1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/sme.h>
28 #include <lib/extensions/spe.h>
29 #include <lib/extensions/sve.h>
30 #include <lib/extensions/sys_reg_trace.h>
31 #include <lib/extensions/trbe.h>
32 #include <lib/extensions/trf.h>
33 #include <lib/utils.h>
34 
35 #if ENABLE_FEAT_TWED
36 /* Make sure delay value fits within the range(0-15) */
37 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
38 #endif /* ENABLE_FEAT_TWED */
39 
40 static void manage_extensions_secure(cpu_context_t *ctx);
41 
setup_el1_context(cpu_context_t * ctx,const struct entry_point_info * ep)42 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t sctlr_elx, actlr_elx;
45 
46 	/*
47 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
48 	 * execution state setting all fields rather than relying on the hw.
49 	 * Some fields have architecturally UNKNOWN reset values and these are
50 	 * set to zero.
51 	 *
52 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
53 	 *
54 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
55 	 * required by PSCI specification)
56 	 */
57 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
58 	if (GET_RW(ep->spsr) == MODE_RW_64) {
59 		sctlr_elx |= SCTLR_EL1_RES1;
60 	} else {
61 		/*
62 		 * If the target execution state is AArch32 then the following
63 		 * fields need to be set.
64 		 *
65 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
66 		 *  instructions are not trapped to EL1.
67 		 *
68 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
69 		 *  instructions are not trapped to EL1.
70 		 *
71 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
72 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
73 		 */
74 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
75 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
76 	}
77 
78 #if ERRATA_A75_764081
79 	/*
80 	 * If workaround of errata 764081 for Cortex-A75 is used then set
81 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
82 	 */
83 	sctlr_elx |= SCTLR_IESB_BIT;
84 #endif
85 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
86 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
87 
88 	/*
89 	 * Base the context ACTLR_EL1 on the current value, as it is
90 	 * implementation defined. The context restore process will write
91 	 * the value from the context to the actual register and can cause
92 	 * problems for processor cores that don't expect certain bits to
93 	 * be zero.
94 	 */
95 	actlr_elx = read_actlr_el1();
96 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
97 }
98 
99 /******************************************************************************
100  * This function performs initializations that are specific to SECURE state
101  * and updates the cpu context specified by 'ctx'.
102  *****************************************************************************/
setup_secure_context(cpu_context_t * ctx,const struct entry_point_info * ep)103 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
104 {
105 	u_register_t scr_el3;
106 	el3_state_t *state;
107 
108 	state = get_el3state_ctx(ctx);
109 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
110 
111 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
112 	/*
113 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
114 	 * indicated by the interrupt routing model for BL31.
115 	 */
116 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
117 #endif
118 
119 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
120 	/* Get Memory Tagging Extension support level */
121 	unsigned int mte = get_armv8_5_mte_support();
122 #endif
123 	/*
124 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
125 	 * is set, or when MTE is only implemented at EL0.
126 	 */
127 #if CTX_INCLUDE_MTE_REGS
128 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
129 	scr_el3 |= SCR_ATA_BIT;
130 #else
131 	if (mte == MTE_IMPLEMENTED_EL0) {
132 		scr_el3 |= SCR_ATA_BIT;
133 	}
134 #endif /* CTX_INCLUDE_MTE_REGS */
135 
136 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
137 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_feat_sel2_supported()) {
138 		if (GET_RW(ep->spsr) != MODE_RW_64) {
139 			ERROR("S-EL2 can not be used in AArch32\n.");
140 			panic();
141 		}
142 
143 		scr_el3 |= SCR_EEL2_BIT;
144 	}
145 
146 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
147 
148 	/*
149 	 * Initialize EL1 context registers unless SPMC is running
150 	 * at S-EL2.
151 	 */
152 #if !SPMD_SPM_AT_SEL2
153 	setup_el1_context(ctx, ep);
154 #endif
155 
156 	manage_extensions_secure(ctx);
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
setup_realm_context(cpu_context_t * ctx,const struct entry_point_info * ep)164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
173 
174 	if (is_feat_csv2_2_supported()) {
175 		/* Enable access to the SCXTNUM_ELx registers. */
176 		scr_el3 |= SCR_EnSCXT_BIT;
177 	}
178 
179 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
180 }
181 #endif /* ENABLE_RME */
182 
183 /******************************************************************************
184  * This function performs initializations that are specific to NON-SECURE state
185  * and updates the cpu context specified by 'ctx'.
186  *****************************************************************************/
setup_ns_context(cpu_context_t * ctx,const struct entry_point_info * ep)187 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
188 {
189 	u_register_t scr_el3;
190 	el3_state_t *state;
191 
192 	state = get_el3state_ctx(ctx);
193 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
194 
195 	/* SCR_NS: Set the NS bit */
196 	scr_el3 |= SCR_NS_BIT;
197 
198 #if !CTX_INCLUDE_PAUTH_REGS
199 	/*
200 	 * If the pointer authentication registers aren't saved during world
201 	 * switches the value of the registers can be leaked from the Secure to
202 	 * the Non-secure world. To prevent this, rather than enabling pointer
203 	 * authentication everywhere, we only enable it in the Non-secure world.
