1 /*
2 * Copyright (C) 2022, STMicroelectronics - All Rights Reserved
3 *
4 * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <errno.h>
9
10 #include "clk-stm32-core.h"
11 #include <common/debug.h>
12 #include <common/fdt_wrappers.h>
13 #include <drivers/clk.h>
14 #include <drivers/delay_timer.h>
15 #include <drivers/st/stm32mp_clkfunc.h>
16 #include <lib/mmio.h>
17 #include <lib/spinlock.h>
18
19 static struct spinlock reg_lock;
20 static struct spinlock refcount_lock;
21
22 static struct stm32_clk_priv *stm32_clock_data;
23
24 const struct stm32_clk_ops clk_mux_ops;
25
clk_stm32_get_priv(void)26 struct stm32_clk_priv *clk_stm32_get_priv(void)
27 {
28 return stm32_clock_data;
29 }
30
stm32mp1_clk_lock(struct spinlock * lock)31 static void stm32mp1_clk_lock(struct spinlock *lock)
32 {
33 if (stm32mp_lock_available()) {
34 /* Assume interrupts are masked */
35 spin_lock(lock);
36 }
37 }
38
stm32mp1_clk_unlock(struct spinlock * lock)39 static void stm32mp1_clk_unlock(struct spinlock *lock)
40 {
41 if (stm32mp_lock_available()) {
42 spin_unlock(lock);
43 }
44 }
45
stm32mp1_clk_rcc_regs_lock(void)46 void stm32mp1_clk_rcc_regs_lock(void)
47 {
48 stm32mp1_clk_lock(®_lock);
49 }
50
stm32mp1_clk_rcc_regs_unlock(void)51 void stm32mp1_clk_rcc_regs_unlock(void)
52 {
53 stm32mp1_clk_unlock(®_lock);
54 }
55
56 #define TIMEOUT_US_1S U(1000000)
57 #define OSCRDY_TIMEOUT TIMEOUT_US_1S
58
clk_oscillator_get_data(struct stm32_clk_priv * priv,int id)59 struct clk_oscillator_data *clk_oscillator_get_data(struct stm32_clk_priv *priv, int id)
60 {
61 const struct clk_stm32 *clk = _clk_get(priv, id);
62 struct stm32_osc_cfg *osc_cfg = clk->clock_cfg;
63 int osc_id = osc_cfg->osc_id;
64
65 return &priv->osci_data[osc_id];
66 }
67
clk_oscillator_set_bypass(struct stm32_clk_priv * priv,int id,bool digbyp,bool bypass)68 void clk_oscillator_set_bypass(struct stm32_clk_priv *priv, int id, bool digbyp, bool bypass)
69 {
70 struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
71
72 struct stm32_clk_bypass *bypass_data = osc_data->bypass;
73 uintptr_t address;
74
75 if (bypass_data == NULL) {
76 return;
77 }
78
79 address = priv->base + bypass_data->offset;
80
81 if (digbyp) {
82 mmio_setbits_32(address, BIT(bypass_data->bit_digbyp));
83 }
84
85 if (bypass || digbyp) {
86 mmio_setbits_32(address, BIT(bypass_data->bit_byp));
87 }
88 }
89
clk_oscillator_set_css(struct stm32_clk_priv * priv,int id,bool css)90 void clk_oscillator_set_css(struct stm32_clk_priv *priv, int id, bool css)
91 {
92 struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
93
94 struct stm32_clk_css *css_data = osc_data->css;
95 uintptr_t address;
96
97 if (css_data == NULL) {
98 return;
99 }
100
101 address = priv->base + css_data->offset;
102
103 if (css) {
104 mmio_setbits_32(address, BIT(css_data->bit_css));
105 }
106 }
107
clk_oscillator_set_drive(struct stm32_clk_priv * priv,int id,uint8_t lsedrv)108 void clk_oscillator_set_drive(struct stm32_clk_priv *priv, int id, uint8_t lsedrv)
109 {
110 struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
111
112 struct stm32_clk_drive *drive_data = osc_data->drive;
113 uintptr_t address;
114 uint32_t mask;
115 uint32_t value;
116
117 if (drive_data == NULL) {
118 return;
119 }
120
121 address = priv->base + drive_data->offset;
122
123 mask = (BIT(drive_data->drv_width) - 1U) << drive_data->drv_shift;
124
125 /*
126 * Warning: not recommended to switch directly from "high drive"
127 * to "medium low drive", and vice-versa.
