1 /*
2 * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <stdarg.h>
8 #include <sys/param.h> //For max/min
9 #include "esp_attr.h"
10 #include "esp_private/system_internal.h"
11 #include "esp_spi_flash.h" //for ``g_flash_guard_default_ops``
12 #include "esp_flash.h"
13 #include "esp_flash_partitions.h"
14 #include "freertos/FreeRTOS.h"
15 #include "freertos/task.h"
16 #include "hal/spi_types.h"
17 #include "sdkconfig.h"
18 #include "esp_log.h"
19 #include "esp_compiler.h"
20 #include "esp_rom_sys.h"
21
22 #include "driver/spi_common_internal.h"
23
24 static const char TAG[] = "spi_flash";
25
26 /*
27 * OS functions providing delay service and arbitration among chips, and with the cache.
28 *
29 * The cache needs to be disabled when chips on the SPI1 bus is under operation, hence these functions need to be put
30 * into the IRAM,and their data should be put into the DRAM.
31 */
32
33 typedef struct {
34 spi_bus_lock_dev_handle_t dev_lock;
35 } app_func_arg_t;
36
37 /*
38 * Time yield algorithm:
39 * Every time spi_flash_os_check_yield() is called:
40 *
41 * 1. If the time since last end() function is longer than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS (time
42 * to yield), all counters will be reset, as if the yield has just ends;
43 * 2. If the time since last yield() is longer than CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS, will
44 * return a yield request. When the yield() is called, all counters will be reset.
45 * Note: Short intervals between start() and end() after the last yield() will not reset the
46 * counter mentioned in #2, but still be counted into the time mentioned in #2.
47 */
48 typedef struct {
49 app_func_arg_t common_arg; //shared args, must be the first item
50 bool no_protect; //to decide whether to check protected region (for the main chip) or not.
51 uint32_t acquired_since_us; // Time since last explicit yield()
52 uint32_t released_since_us; // Time since last end() (implicit yield)
53 } spi1_app_func_arg_t;
54
55 static inline IRAM_ATTR void on_spi1_released(spi1_app_func_arg_t* ctx);
56 static inline IRAM_ATTR void on_spi1_acquired(spi1_app_func_arg_t* ctx);
57 static inline IRAM_ATTR void on_spi1_yielded(spi1_app_func_arg_t* ctx);
58 static inline IRAM_ATTR bool on_spi1_check_yield(spi1_app_func_arg_t* ctx);
59
cache_enable(void * arg)60 IRAM_ATTR static void cache_enable(void* arg)
61 {
62 #ifndef CONFIG_SPI_FLASH_AUTO_SUSPEND
63 g_flash_guard_default_ops.end();
64 #endif
65 }
66
cache_disable(void * arg)67 IRAM_ATTR static void cache_disable(void* arg)
68 {
69 #ifndef CONFIG_SPI_FLASH_AUTO_SUSPEND
70 g_flash_guard_default_ops.start();
71 #endif
72 }
73
spi_start(void * arg)74 static IRAM_ATTR esp_err_t spi_start(void *arg)
75 {
76 spi_bus_lock_dev_handle_t dev_lock = ((app_func_arg_t *)arg)->dev_lock;
77
78 // wait for other devices (or cache) to finish their operation
79 esp_err_t ret = spi_bus_lock_acquire_start(dev_lock, portMAX_DELAY);
80 if (ret != ESP_OK) {
81 return ret;
82 }
83 spi_bus_lock_touch(dev_lock);
84 return ESP_OK;
85 }
86
spi_end(void * arg)87 static IRAM_ATTR esp_err_t spi_end(void *arg)
88 {
89 return spi_bus_lock_acquire_end(((app_func_arg_t *)arg)->dev_lock);
90 }
91
spi1_start(void * arg)92 static IRAM_ATTR esp_err_t spi1_start(void *arg)
93 {
94 #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
95 //use the lock to disable the cache and interrupts before using the SPI bus
96 return spi_start(arg);
97 #else
98 //directly disable the cache and interrupts when lock is not used
99 cache_disable(NULL);
100 on_spi1_acquired((spi1_app_func_arg_t*)arg);
101 return ESP_OK;
102 #endif
103 }
104
spi1_end(void * arg)105 static IRAM_ATTR esp_err_t spi1_end(void *arg)
106 {
107 esp_err_t ret = ESP_OK;
108 #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
109 ret = spi_end(arg);
110 #else
111 cache_enable(NULL);
112 #endif
113 on_spi1_released((spi1_app_func_arg_t*)arg);
114 return ret;
115 }
116
spi1_flash_os_check_yield(void * arg,uint32_t chip_status,uint32_t * out_request)117 static IRAM_ATTR esp_err_t spi1_flash_os_check_yield(void *arg, uint32_t chip_status, uint32_t* out_request)
118 {
119 assert (chip_status == 0); //TODO: support suspend
120 esp_err_t ret = ESP_ERR_TIMEOUT; //Nothing happened
121 uint32_t request = 0;
122
123 if (on_spi1_check_yield((spi1_app_func_arg_t *)arg)) {
124 request = SPI_FLASH_YIELD_REQ_YIELD;
125 ret = ESP_OK;
126 }
127 if (out_request) {
128 *out_request = request;
129 }
130 return ret;
131 }
132
spi1_flash_os_yield(void * arg,uint32_t * out_status)133 static IRAM_ATTR esp_err_t spi1_flash_os_yield(void *arg, uint32_t* out_status)
134 {
135 if (likely(xTaskGetSchedulerState() == taskSCHEDULER_RUNNING)) {
136 #ifdef CONFIG_SPI_FLASH_ERASE_YIELD_TICKS
137 vTaskDelay(CONFIG_SPI_FLASH_ERASE_YIELD_TICKS);
138 #else
139 vTaskDelay(1);
140 #endif
141 }
142 on_spi1_yielded((spi1_app_func_arg_t*)arg);
143 return ESP_OK;
144 }
145
delay_us(void * arg,uint32_t us)146 static IRAM_ATTR esp_err_t delay_us(void *arg, uint32_t us)
147 {
148 esp_rom_delay_us(us);
149 return ESP_OK;
150 }
151
get_buffer_malloc(void * arg,size_t reqest_size,size_t * out_size)152 static IRAM_ATTR void* get_buffer_malloc(void* arg, size_t reqest_size, size_t* out_size)
153 {
154 /* Allocate temporary internal buffer to use for the actual read. If the preferred size
155 doesn't fit in free internal memory, allocate the largest available free block.