204 	 *
205 	 * If the Secure world wants to use pointer authentication,
206 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
207 	 */
208 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
209 #endif /* !CTX_INCLUDE_PAUTH_REGS */
210 
211 	/* Allow access to Allocation Tags when MTE is implemented. */
212 	scr_el3 |= SCR_ATA_BIT;
213 
214 #if HANDLE_EA_EL3_FIRST_NS
215 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
216 	scr_el3 |= SCR_EA_BIT;
217 #endif
218 
219 #if RAS_TRAP_NS_ERR_REC_ACCESS
220 	/*
221 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
222 	 * and RAS ERX registers from EL1 and EL2(from any security state)
223 	 * are trapped to EL3.
224 	 * Set here to trap only for NS EL1/EL2
225 	 *
226 	 */
227 	scr_el3 |= SCR_TERR_BIT;
228 #endif
229 
230 	if (is_feat_csv2_2_supported()) {
231 		/* Enable access to the SCXTNUM_ELx registers. */
232 		scr_el3 |= SCR_EnSCXT_BIT;
233 	}
234 
235 #ifdef IMAGE_BL31
236 	/*
237 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
238 	 *  indicated by the interrupt routing model for BL31.
239 	 */
240 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
241 #endif
242 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
243 
244 	/* Initialize EL1 context registers */
245 	setup_el1_context(ctx, ep);
246 
247 	/* Initialize EL2 context registers */
248 #if CTX_INCLUDE_EL2_REGS
249 
250 	/*
251 	 * Initialize SCTLR_EL2 context register using Endianness value
252 	 * taken from the entrypoint attribute.
253 	 */
254 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
255 	sctlr_el2 |= SCTLR_EL2_RES1;
256 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
257 			sctlr_el2);
258 
259 	/*
260 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
261 	 * when restoring NS context.
262 	 */
263 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
264 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
265 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
266 			icc_sre_el2);
267 
268 	/*
269 	 * Initialize MDCR_EL2.HPMN to its hardware reset value so we don't
270 	 * throw anyone off who expects this to be sensible.
271 	 * TODO: A similar thing happens in cm_prepare_el3_exit. They should be
272 	 * unified with the proper PMU implementation
273 	 */
274 	u_register_t mdcr_el2 = ((read_pmcr_el0() >> PMCR_EL0_N_SHIFT) &
275 			PMCR_EL0_N_MASK);
276 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_MDCR_EL2, mdcr_el2);
277 
278 	if (is_feat_hcx_supported()) {
279 		/*
280 		 * Initialize register HCRX_EL2 with its init value.
281 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
282 		 * chance that this can lead to unexpected behavior in lower
283 		 * ELs that have not been updated since the introduction of
284 		 * this feature if not properly initialized, especially when
285 		 * it comes to those bits that enable/disable traps.
286 		 */
287 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
288 			HCRX_EL2_INIT_VAL);
289 	}
290 #endif /* CTX_INCLUDE_EL2_REGS */
291 }
292 
293 /*******************************************************************************
294  * The following function performs initialization of the cpu_context 'ctx'
295  * for first use that is common to all security states, and sets the
296  * initial entrypoint state as specified by the entry_point_info structure.
297  *
298  * The EE and ST attributes are used to configure the endianness and secure
299  * timer availability for the new execution context.
300  ******************************************************************************/
setup_context_common(cpu_context_t * ctx,const entry_point_info_t * ep)301 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
302 {
303 	u_register_t scr_el3;
304 	el3_state_t *state;
305 	gp_regs_t *gp_regs;
306 
307 	/* Clear any residual register values from the context */
308 	zeromem(ctx, sizeof(*ctx));
309 
310 	/*
311 	 * SCR_EL3 was initialised during reset sequence in macro
312 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
313 	 * affect the next EL.
314 	 *
315 	 * The following fields are initially set to zero and then updated to
316 	 * the required value depending on the state of the SPSR_EL3 and the
317 	 * Security state and entrypoint attributes of the next EL.
318 	 */
319 	scr_el3 = read_scr();
320 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
321 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
322 
323 	/*
324 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
325 	 *  Exception level as specified by SPSR.
326 	 */
327 	if (GET_RW(ep->spsr) == MODE_RW_64) {
328 		scr_el3 |= SCR_RW_BIT;
329 	}
330 
331 	/*
332 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
333 	 * Secure timer registers to EL3, from AArch64 state only, if specified
334 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
335 	 * bit always behaves as 1 (i.e. secure physical timer register access
336 	 * is not trapped)
337 	 */
338 	if (EP_GET_ST(ep->h.attr) != 0U) {
339 		scr_el3 |= SCR_ST_BIT;
340 	}
341 
342 	/*
343 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
344 	 * SCR_EL3.HXEn.