128 */
129 value = (mmio_read_32(address) & mask) >> drive_data->drv_shift;
130
131 while (value != lsedrv) {
132 if (value > lsedrv) {
133 value--;
134 } else {
135 value++;
136 }
137
138 mmio_clrsetbits_32(address, mask, value << drive_data->drv_shift);
139 }
140 }
141
clk_oscillator_wait_ready(struct stm32_clk_priv * priv,int id,bool ready_on)142 int clk_oscillator_wait_ready(struct stm32_clk_priv *priv, int id, bool ready_on)
143 {
144 struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
145
146 return _clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, ready_on);
147 }
148
clk_oscillator_wait_ready_on(struct stm32_clk_priv * priv,int id)149 int clk_oscillator_wait_ready_on(struct stm32_clk_priv *priv, int id)
150 {
151 return clk_oscillator_wait_ready(priv, id, true);
152 }
153
clk_oscillator_wait_ready_off(struct stm32_clk_priv * priv,int id)154 int clk_oscillator_wait_ready_off(struct stm32_clk_priv *priv, int id)
155 {
156 return clk_oscillator_wait_ready(priv, id, false);
157 }
158
clk_gate_enable(struct stm32_clk_priv * priv,int id)159 static int clk_gate_enable(struct stm32_clk_priv *priv, int id)
160 {
161 const struct clk_stm32 *clk = _clk_get(priv, id);
162 struct clk_gate_cfg *cfg = clk->clock_cfg;
163
164 mmio_setbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx));
165
166 return 0;
167 }
168
clk_gate_disable(struct stm32_clk_priv * priv,int id)169 static void clk_gate_disable(struct stm32_clk_priv *priv, int id)
170 {
171 const struct clk_stm32 *clk = _clk_get(priv, id);
172 struct clk_gate_cfg *cfg = clk->clock_cfg;
173
174 mmio_clrbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx));
175 }
176
clk_gate_is_enabled(struct stm32_clk_priv * priv,int id)177 static bool clk_gate_is_enabled(struct stm32_clk_priv *priv, int id)
178 {
179 const struct clk_stm32 *clk = _clk_get(priv, id);
180 struct clk_gate_cfg *cfg = clk->clock_cfg;
181
182 return ((mmio_read_32(priv->base + cfg->offset) & BIT(cfg->bit_idx)) != 0U);
183 }
184
185 const struct stm32_clk_ops clk_gate_ops = {
186 .enable = clk_gate_enable,
187 .disable = clk_gate_disable,
188 .is_enabled = clk_gate_is_enabled,
189 };
190
_clk_stm32_gate_disable(struct stm32_clk_priv * priv,uint16_t gate_id)191 void _clk_stm32_gate_disable(struct stm32_clk_priv *priv, uint16_t gate_id)
192 {
193 const struct gate_cfg *gate = &priv->gates[gate_id];
194 uintptr_t addr = priv->base + gate->offset;
195
196 if (gate->set_clr != 0U) {
197 mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx));
198 } else {
199 mmio_clrbits_32(addr, BIT(gate->bit_idx));
200 }
201 }
202
_clk_stm32_gate_enable(struct stm32_clk_priv * priv,uint16_t gate_id)203 int _clk_stm32_gate_enable(struct stm32_clk_priv *priv, uint16_t gate_id)
204 {
205 const struct gate_cfg *gate = &priv->gates[gate_id];
206 uintptr_t addr = priv->base + gate->offset;
207
208 if (gate->set_clr != 0U) {
209 mmio_write_32(addr, BIT(gate->bit_idx));
210
211 } else {
212 mmio_setbits_32(addr, BIT(gate->bit_idx));
213 }
214
215 return 0;
216 }
217
_clk_get(struct stm32_clk_priv * priv,int id)218 const struct clk_stm32 *_clk_get(struct stm32_clk_priv *priv, int id)
219 {
220 if ((unsigned int)id < priv->num) {
221 return &priv->clks[id];
222 }
223
224 return NULL;
225 }
226
227 #define clk_div_mask(_width) GENMASK(((_width) - 1U), 0U)
228
_get_table_div(const struct clk_div_table * table,unsigned int val)229 static unsigned int _get_table_div(const struct clk_div_table *table,
230 unsigned int val)
231 {
232 const struct clk_div_table *clkt;
233
234 for (clkt = table; clkt->div; clkt++) {
235 if (clkt->val == val) {
236 return clkt->div;
237 }
238 }
239
240 return 0;
241 }
242
_get_div(const struct clk_div_table * table,unsigned int val,unsigned long flags,uint8_t width)243 static unsigned int _get_div(const struct clk_div_table *table,
244 unsigned int val, unsigned long flags,
245 uint8_t width)
246 {
