c = CONV_5_IN_CH;
1328 output_dims.w = CONV_5_OUTPUT_W;
1329 output_dims.h = CONV_5_OUTPUT_H;
1330 output_dims.c = CONV_5_OUT_CH;
1331
1332 conv_params.padding.w = CONV_5_PAD_X;
1333 conv_params.padding.h = CONV_5_PAD_Y;
1334 conv_params.stride.w = CONV_5_STRIDE_X;
1335 conv_params.stride.h = CONV_5_STRIDE_Y;
1336 conv_params.dilation.w = CONV_5_DILATION_X;
1337 conv_params.dilation.h = CONV_5_DILATION_Y;
1338
1339 conv_params.input_offset = CONV_5_INPUT_OFFSET;
1340 conv_params.output_offset = CONV_5_OUTPUT_OFFSET;
1341 conv_params.activation.min = CONV_5_OUT_ACTIVATION_MIN;
1342 conv_params.activation.max = CONV_5_OUT_ACTIVATION_MAX;
1343
1344 const int32_t wrapper_buf_size =
1345 arm_convolve_wrapper_s8_get_buffer_size(&conv_params, &input_dims, &filter_dims, &output_dims);
1346 const int32_t dsp_wrapper_buf_size =
1347 arm_convolve_wrapper_s8_get_buffer_size_dsp(&conv_params, &input_dims, &filter_dims, &output_dims);
1348
1349 TEST_ASSERT_EQUAL(wrapper_buf_size, dsp_wrapper_buf_size);
1350 #endif
1351 }
1352