345 	 */
346 	if (is_feat_hcx_supported()) {
347 		scr_el3 |= SCR_HXEn_BIT;
348 	}
349 
350 	/*
351 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
352 	 * registers are trapped to EL3.
353 	 */
354 #if ENABLE_FEAT_RNG_TRAP
355 	scr_el3 |= SCR_TRNDR_BIT;
356 #endif
357 
358 #if FAULT_INJECTION_SUPPORT
359 	/* Enable fault injection from lower ELs */
360 	scr_el3 |= SCR_FIEN_BIT;
361 #endif
362 
363 	/*
364 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
365 	 */
366 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
367 		scr_el3 |= SCR_TCR2EN_BIT;
368 	}
369 
370 	/*
371 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
372 	 * registers for AArch64 if present.
373 	 */
374 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
375 		scr_el3 |= SCR_PIEN_BIT;
376 	}
377 
378 	/*
379 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
380 	 */
381 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
382 		scr_el3 |= SCR_GCSEn_BIT;
383 	}
384 
385 	/*
386 	 * CPTR_EL3 was initialized out of reset, copy that value to the
387 	 * context register.
388 	 */
389 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
390 
391 	/*
392 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
393 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
394 	 * next mode is Hyp.
395 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
396 	 * same conditions as HVC instructions and when the processor supports
397 	 * ARMv8.6-FGT.
398 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
399 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
400 	 * and when the processor supports ECV.
401 	 */
402 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
403 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
404 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
405 		scr_el3 |= SCR_HCE_BIT;
406 
407 		if (is_feat_fgt_supported()) {
408 			scr_el3 |= SCR_FGTEN_BIT;
409 		}
410 
411 		if (is_feat_ecv_supported()) {
412 			scr_el3 |= SCR_ECVEN_BIT;
413 		}
414 	}
415 
416 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
417 	if (is_feat_twed_supported()) {
418 		/* Set delay in SCR_EL3 */
419 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
420 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
421 				<< SCR_TWEDEL_SHIFT);
422 
423 		/* Enable WFE delay */
424 		scr_el3 |= SCR_TWEDEn_BIT;
425 	}
426 
427 	/*
428 	 * Populate EL3 state so that we've the right context
429 	 * before doing ERET
430 	 */
431 	state = get_el3state_ctx(ctx);
432 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
433 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
434 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
435 
436 	/*
437 	 * Store the X0-X7 value from the entrypoint into the context
438 	 * Use memcpy as we are in control of the layout of the structures
439 	 */
440 	gp_regs = get_gpregs_ctx(ctx);
441 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
442 }
443 
444 /*******************************************************************************
445  * Context management library initialization routine. This library is used by
446  * runtime services to share pointers to 'cpu_context' structures for secure
447  * non-secure and realm states. Management of the structures and their associated
448  * memory is not done by the context management library e.g. the PSCI service
449  * manages the cpu context used for entry from and exit to the non-secure state.
450  * The Secure payload dispatcher service manages the context(s) corresponding to
451  * the secure state. It also uses this library to get access to the non-secure
452  * state cpu context pointers.
453  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
454  * which will be used for programming an entry into a lower EL. The same context
455  * will be used to save state upon exception entry from that EL.
456  ******************************************************************************/
cm_init(void)457 void __init cm_init(void)
458 {
459 	/*
460 	 * The context management library has only global data to initialize, but
461 	 * that will be done when the BSS is zeroed out.
462 	 */
463 }
464 
465 /*******************************************************************************
466  * This is the high-level function used to initialize the cpu_context 'ctx' for
467  * first use. It performs initializations that are common to all security states
468  * and initializations specific to the security state specified in 'ep'
469  ******************************************************************************/
cm_setup_context(cpu_context_t * ctx,const entry_point_info_t * ep)470 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
471 {
472 	unsigned int security_state;
473 
474 	assert(ctx != NULL);
475 
476 	/*
477 	 * Perform initializations that are common
478 	 * to all security states
479 	 */
480 	setup_context_common(ctx, ep);
481 
482 	security_state = GET_SECURITY_STATE(ep->h.attr);
483 
484 	/* Perform security state specific initializations */
485 	switch (security_state) {
486 	case SECURE:
487 		setup_secure_context(ctx, ep);
488 		break;
489 #if ENABLE_RME
490 	case REALM:
491 		setup_realm_context(ctx, ep);
492 		break;
493 #endif
494 	case NON_SECURE:
495 		setup_ns_context(ctx, ep);
496 		break;
497 	default:
498 		ERROR("Invalid security state\n");
499 		panic();
500 		break;
501 	}
502 }
503 
504 /*******************************************************************************
505  * Enable architecture extensions on first entry to Non-secure world.
506  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
507  * it is zero.