247 if ((flags & CLK_DIVIDER_ONE_BASED) != 0UL) {
248 return val;
249 }
250
251 if ((flags & CLK_DIVIDER_POWER_OF_TWO) != 0UL) {
252 return BIT(val);
253 }
254
255 if ((flags & CLK_DIVIDER_MAX_AT_ZERO) != 0UL) {
256 return (val != 0U) ? val : BIT(width);
257 }
258
259 if (table != NULL) {
260 return _get_table_div(table, val);
261 }
262
263 return val + 1U;
264 }
265
266 #define TIMEOUT_US_200MS U(200000)
267 #define CLKSRC_TIMEOUT TIMEOUT_US_200MS
268
clk_mux_set_parent(struct stm32_clk_priv * priv,uint16_t pid,uint8_t sel)269 int clk_mux_set_parent(struct stm32_clk_priv *priv, uint16_t pid, uint8_t sel)
270 {
271 const struct parent_cfg *parents = &priv->parents[pid & MUX_PARENT_MASK];
272 const struct mux_cfg *mux = parents->mux;
273 uintptr_t address = priv->base + mux->offset;
274 uint32_t mask;
275 uint64_t timeout;
276
277 mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
278
279 mmio_clrsetbits_32(address, mask, (sel << mux->shift) & mask);
280
281 if (mux->bitrdy == MUX_NO_BIT_RDY) {
282 return 0;
283 }
284
285 timeout = timeout_init_us(CLKSRC_TIMEOUT);
286
287 mask = BIT(mux->bitrdy);
288
289 while ((mmio_read_32(address) & mask) == 0U) {
290 if (timeout_elapsed(timeout)) {
291 return -ETIMEDOUT;
292 }
293 }
294
295 return 0;
296 }
297
_clk_stm32_set_parent(struct stm32_clk_priv * priv,int clk,int clkp)298 int _clk_stm32_set_parent(struct stm32_clk_priv *priv, int clk, int clkp)
299 {
300 const struct parent_cfg *parents;
301 uint16_t pid;
302 uint8_t sel;
303 int old_parent;
304
305 pid = priv->clks[clk].parent;
306
307 if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) {
308 return -EINVAL;
309 }
310
311 old_parent = _clk_stm32_get_parent(priv, clk);
312 if (old_parent < 0) {
313 return old_parent;
314 }
315 if (old_parent == clkp) {
316 return 0;
317 }
318
319 parents = &priv->parents[pid & MUX_PARENT_MASK];
320
321 for (sel = 0; sel < parents->num_parents; sel++) {
322 if (parents->id_parents[sel] == (uint16_t)clkp) {
323 bool clk_was_enabled = _clk_stm32_is_enabled(priv, clk);
324 int err = 0;
325
326 /* Enable the parents (for glitch free mux) */
327 _clk_stm32_enable(priv, clkp);
328 _clk_stm32_enable(priv, old_parent);
329
330 err = clk_mux_set_parent(priv, pid, sel);
331
332 _clk_stm32_disable(priv, old_parent);
333
334 if (clk_was_enabled) {
335 _clk_stm32_disable(priv, old_parent);
336 } else {
337 _clk_stm32_disable(priv, clkp);
338 }
339
340 return err;
341 }
342 }
343
344 return -EINVAL;
345 }
346
clk_mux_get_parent(struct stm32_clk_priv * priv,uint32_t mux_id)347 int clk_mux_get_parent(struct stm32_clk_priv *priv, uint32_t mux_id)
348 {
349 const struct parent_cfg *parent;
350 const struct mux_cfg *mux;
351 uint32_t mask;
352
353 if (mux_id >= priv->nb_parents) {
354 panic();
355 }
356
357 parent = &priv->parents[mux_id];
358 mux = parent->mux;
359
360 mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
361
362 return (mmio_read_32(priv->base + mux->offset) & mask) >> mux->shift;
363 }
364
_clk_stm32_set_parent_by_index(struct stm32_clk_priv * priv,int clk,int sel)365 int _clk_stm32_set_parent_by_index(struct stm32_clk_priv *priv, int clk, int sel)
366 {
367 uint16_t pid;
368
369 pid = priv->clks[clk].parent;
370
371 if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) {
372 return -EINVAL;
373 }
374
375 return clk_mux_set_parent(priv, pid, sel);
376 }
377
_clk_stm32_get_parent(struct stm32_clk_priv * priv,int clk_id)378 int _clk_stm32_get_parent(struct stm32_clk_priv *priv, int clk_id)
379 {
380 const struct clk_stm32 *clk = _clk_get(priv, clk_id);
381 const struct parent_cfg *parent;
382 uint16_t mux_id;
383 int sel;
384
385 mux_id = priv->clks[clk_id].parent;
386 if (mux_id == CLK_IS_ROOT) {
387 return CLK_IS_ROOT;
388 }
389
390 if (mux_id < MUX_MAX_PARENTS) {
391 return mux_id & MUX_PARENT_MASK;
392 }
393
394 mux_id &= MUX_PARENT_MASK;
395 parent = &priv->parents[mux_id];
396
397 if (clk->ops->get_parent != NULL) {