508  ******************************************************************************/
manage_extensions_nonsecure(bool el2_unused,cpu_context_t * ctx)509 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
510 {
511 #if IMAGE_BL31
512 	if (is_feat_spe_supported()) {
513 		spe_enable(el2_unused);
514 	}
515 
516 	if (is_feat_amu_supported()) {
517 		amu_enable(el2_unused, ctx);
518 	}
519 
520 	/* Enable SVE and FPU/SIMD */
521 	if (is_feat_sve_supported()) {
522 		sve_enable(ctx);
523 	}
524 
525 	if (is_feat_sme_supported()) {
526 		sme_enable(ctx);
527 	}
528 
529 	if (is_feat_mpam_supported()) {
530 		mpam_enable(el2_unused);
531 	}
532 
533 	if (is_feat_trbe_supported()) {
534 		trbe_enable();
535 	}
536 
537 	if (is_feat_brbe_supported()) {
538 		brbe_enable();
539 	}
540 
541 	if (is_feat_sys_reg_trace_supported()) {
542 		sys_reg_trace_enable(ctx);
543 	}
544 
545 	if (is_feat_trf_supported()) {
546 		trf_enable();
547 	}
548 #endif
549 }
550 
551 /*******************************************************************************
552  * Enable architecture extensions on first entry to Secure world.
553  ******************************************************************************/
manage_extensions_secure(cpu_context_t * ctx)554 static void manage_extensions_secure(cpu_context_t *ctx)
555 {
556 #if IMAGE_BL31
557 	if (is_feat_sve_supported()) {
558 		if (ENABLE_SVE_FOR_SWD) {
559 		/*
560 		 * Enable SVE and FPU in secure context, secure manager must
561 		 * ensure that the SVE and FPU register contexts are properly
562 		 * managed.
563 		 */
564 			sve_enable(ctx);
565 		} else {
566 		/*
567 		 * Disable SVE and FPU in secure context so non-secure world
568 		 * can safely use them.
569 		 */
570 			sve_disable(ctx);
571 		}
572 	}
573 
574 	if (is_feat_sme_supported()) {
575 		if (ENABLE_SME_FOR_SWD) {
576 		/*
577 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
578 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
579 		 */
580 			sme_enable(ctx);
581 		} else {
582 		/*
583 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
584 		 * world can safely use the associated registers.
585 		 */
586 			sme_disable(ctx);
587 		}
588 	}
589 #endif /* IMAGE_BL31 */
590 }
591 
592 /*******************************************************************************
593  * The following function initializes the cpu_context for a CPU specified by
594  * its `cpu_idx` for first use, and sets the initial entrypoint state as
595  * specified by the entry_point_info structure.
596  ******************************************************************************/
cm_init_context_by_index(unsigned int cpu_idx,const entry_point_info_t * ep)597 void cm_init_context_by_index(unsigned int cpu_idx,
598 			      const entry_point_info_t *ep)
599 {
600 	cpu_context_t *ctx;
601 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
602 	cm_setup_context(ctx, ep);
603 }
604 
605 /*******************************************************************************
606  * The following function initializes the cpu_context for the current CPU
607  * for first use, and sets the initial entrypoint state as specified by the
608  * entry_point_info structure.
609  ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)610 void cm_init_my_context(const entry_point_info_t *ep)
611 {
612 	cpu_context_t *ctx;
613 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
614 	cm_setup_context(ctx, ep);
615 }
616 
617 /*******************************************************************************
618  * Prepare the CPU system registers for first entry into realm, secure, or
619  * normal world.
620  *
621  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
622  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
623  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
624  * For all entries, the EL1 registers are initialized from the cpu_context
625  ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)626 void cm_prepare_el3_exit(uint32_t security_state)
627 {
628 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
629 	cpu_context_t *ctx = cm_get_context(security_state);
630 	bool el2_unused = false;
631 	uint64_t hcr_el2 = 0U;
632 
633 	assert(ctx != NULL);
634 
635 	if (security_state == NON_SECURE) {
636 		uint64_t el2_implemented = el_implemented(2);
637 
638 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
639 						 CTX_SCR_EL3);
640 
641 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
642 			|| (el2_implemented != EL_IMPL_NONE)) {
643 			/*
644 			 * If context is not being used for EL2, initialize
645 			 * HCRX_EL2 with its init value here.
646 			 */
647 			if (is_feat_hcx_supported()) {
648 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
649 			}
650 		}
651 
652 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
653 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
654 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
655 							   CTX_SCTLR_EL1);
656 			sctlr_elx &= SCTLR_EE_BIT;
657 			sctlr_elx |= SCTLR_EL2_RES1;
658 #if ERRATA_A75_764081
659 			/*
660 			 * If workaround of errata 764081 for Cortex-A75 is used
661 			 * then set SCTLR_EL2.IESB to enable Implicit Error
662 			 * Synchronization Barrier.
663 			 */
664 			sctlr_elx |= SCTLR_IESB_BIT;
665 #endif
666 			write_sctlr_el2(sctlr_elx);
667 		} else if (el2_implemented != EL_IMPL_NONE) {
668 			el2_unused = true;
669 
670 			/*
671 			 * EL2 present but unused, need to disable safely.
672 			 * SCTLR_EL2 can be ignored in this case.
673 			 *
674 			 * Set EL2 register width appropriately: Set HCR_EL2
675 			 * field to match SCR_EL3.RW.
676 			 */
677 			if ((scr_el3 & SCR_RW_BIT) != 0U)
678 				hcr_el2 |= HCR_RW_BIT;
679 
680 			/*
681 			 * For Armv8.3 pointer authentication feature, disable
682 			 * traps to EL2 when accessing key registers or using
683 			 * pointer authentication instructions from lower ELs.
684 			 */
685 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
686 
687 			write_hcr_el2(hcr_el2);
688 
689 			/*
690 			 * Initialise CPTR_EL2 setting all fields rather than
691 			 * relying on the hw. All fields have architecturally
692 			 * UNKNOWN reset values.
693 			 *
694 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
695 			 *  accesses to the CPACR_EL1 or CPACR from both
696 			 *  Execution states do not trap to EL2.
697 			 *
698 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
699 			 *  register accesses to the trace registers from both
700 			 *  Execution states do not trap to EL2.
701 			 *  If PE trace unit System registers are not implemented
702 			 *  then this bit is reserved, and must be set to zero.
703 			 *
704 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
705 			 *  to SIMD and floating-point functionality from both
706 			 *  Execution states do not trap to EL2.
707 			 */
708 			write_cptr_el2(CPTR_EL2_RESET_VAL &
709 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
710 					| CPTR_EL2_TFP_BIT));
711 
712 			/*
713 			 * Initialise CNTHCTL_EL2. All fields are
714 			 * architecturally UNKNOWN on reset and are set to zero
715 			 * except for field(s) listed below.
716 			 *
717 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
718 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
719 			 *  physical timer registers.
720 			 *
721 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
722 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
723 			 *  physical counter registers.
724 			 */
725 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
726 						EL1PCEN_BIT | EL1PCTEN_BIT);
727 
728 			/*
729 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
730 			 * architecturally UNKNOWN value.
731 			 */
732 			write_cntvoff_el2(0);
733 
734 			/*
735 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
736 			 * MPIDR_EL1 respectively.
737 			 */
738 			write_vpidr_el2(read_midr_el1());
739 			write_vmpidr_el2(read_mpidr_el1());
740 
741 			/*
742 			 * Initialise VTTBR_EL2. All fields are architecturally
743 			 * UNKNOWN on reset.
744 			 *
745 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
746 			 *  2 address translation is disabled, cache maintenance
747 			 *  operations depend on the VMID.
748 			 *
749 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
750 			 *  translation is disabled.
751 			 */
752 			write_vttbr_el2(VTTBR_RESET_VAL &
753 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
754 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
755 
756 			/*
757 			 * Initialise MDCR_EL2, setting all fields rather than
758 			 * relying on hw. Some fields are architecturally
759 			 * UNKNOWN on reset.
760 			 *
761 			 * MDCR_EL2.HLP: Set to one so that event counter
762 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
763 			 *  occurs on the increment that changes
764 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
765 			 *  implemented. This bit is RES0 in versions of the
766 			 *  architecture earlier than ARMv8.5, setting it to 1
767 			 *  doesn't have any effect on them.
768 			 *
769 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
770 			 *  Filter Control register TRFCR_EL1 at EL1 is not
771 			 *  trapped to EL2. This bit is RES0 in versions of
772 			 *  the architecture earlier than ARMv8.4.
773 			 *
774 			 * MDCR_EL2.HPMD: Set to one so that event counting is
775 			 *  prohibited at EL2. This bit is RES0 in versions of
776 			 *  the architecture earlier than ARMv8.1, setting it
777 			 *  to 1 doesn't have any effect on them.
778 			 *
779 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
780 			 *  Statistical Profiling control registers from EL1
781 			 *  do not trap to EL2. This bit is RES0 when SPE is
782 			 *  not implemented.
783 			 *
784 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
785 			 *  EL1 System register accesses to the Debug ROM
786 			 *  registers are not trapped to EL2.
787 			 *
788 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
789 			 *  System register accesses to the powerdown debug
790 			 *  registers are not trapped to EL2.
791 			 *
792 			 * MDCR_EL2.TDA: Set to zero so that System register
793 			 *  accesses to the debug registers do not trap to EL2.
794 			 *
795 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
796 			 *  are not routed to EL2.
797 			 *
798 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
799 			 *  Monitors.
800 			 *
801 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
802 			 *  EL1 accesses to all Performance Monitors registers
803 			 *  are not trapped to EL2.
804 			 *
805 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
806 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
807 			 *  trapped to EL2.
808 			 *
809 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
810 			 *  architecturally-defined reset value.
811 			 *
812 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
813 			 *  owning exception level is NS-EL1 and, tracing is
814 			 *  prohibited at NS-EL2. These bits are RES0 when
815 			 *  FEAT_TRBE is not implemented.
816 			 */
817 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
818 				     MDCR_EL2_HPMD) |
819 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
820 				   >> PMCR_EL0_N_SHIFT)) &
821 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
822 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
823 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
824 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
825 				     MDCR_EL2_TPMCR_BIT |
826 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
827 
828 			write_mdcr_el2(mdcr_el2);
829 
830 			/*
831 			 * Initialise HSTR_EL2. All fields are architecturally
832 			 * UNKNOWN on reset.