398 sel = clk->ops->get_parent(priv, clk_id);
399 } else {
400 sel = clk_mux_get_parent(priv, mux_id);
401 }
402
403 if ((sel >= 0) && (sel < parent->num_parents)) {
404 return parent->id_parents[sel];
405 }
406
407 return -EINVAL;
408 }
409
_clk_stm32_get_parent_index(struct stm32_clk_priv * priv,int clk_id)410 int _clk_stm32_get_parent_index(struct stm32_clk_priv *priv, int clk_id)
411 {
412 uint16_t mux_id;
413
414 mux_id = priv->clks[clk_id].parent;
415 if (mux_id == CLK_IS_ROOT) {
416 return CLK_IS_ROOT;
417 }
418
419 if (mux_id < MUX_MAX_PARENTS) {
420 return mux_id & MUX_PARENT_MASK;
421 }
422
423 mux_id &= MUX_PARENT_MASK;
424
425 return clk_mux_get_parent(priv, mux_id);
426 }
427
_clk_stm32_get_parent_by_index(struct stm32_clk_priv * priv,int clk_id,int idx)428 int _clk_stm32_get_parent_by_index(struct stm32_clk_priv *priv, int clk_id, int idx)
429 {
430 const struct parent_cfg *parent;
431 uint16_t mux_id;
432
433 mux_id = priv->clks[clk_id].parent;
434 if (mux_id == CLK_IS_ROOT) {
435 return CLK_IS_ROOT;
436 }
437
438 if (mux_id < MUX_MAX_PARENTS) {
439 return mux_id & MUX_PARENT_MASK;
440 }
441
442 mux_id &= MUX_PARENT_MASK;
443 parent = &priv->parents[mux_id];
444
445 if (idx < parent->num_parents) {
446 return parent->id_parents[idx];
447 }
448
449 return -EINVAL;
450 }
451
clk_get_index(struct stm32_clk_priv * priv,unsigned long binding_id)452 int clk_get_index(struct stm32_clk_priv *priv, unsigned long binding_id)
453 {
454 unsigned int i;
455
456 for (i = 0U; i < priv->num; i++) {
457 if (binding_id == priv->clks[i].binding) {
458 return (int)i;
459 }
460 }
461
462 return -EINVAL;
463 }
464
_clk_stm32_get_rate(struct stm32_clk_priv * priv,int id)465 unsigned long _clk_stm32_get_rate(struct stm32_clk_priv *priv, int id)
466 {
467 const struct clk_stm32 *clk = _clk_get(priv, id);
468 int parent;
469
470 if ((unsigned int)id >= priv->num) {
471 return 0UL;
472 }
473
474 parent = _clk_stm32_get_parent(priv, id);
475 if (parent < 0) {
476 return 0UL;
477 }
478
479 if (clk->ops->recalc_rate != NULL) {
480 unsigned long prate = 0UL;
481
482 if (parent != CLK_IS_ROOT) {
483 prate = _clk_stm32_get_rate(priv, parent);
484 }
485
486 return clk->ops->recalc_rate(priv, id, prate);
487 }
488
489 if (parent == CLK_IS_ROOT) {
490 panic();
491 }
492
493 return _clk_stm32_get_rate(priv, parent);
494 }
495
_clk_stm32_get_parent_rate(struct stm32_clk_priv * priv,int id)496 unsigned long _clk_stm32_get_parent_rate(struct stm32_clk_priv *priv, int id)
497 {
498 int parent_id = _clk_stm32_get_parent(priv, id);
499
500 if (parent_id < 0) {
501 return 0UL;
502 }
503
504 return _clk_stm32_get_rate(priv, parent_id);
505 }
506
_stm32_clk_get_flags(struct stm32_clk_priv * priv,int id)507 static uint8_t _stm32_clk_get_flags(struct stm32_clk_priv *priv, int id)
508 {
509 return priv->clks[id].flags;
510 }
511
_stm32_clk_is_flags(struct stm32_clk_priv * priv,int id,uint8_t flag)512 bool _stm32_clk_is_flags(struct stm32_clk_priv *priv, int id, uint8_t flag)
513 {
514 if ((_stm32_clk_get_flags(priv, id) & flag) != 0U) {
515 return true;
516 }
517
518 return false;
519 }
520
clk_stm32_enable_call_ops(struct stm32_clk_priv * priv,uint16_t id)521 int clk_stm32_enable_call_ops(struct stm32_clk_priv *priv, uint16_t id)
522 {
523 const struct clk_stm32 *clk = _clk_get(priv, id);
524
525 if (clk->ops->enable != NULL) {
526 clk->ops->enable(priv, id);
527 }
528
529 return 0;
530 }
531
_clk_stm32_enable_core(struct stm32_clk_priv * priv,int id)532 static int _clk_stm32_enable_core(struct stm32_clk_priv *priv, int id)
533 {
534 int parent;
535 int ret = 0;
536
537 if (priv->gate_refcounts[id] == 0U) {
538 parent = _clk_stm32_get_parent(priv, id);
539 if (parent < 0) {
540 return parent;
541 }
542 if (parent != CLK_IS_ROOT) {
543 ret = _clk_stm32_enable_core(priv, parent);
544 if (ret != 0) {
545 return ret;
546 }
547 }
548 clk_stm32_enable_call_ops(priv, id);