833 			 *
834 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
835 			 *  Non-secure EL0 or EL1 accesses to System registers
836 			 *  do not trap to EL2.
837 			 */
838 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
839 			/*
840 			 * Initialise CNTHP_CTL_EL2. All fields are
841 			 * architecturally UNKNOWN on reset.
842 			 *
843 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
844 			 *  physical timer and prevent timer interrupts.
845 			 */
846 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
847 						~(CNTHP_CTL_ENABLE_BIT));
848 		}
849 		manage_extensions_nonsecure(el2_unused, ctx);
850 	}
851 
852 	cm_el1_sysregs_context_restore(security_state);
853 	cm_set_next_eret_context(security_state);
854 }
855 
856 #if CTX_INCLUDE_EL2_REGS
857 
el2_sysregs_context_save_fgt(el2_sysregs_t * ctx)858 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
859 {
860 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
861 	if (is_feat_amu_supported()) {
862 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
863 	}
864 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
865 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
866 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
867 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
868 }
869 
el2_sysregs_context_restore_fgt(el2_sysregs_t * ctx)870 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
871 {
872 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
873 	if (is_feat_amu_supported()) {
874 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
875 	}
876 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
877 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
878 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
879 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
880 }
881 
el2_sysregs_context_save_mpam(el2_sysregs_t * ctx)882 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
883 {
884 	u_register_t mpam_idr = read_mpamidr_el1();
885 
886 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
887 
888 	/*
889 	 * The context registers that we intend to save would be part of the
890 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
891 	 */
892 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
893 		return;
894 	}
895 
896 	/*
897 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
898 	 * MPAMIDR_HAS_HCR_BIT == 1.
899 	 */
900 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
901 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
902 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
903 
904 	/*
905 	 * The number of MPAMVPM registers is implementation defined, their
906 	 * number is stored in the MPAMIDR_EL1 register.
907 	 */
908 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
909 	case 7:
910 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
911 		__fallthrough;
912 	case 6:
913 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
914 		__fallthrough;
915 	case 5:
916 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
917 		__fallthrough;
918 	case 4:
919 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
920 		__fallthrough;
921 	case 3:
922 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
923 		__fallthrough;
924 	case 2:
925 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
926 		__fallthrough;
927 	case 1:
928 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
929 		break;
930 	}
931 }
932 
el2_sysregs_context_restore_mpam(el2_sysregs_t * ctx)933 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
934 {
935 	u_register_t mpam_idr = read_mpamidr_el1();
936 
937 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
938 
939 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
940 		return;
941 	}
942 
943 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
944 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
945 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
946 
947 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
948 	case 7:
949 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
950 		__fallthrough;
951 	case 6:
952 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
953 		__fallthrough;
954 	case 5:
955 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
956 		__fallthrough;
957 	case 4:
958 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
959 		__fallthrough;
960 	case 3:
961 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
962 		__fallthrough;
963 	case 2:
964 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
965 		__fallthrough;
966 	case 1:
967 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
968 		break;
969 	}
970 }
971 
972 /*******************************************************************************
973  * Save EL2 sysreg context
974  ******************************************************************************/
cm_el2_sysregs_context_save(uint32_t security_state)975 void cm_el2_sysregs_context_save(uint32_t security_state)
976 {
977 	u_register_t scr_el3 = read_scr();
978 
979 	/*
980 	 * Always save the non-secure and realm EL2 context, only save the
981 	 * S-EL2 context if S-EL2 is enabled.
982 	 */
983 	if ((security_state != SECURE) ||
984 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
985 		cpu_context_t *ctx;
986 		el2_sysregs_t *el2_sysregs_ctx;
987 
988 		ctx = cm_get_context(security_state);
989 		assert(ctx != NULL);
990 
991 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
992 
993 		el2_sysregs_context_save_common(el2_sysregs_ctx);
994 #if CTX_INCLUDE_MTE_REGS
995 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
996 #endif
997 		if (is_feat_mpam_supported()) {
998 			el2_sysregs_context_save_mpam(el2_sysregs_ctx);
999 		}
1000 
1001 		if (is_feat_fgt_supported()) {
1002 			el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1003 		}
1004 
1005 		if (is_feat_ecv_v2_supported()) {
1006 			write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2,
1007 				      read_cntpoff_el2());
1008 		}
1009 
1010 		if (is_feat_vhe_supported()) {
1011 			write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2,
1012 				      read_contextidr_el2());
1013 			write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2,
1014 				      read_ttbr1_el2());
1015 		}
1016 
1017 		if (is_feat_ras_supported()) {
1018 			write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2,
1019 				      read_vdisr_el2());
1020 			write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2,
1021 				      read_vsesr_el2());
1022 		}
1023 
1024 		if (is_feat_nv2_supported()) {
1025 			write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2,
1026 				      read_vncr_el2());
1027 		}
1028 
1029 		if (is_feat_trf_supported()) {
1030 			write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1031 		}
1032 
1033 		if (is_feat_csv2_2_supported()) {
1034 			write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2,
1035 				      read_scxtnum_el2());
1036 		}
1037 
1038 		if (is_feat_hcx_supported()) {
1039 			write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1040 		}
1041 		if (is_feat_tcr2_supported()) {
1042 			write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1043 		}
1044 		if (is_feat_sxpie_supported()) {
1045 			write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1046 			write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1047 		}
1048 		if (is_feat_s2pie_supported()) {
1049 			write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1050 		}
1051 		if (is_feat_sxpoe_supported()) {
1052 			write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1053 		}
1054 		if (is_feat_gcs_supported()) {
1055 			write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
1056 			write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
1057 		}
1058 	}
1059 }
1060 
1061 /*******************************************************************************
1062  * Restore EL2 sysreg context
1063  ******************************************************************************/
cm_el2_sysregs_context_restore(uint32_t security_state)1064 void cm_el2_sysregs_context_restore(uint32_t security_state)
1065 {
1066 	u_register_t scr_el3 = read_scr();
1067 
1068 	/*
1069 	 * Always restore the non-secure and realm EL2 context, only restore the
1070 	 * S-EL2 context if S-EL2 is enabled.
1071 	 */
1072 	if ((security_state != SECURE) ||
1073 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
1074 		cpu_context_t *ctx;
1075 		el2_sysregs_t *el2_sysregs_ctx;
1076 
1077 		ctx = cm_get_context(security_state);
1078 		assert(ctx != NULL);
1079 
1080 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1081 
1082 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
1083 #if CTX_INCLUDE_MTE_REGS
1084 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
1085 #endif
1086 		if (is_feat_mpam_supported()) {
1087 			el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1088 		}
1089 
1090 		if (is_feat_fgt_supported()) {
1091 			el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1092 		}
1093 
1094 		if (is_feat_ecv_v2_supported()) {
1095 			write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx,
1096 						       CTX_CNTPOFF_EL2));
1097 		}
1098 
1099 		if (is_feat_vhe_supported()) {
1100 			write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1101 			write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1102 		}
1103 
1104 		if (is_feat_ras_supported()) {
1105 			write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2));
1106 			write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2));
1107 		}
1108 
1109 		if (is_feat_nv2_supported()) {
1110 			write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1111 		}
1112 		if (is_feat_trf_supported()) {
1113 			write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1114 		}
1115 
1116 		if (is_feat_csv2_2_supported()) {
1117 			write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx,
1118 						       CTX_SCXTNUM_EL2));
1119 		}
1120 
1121 		if (is_feat_hcx_supported()) {
1122 			write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1123 		}
1124 		if (is_feat_tcr2_supported()) {
1125 			write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1126 		}
1127 		if (is_feat_sxpie_supported()) {
1128 			write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1129 			write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1130 		}
1131 		if (is_feat_s2pie_supported()) {
1132 			write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1133 		}
1134 		if (is_feat_sxpoe_supported()) {
1135 			write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1136 		}
1137 		if (is_feat_gcs_supported()) {
1138 			write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
1139 			write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
1140 		}
1141 	}
1142 }
1143 #endif /* CTX_INCLUDE_EL2_REGS */
1144 
1145 /*******************************************************************************
1146  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1147  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1148  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1149  * cm_prepare_el3_exit function.
1150  ******************************************************************************/
cm_prepare_el3_exit_ns(void)1151 void cm_prepare_el3_exit_ns(void)
1152 {
1153 #if CTX_INCLUDE_EL2_REGS
1154 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1155 	assert(ctx != NULL);
1156 
1157 	/* Assert that EL2 is used. */
1158 #if ENABLE_ASSERTIONS
1159 	el3_state_t *state = get_el3state_ctx(ctx);
1160 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1161 #endif
1162 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1163 			(el_implemented(2U) != EL_IMPL_NONE));
1164 
1165 	/*
1166 	 * Currently some extensions are configured using
1167 	 * direct register updates. Therefore, do this here
1168 	 * instead of when setting up context.
1169 	 */
1170 	manage_extensions_nonsecure(0, ctx);
1171 
1172 	/*
1173 	 * Set the NS bit to be able to access the ICC_SRE_EL2
1174 	 * register when restoring context.
1175 	 */
1176 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
1177 
1178 	/*
1179 	 * Ensure the NS bit change is committed before the EL2/EL1
1180 	 * state restoration.
1181 	 */
1182 	isb();
1183 
1184 	/* Restore EL2 and EL1 sysreg contexts */
1185 	cm_el2_sysregs_context_restore(NON_SECURE);
1186 	cm_el1_sysregs_context_restore(NON_SECURE);
1187 	cm_set_next_eret_context(NON_SECURE);
1188 #else
1189 	cm_prepare_el3_exit(NON_SECURE);
1190 #endif /* CTX_INCLUDE_EL2_REGS */
1191 }
1192 
1193 /*******************************************************************************
1194  * The next four functions are used by runtime services to save and restore
1195  * EL1 context on the 'cpu_context' structure for the specified security
1196  * state.