549 }
550
551 priv->gate_refcounts[id]++;
552
553 if (priv->gate_refcounts[id] == UINT_MAX) {
554 ERROR("%s: %d max enable count !", __func__, id);
555 panic();
556 }
557
558 return 0;
559 }
560
_clk_stm32_enable(struct stm32_clk_priv * priv,int id)561 int _clk_stm32_enable(struct stm32_clk_priv *priv, int id)
562 {
563 int ret;
564
565 stm32mp1_clk_lock(&refcount_lock);
566 ret = _clk_stm32_enable_core(priv, id);
567 stm32mp1_clk_unlock(&refcount_lock);
568
569 return ret;
570 }
571
clk_stm32_disable_call_ops(struct stm32_clk_priv * priv,uint16_t id)572 void clk_stm32_disable_call_ops(struct stm32_clk_priv *priv, uint16_t id)
573 {
574 const struct clk_stm32 *clk = _clk_get(priv, id);
575
576 if (clk->ops->disable != NULL) {
577 clk->ops->disable(priv, id);
578 }
579 }
580
_clk_stm32_disable_core(struct stm32_clk_priv * priv,int id)581 static void _clk_stm32_disable_core(struct stm32_clk_priv *priv, int id)
582 {
583 int parent;
584
585 if ((priv->gate_refcounts[id] == 1U) && _stm32_clk_is_flags(priv, id, CLK_IS_CRITICAL)) {
586 return;
587 }
588
589 if (priv->gate_refcounts[id] == 0U) {
590 /* case of clock ignore unused */
591 if (_clk_stm32_is_enabled(priv, id)) {
592 clk_stm32_disable_call_ops(priv, id);
593 return;
594 }
595 VERBOSE("%s: %d already disabled !\n\n", __func__, id);
596 return;
597 }
598
599 if (--priv->gate_refcounts[id] > 0U) {
600 return;
601 }
602
603 clk_stm32_disable_call_ops(priv, id);
604
605 parent = _clk_stm32_get_parent(priv, id);
606 if ((parent >= 0) && (parent != CLK_IS_ROOT)) {
607 _clk_stm32_disable_core(priv, parent);
608 }
609 }
610
_clk_stm32_disable(struct stm32_clk_priv * priv,int id)611 void _clk_stm32_disable(struct stm32_clk_priv *priv, int id)
612 {
613 stm32mp1_clk_lock(&refcount_lock);
614
615 _clk_stm32_disable_core(priv, id);
616
617 stm32mp1_clk_unlock(&refcount_lock);
618 }
619
_clk_stm32_is_enabled(struct stm32_clk_priv * priv,int id)620 bool _clk_stm32_is_enabled(struct stm32_clk_priv *priv, int id)
621 {
622 const struct clk_stm32 *clk = _clk_get(priv, id);
623
624 if (clk->ops->is_enabled != NULL) {
625 return clk->ops->is_enabled(priv, id);
626 }
627
628 return priv->gate_refcounts[id];
629 }
630
clk_stm32_enable(unsigned long binding_id)631 static int clk_stm32_enable(unsigned long binding_id)
632 {
633 struct stm32_clk_priv *priv = clk_stm32_get_priv();
634 int id;
635
636 id = clk_get_index(priv, binding_id);
637 if (id == -EINVAL) {
638 return id;
639 }
640
641 return _clk_stm32_enable(priv, id);
642 }
643
clk_stm32_disable(unsigned long binding_id)644 static void clk_stm32_disable(unsigned long binding_id)
645 {
646 struct stm32_clk_priv *priv = clk_stm32_get_priv();
647 int id;
648
649 id = clk_get_index(priv, binding_id);
650 if (id != -EINVAL) {
651 _clk_stm32_disable(priv, id);
652 }
653 }
654
clk_stm32_is_enabled(unsigned long binding_id)655 static bool clk_stm32_is_enabled(unsigned long binding_id)
656 {
657 struct stm32_clk_priv *priv = clk_stm32_get_priv();
658 int id;
659
660 id = clk_get_index(priv, binding_id);
661 if (id == -EINVAL) {
662 return false;
663 }
664
665 return _clk_stm32_is_enabled(priv, id);
666 }
667
clk_stm32_get_rate(unsigned long binding_id)668 static unsigned long clk_stm32_get_rate(unsigned long binding_id)
669 {
670 struct stm32_clk_priv *priv = clk_stm32_get_priv();
671 int id;
672
673 id = clk_get_index(priv, binding_id);
674 if (id == -EINVAL) {
675 return 0UL;
676 }
677
678 return _clk_stm32_get_rate(priv, id);
679 }
680
clk_stm32_get_parent(unsigned long binding_id)681 static int clk_stm32_get_parent(unsigned long binding_id)
682 {
683 struct stm32_clk_priv *priv = clk_stm32_get_priv();
684 int id;
685
686 id = clk_get_index(priv, binding_id);
687 if (id == -EINVAL) {
688 return id;
689 }
690
691 return _clk_stm32_get_parent(priv, id);
692 }
693
694 static const struct clk_ops stm32mp_clk_ops = {
695 .enable = clk_stm32_enable,
696 .disable = clk_stm32_disable,
697 .is_enabled = clk_stm32_is_enabled,
698 .get_rate = clk_stm32_get_rate,
699 .get_parent = clk_stm32_get_parent,
700 };
701
clk_stm32_enable_critical_clocks(void)702 void clk_stm32_enable_critical_clocks(void)
703 {
704 struct stm32_clk_priv *priv = clk_stm32_get_priv();
705 unsigned int i;
706
707 for (i = 0U; i < priv->num; i++) {
708 if (_stm32_clk_is_flags(priv, i, CLK_IS_CRITICAL)) {
709 _clk_stm32_enable(priv, i);
710 }
711 }
712 }
713
stm32_clk_register(void)714 static void stm32_clk_register(void)
715 {
716 clk_register(&stm32mp_clk_ops);
717 }
718
clk_stm32_div_get_value(struct stm32_clk_priv * priv,int div_id)719 uint32_t clk_stm32_div_get_value(struct stm32_clk_priv *priv, int div_id)
720 {
721 const struct div_cfg *divider = &priv->div[div_id];
722 uint32_t val = 0;
723
724 val = mmio_read_32(priv->base + divider->offset) >> divider->shift;
725 val &= clk_div_mask(divider->width);
726
727 return val;
728 }
729
_clk_stm32_divider_recalc(struct stm32_clk_priv * priv,int div_id,unsigned long prate)730 unsigned long _clk_stm32_divider_recalc(struct stm32_clk_priv *priv,
731 int div_id,
732 unsigned long prate)
733 {
734 const struct div_cfg *divider = &priv->div[div_id];
735 uint32_t val = clk_stm32_div_get_value(priv, div_id);
736 unsigned int div = 0U;
737
738 div = _get_div(divider->table, val, divider->flags, divider->width);
739 if (div == 0U) {
740 return prate;
741 }
742
743 return div_round_up((uint64_t)prate, div);
744 }
745
clk_stm32_divider_recalc(struct stm32_clk_priv * priv,int id,unsigned long prate)746 unsigned long clk_stm32_divider_recalc(struct stm32_clk_priv *priv, int id,
747 unsigned long prate)
748 {
749 const struct clk_stm32 *clk = _clk_get(priv, id);
750 struct clk_stm32_div_cfg *div_cfg = clk->clock_cfg;
751
752 return _clk_stm32_divider_recalc(priv, div_cfg->id, prate);
753 }
754
755 const struct stm32_clk_ops clk_stm32_divider_ops = {
756 .recalc_rate = clk_stm32_divider_recalc,
757 };
758
clk_stm32_set_div(struct stm32_clk_priv * priv,uint32_t div_id,uint32_t value)759 int clk_stm32_set_div(struct stm32_clk_priv *priv, uint32_t div_id, uint32_t value)
760 {
761 const struct div_cfg *divider;
762 uintptr_t address;
763 uint64_t timeout;
764 uint32_t mask;
765
766 if (div_id >= priv->nb_div) {
767 panic();
768 }
769
770 divider = &priv->div[div_id];
771 address = priv->base + divider->offset;
772
773 mask = MASK_WIDTH_SHIFT(divider->width, divider->shift);
774 mmio_clrsetbits_32(address, mask, (value << divider->shift) & mask);
775
776 if (divider->bitrdy == DIV_NO_BIT_RDY) {
777 return 0;
778 }
779
780 timeout = timeout_init_us(CLKSRC_TIMEOUT);
781 mask = BIT(divider->bitrdy);
782
783 while ((mmio_read_32(address) & mask) == 0U) {
784 if (timeout_elapsed(timeout)) {
785 return -ETIMEDOUT;
786 }
787 }
788
789 return 0;
790 }
791
_clk_stm32_gate_wait_ready(struct stm32_clk_priv * priv,uint16_t gate_id,bool ready_on)792 int _clk_stm32_gate_wait_ready(struct stm32_clk_priv *priv, uint16_t gate_id,
793 bool ready_on)
794 {
795 const struct gate_cfg *gate = &priv->gates[gate_id];
796 uintptr_t address = priv->base + gate->offset;
797 uint32_t mask_rdy = BIT(gate->bit_idx);
798 uint64_t timeout;
799 uint32_t mask_test;
800
801 if (ready_on) {
802 mask_test = BIT(gate->bit_idx);
803 } else {
804 mask_test = 0U;
805 }
806
807 timeout = timeout_init_us(OSCRDY_TIMEOUT);
808
809 while ((mmio_read_32(address) & mask_rdy) != mask_test) {
810 if (timeout_elapsed(timeout)) {
811 break;
812 }
813 }
814
815 if ((mmio_read_32(address) & mask_rdy) != mask_test) {
816 return -ETIMEDOUT;
817 }
818
819 return 0;
820 }
821
clk_stm32_gate_enable(struct stm32_clk_priv * priv,int id)822 int clk_stm32_gate_enable(struct stm32_clk_priv *priv, int id)
823 {
824 const struct clk_stm32 *clk = _clk_get(priv, id);
825 struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