1197  ******************************************************************************/
cm_el1_sysregs_context_save(uint32_t security_state)1198 void cm_el1_sysregs_context_save(uint32_t security_state)
1199 {
1200 	cpu_context_t *ctx;
1201 
1202 	ctx = cm_get_context(security_state);
1203 	assert(ctx != NULL);
1204 
1205 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1206 
1207 #if IMAGE_BL31
1208 	if (security_state == SECURE)
1209 		PUBLISH_EVENT(cm_exited_secure_world);
1210 	else
1211 		PUBLISH_EVENT(cm_exited_normal_world);
1212 #endif
1213 }
1214 
cm_el1_sysregs_context_restore(uint32_t security_state)1215 void cm_el1_sysregs_context_restore(uint32_t security_state)
1216 {
1217 	cpu_context_t *ctx;
1218 
1219 	ctx = cm_get_context(security_state);
1220 	assert(ctx != NULL);
1221 
1222 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1223 
1224 #if IMAGE_BL31
1225 	if (security_state == SECURE)
1226 		PUBLISH_EVENT(cm_entering_secure_world);
1227 	else
1228 		PUBLISH_EVENT(cm_entering_normal_world);
1229 #endif
1230 }
1231 
1232 /*******************************************************************************
1233  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1234  * given security state with the given entrypoint
1235  ******************************************************************************/
cm_set_elr_el3(uint32_t security_state,uintptr_t entrypoint)1236 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1237 {
1238 	cpu_context_t *ctx;
1239 	el3_state_t *state;
1240 
1241 	ctx = cm_get_context(security_state);
1242 	assert(ctx != NULL);
1243 
1244 	/* Populate EL3 state so that ERET jumps to the correct entry */
1245 	state = get_el3state_ctx(ctx);
1246 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1247 }
1248 
1249 /*******************************************************************************
1250  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1251  * pertaining to the given security state
1252  ******************************************************************************/
cm_set_elr_spsr_el3(uint32_t security_state,uintptr_t entrypoint,uint32_t spsr)1253 void cm_set_elr_spsr_el3(uint32_t security_state,
1254 			uintptr_t entrypoint, uint32_t spsr)
1255 {
1256 	cpu_context_t *ctx;
1257 	el3_state_t *state;
1258 
1259 	ctx = cm_get_context(security_state);
1260 	assert(ctx != NULL);
1261 
1262 	/* Populate EL3 state so that ERET jumps to the correct entry */
1263 	state = get_el3state_ctx(ctx);
1264 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1265 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1266 }
1267 
1268 /*******************************************************************************
1269  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1270  * pertaining to the given security state using the value and bit position
1271  * specified in the parameters. It preserves all other bits.
1272  ******************************************************************************/
cm_write_scr_el3_bit(uint32_t security_state,uint32_t bit_pos,uint32_t value)1273 void cm_write_scr_el3_bit(uint32_t security_state,
1274 			  uint32_t bit_pos,
1275 			  uint32_t value)
1276 {
1277 	cpu_context_t *ctx;
1278 	el3_state_t *state;
1279 	u_register_t scr_el3;
1280 
1281 	ctx = cm_get_context(security_state);
1282 	assert(ctx != NULL);
1283 
1284 	/* Ensure that the bit position is a valid one */
1285 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1286 
1287 	/* Ensure that the 'value' is only a bit wide */
1288 	assert(value <= 1U);
1289 
1290 	/*
1291 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1292 	 * and set it to its new value.
1293 	 */
1294 	state = get_el3state_ctx(ctx);
1295 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1296 	scr_el3 &= ~(1UL << bit_pos);
1297 	scr_el3 |= (u_register_t)value << bit_pos;
1298 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1299 }
1300 
1301 /*******************************************************************************
1302  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1303  * given security state.
1304  ******************************************************************************/
cm_get_scr_el3(uint32_t security_state)1305 u_register_t cm_get_scr_el3(uint32_t security_state)
1306 {
1307 	cpu_context_t *ctx;
1308 	el3_state_t *state;
1309 
1310 	ctx = cm_get_context(security_state);
1311 	assert(ctx != NULL);
1312 
1313 	/* Populate EL3 state so that ERET jumps to the correct entry */
1314 	state = get_el3state_ctx(ctx);
1315 	return read_ctx_reg(state, CTX_SCR_EL3);
1316 }
1317 
1318 /*******************************************************************************
1319  * This function is used to program the context that's used for exception
1320  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1321  * the required security state
1322  ******************************************************************************/
cm_set_next_eret_context(uint32_t security_state)1323 void cm_set_next_eret_context(uint32_t security_state)
1324 {
1325 	cpu_context_t *ctx;
1326 
1327 	ctx = cm_get_context(security_state);
1328 	assert(ctx != NULL);
1329 
1330 	cm_set_next_context(ctx);
1331 }
1332