826 const struct gate_cfg *gate = &priv->gates[cfg->id];
827 uintptr_t addr = priv->base + gate->offset;
828
829 if (gate->set_clr != 0U) {
830 mmio_write_32(addr, BIT(gate->bit_idx));
831
832 } else {
833 mmio_setbits_32(addr, BIT(gate->bit_idx));
834 }
835
836 return 0;
837 }
838
clk_stm32_gate_disable(struct stm32_clk_priv * priv,int id)839 void clk_stm32_gate_disable(struct stm32_clk_priv *priv, int id)
840 {
841 const struct clk_stm32 *clk = _clk_get(priv, id);
842 struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
843 const struct gate_cfg *gate = &priv->gates[cfg->id];
844 uintptr_t addr = priv->base + gate->offset;
845
846 if (gate->set_clr != 0U) {
847 mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx));
848 } else {
849 mmio_clrbits_32(addr, BIT(gate->bit_idx));
850 }
851 }
852
_clk_stm32_gate_is_enabled(struct stm32_clk_priv * priv,int gate_id)853 bool _clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int gate_id)
854 {
855 const struct gate_cfg *gate;
856 uint32_t addr;
857
858 gate = &priv->gates[gate_id];
859 addr = priv->base + gate->offset;
860
861 return ((mmio_read_32(addr) & BIT(gate->bit_idx)) != 0U);
862 }
863
clk_stm32_gate_is_enabled(struct stm32_clk_priv * priv,int id)864 bool clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int id)
865 {
866 const struct clk_stm32 *clk = _clk_get(priv, id);
867 struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
868
869 return _clk_stm32_gate_is_enabled(priv, cfg->id);
870 }
871
872 const struct stm32_clk_ops clk_stm32_gate_ops = {
873 .enable = clk_stm32_gate_enable,
874 .disable = clk_stm32_gate_disable,
875 .is_enabled = clk_stm32_gate_is_enabled,
876 };
877
878 const struct stm32_clk_ops clk_fixed_factor_ops = {
879 .recalc_rate = fixed_factor_recalc_rate,
880 };
881
fixed_factor_recalc_rate(struct stm32_clk_priv * priv,int id,unsigned long prate)882 unsigned long fixed_factor_recalc_rate(struct stm32_clk_priv *priv,
883 int id, unsigned long prate)
884 {
885 const struct clk_stm32 *clk = _clk_get(priv, id);
886 const struct fixed_factor_cfg *cfg = clk->clock_cfg;
887 unsigned long long rate;
888
889 rate = (unsigned long long)prate * cfg->mult;
890
891 if (cfg->div == 0U) {
892 ERROR("division by zero\n");
893 panic();
894 }
895
896 return (unsigned long)(rate / cfg->div);
897 };
898
899 #define APB_DIV_MASK GENMASK(2, 0)
900 #define TIM_PRE_MASK BIT(0)
901
timer_recalc_rate(struct stm32_clk_priv * priv,int id,unsigned long prate)902 static unsigned long timer_recalc_rate(struct stm32_clk_priv *priv,
903 int id, unsigned long prate)
904 {
905 const struct clk_stm32 *clk = _clk_get(priv, id);
906 const struct clk_timer_cfg *cfg = clk->clock_cfg;
907 uint32_t prescaler, timpre;
908 uintptr_t rcc_base = priv->base;
909
910 prescaler = mmio_read_32(rcc_base + cfg->apbdiv) &
911 APB_DIV_MASK;
912
913 timpre = mmio_read_32(rcc_base + cfg->timpre) &
914 TIM_PRE_MASK;
915
916 if (prescaler == 0U) {
917 return prate;
918 }
919
920 return prate * (timpre + 1U) * 2U;
921 };
922
923 const struct stm32_clk_ops clk_timer_ops = {
924 .recalc_rate = timer_recalc_rate,
925 };
926
clk_fixed_rate_recalc(struct stm32_clk_priv * priv,int id,unsigned long prate)927 static unsigned long clk_fixed_rate_recalc(struct stm32_clk_priv *priv, int id,
928 unsigned long prate)
929 {
930 const struct clk_stm32 *clk = _clk_get(priv, id);
931 struct clk_stm32_fixed_rate_cfg *cfg = clk->clock_cfg;
932
933 return cfg->rate;
934 }
935
936 const struct stm32_clk_ops clk_stm32_fixed_rate_ops = {
937 .recalc_rate = clk_fixed_rate_recalc,
938 };
939
clk_stm32_osc_recalc_rate(struct stm32_clk_priv * priv,int id,unsigned long prate)940 static unsigned long clk_stm32_osc_recalc_rate(struct stm32_clk_priv *priv,
941 int id, unsigned long prate)
942 {
943 struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
944
945 return osc_data->frequency;
946 };
947
clk_stm32_osc_gate_is_enabled(struct stm32_clk_priv * priv,int id)948 bool clk_stm32_osc_gate_is_enabled(struct stm32_clk_priv *priv, int id)
949 {
950 struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
951
952 return _clk_stm32_gate_is_enabled(priv, osc_data->gate_id);
953
954 }
955
clk_stm32_osc_gate_enable(struct stm32_clk_priv * priv,int id)956 int clk_stm32_osc_gate_enable(struct stm32_clk_priv *priv, int id)
957 {
958 struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
959
960 _clk_stm32_gate_enable(priv, osc_data->gate_id);
961
962 if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, true) != 0U) {
963 ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__);
964 panic();
965 }
966
967 return 0;
968 }
969
clk_stm32_osc_gate_disable(struct stm32_clk_priv * priv,int id)970 void clk_stm32_osc_gate_disable(struct stm32_clk_priv *priv, int id)
971 {
972 struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
973
974 _clk_stm32_gate_disable(priv, osc_data->gate_id);
975
976 if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, false) != 0U) {
977 ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__);
978 panic();
979 }
980 }
981
clk_stm32_get_dt_oscillator_frequency(const char * name)982 static unsigned long clk_stm32_get_dt_oscillator_frequency(const char *name)
983 {
984 void *fdt = NULL;
985 int node = 0;
986 int subnode = 0;
987
988 if (fdt_get_address(&fdt) == 0) {
989 panic();
990 }
991
992 node = fdt_path_offset(fdt, "/clocks");
993 if (node < 0) {
994 return 0UL;
995 }
996
997 fdt_for_each_subnode(subnode, fdt, node) {
998 const char *cchar = NULL;
999 const fdt32_t *cuint = NULL;
1000 int ret = 0;
1001
1002 cchar = fdt_get_name(fdt, subnode, &ret);
1003 if (cchar == NULL) {
1004 continue;
1005 }
1006
1007 if (strncmp(cchar, name, (size_t)ret) ||
1008 fdt_get_status(subnode) == DT_DISABLED) {
1009 continue;
1010 }
1011
1012 cuint = fdt_getprop(fdt, subnode, "clock-frequency", &ret);
1013 if (cuint == NULL) {
1014 return 0UL;
1015 }
1016
1017 return fdt32_to_cpu(*cuint);
1018 }
1019
1020 return 0UL;
1021 }
1022
clk_stm32_osc_init(struct stm32_clk_priv * priv,int id)1023 void clk_stm32_osc_init(struct stm32_clk_priv *priv, int id)
1024 {
1025 struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
1026 const char *name = osc_data->name;
1027
1028 osc_data->frequency = clk_stm32_get_dt_oscillator_frequency(name);
1029 }
1030
1031 const struct stm32_clk_ops clk_stm32_osc_ops = {
1032 .recalc_rate = clk_stm32_osc_recalc_rate,
1033 .is_enabled = clk_stm32_osc_gate_is_enabled,
1034 .enable = clk_stm32_osc_gate_enable,
1035 .disable = clk_stm32_osc_gate_disable,
1036 .init = clk_stm32_osc_init,
1037 };
1038
1039 const struct stm32_clk_ops clk_stm32_osc_nogate_ops = {
1040 .recalc_rate = clk_stm32_osc_recalc_rate,
1041 .init = clk_stm32_osc_init,
1042 };
1043
stm32_clk_parse_fdt_by_name(void * fdt,int node,const char * name,uint32_t * tab,uint32_t * nb)1044 int stm32_clk_parse_fdt_by_name(void *fdt, int node, const char *name, uint32_t *tab, uint32_t *nb)
1045 {
1046 const fdt32_t *cell;
1047 int len = 0;
1048 uint32_t i;
1049
1050 cell = fdt_getprop(fdt, node, name, &len);
1051 if (cell == NULL) {
1052 *nb = 0U;
1053 return 0;
1054 }
1055
1056 for (i = 0; i < ((uint32_t)len / sizeof(uint32_t)); i++) {
1057 uint32_t val = fdt32_to_cpu(cell[i]);
1058
1059 tab[i] = val;
1060 }
1061
1062 *nb = (uint32_t)len / sizeof(uint32_t);
1063
1064 return 0;
1065 }
1066
clk_stm32_init(struct stm32_clk_priv * priv,uintptr_t base)1067 int clk_stm32_init(struct stm32_clk_priv *priv, uintptr_t base)
1068 {
1069 unsigned int i;
1070
1071 stm32_clock_data = priv;
1072
1073 priv->base = base;
1074
1075 for (i = 0U; i < priv->num; i++) {
1076 const struct clk_stm32 *clk = _clk_get(priv, i);
1077
1078 assert(clk->ops != NULL);
1079
1080 if (clk->ops->init != NULL) {
1081 clk->ops->init(priv, i);
1082 }
1083 }
1084
1085 stm32_clk_register();
1086
1087 return 0;
1088 }
1089