156
157 (May need to shrink read_chunk_size and retry due to race conditions with other tasks
158 also allocating from the heap.)
159 */
160 void* ret = NULL;
161 unsigned retries = 5;
162 size_t read_chunk_size = reqest_size;
163 while(ret == NULL && retries--) {
164 read_chunk_size = MIN(read_chunk_size, heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT));
165 read_chunk_size = (read_chunk_size + 3) & ~3;
166 ret = heap_caps_malloc(read_chunk_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
167 }
168 ESP_LOGV(TAG, "allocate temp buffer: %p (%d)", ret, read_chunk_size);
169 *out_size = (ret != NULL? read_chunk_size: 0);
170 return ret;
171 }
172
release_buffer_malloc(void * arg,void * temp_buf)173 static IRAM_ATTR void release_buffer_malloc(void* arg, void *temp_buf)
174 {
175 free(temp_buf);
176 }
177
main_flash_region_protected(void * arg,size_t start_addr,size_t size)178 static IRAM_ATTR esp_err_t main_flash_region_protected(void* arg, size_t start_addr, size_t size)
179 {
180 if (((spi1_app_func_arg_t*)arg)->no_protect || esp_partition_main_flash_region_safe(start_addr, size)) {
181 //ESP_OK = 0, also means protected==0
182 return ESP_OK;
183 } else {
184 return ESP_ERR_NOT_SUPPORTED;
185 }
186 }
187
188 static DRAM_ATTR spi1_app_func_arg_t main_flash_arg = {};
189
190 //for SPI1, we have to disable the cache and interrupts before using the SPI bus
191 static const DRAM_ATTR esp_flash_os_functions_t esp_flash_spi1_default_os_functions = {
192 .start = spi1_start,
193 .end = spi1_end,
194 .region_protected = main_flash_region_protected,
195 .delay_us = delay_us,
196 .get_temp_buffer = get_buffer_malloc,
197 .release_temp_buffer = release_buffer_malloc,
198 .check_yield = spi1_flash_os_check_yield,
199 .yield = spi1_flash_os_yield,
200 };
201
202 static const esp_flash_os_functions_t esp_flash_spi23_default_os_functions = {
203 .start = spi_start,
204 .end = spi_end,
205 .delay_us = delay_us,
206 .get_temp_buffer = get_buffer_malloc,
207 .release_temp_buffer = release_buffer_malloc,
208 .region_protected = NULL,
209 .check_yield = NULL,
210 .yield = NULL,
211 };
212
register_dev(int host_id)213 static spi_bus_lock_dev_handle_t register_dev(int host_id)
214 {
215 spi_bus_lock_handle_t lock = spi_bus_lock_get_by_id(host_id);
216 spi_bus_lock_dev_handle_t dev_handle;
217 spi_bus_lock_dev_config_t config = {.flags = SPI_BUS_LOCK_DEV_FLAG_CS_REQUIRED};
218 esp_err_t err = spi_bus_lock_register_dev(lock, &config, &dev_handle);
219 if (err != ESP_OK) {
220 return NULL;
221 }
222 return dev_handle;
223 }
224
esp_flash_init_os_functions(esp_flash_t * chip,int host_id,int * out_dev_id)225 esp_err_t esp_flash_init_os_functions(esp_flash_t *chip, int host_id, int* out_dev_id)
226 {
227 spi_bus_lock_dev_handle_t dev_handle = NULL;
228
229 // Skip initializing the bus lock when the bus is SPI1 and the bus is not shared with SPI Master
230 // driver, leaving dev_handle = NULL
231 bool skip_register_dev = (host_id == SPI1_HOST);
232 #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
233 skip_register_dev = false;
234 #endif
235 if (!skip_register_dev) {
236 dev_handle = register_dev(host_id);
237 }
238
239 if (host_id == SPI1_HOST) {
240 //SPI1
241 chip->os_func = &esp_flash_spi1_default_os_functions;
242 chip->os_func_data = heap_caps_malloc(sizeof(spi1_app_func_arg_t),
243 MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
244 if (chip->os_func_data == NULL) {
245 return ESP_ERR_NO_MEM;
246 }
247 *(spi1_app_func_arg_t*) chip->os_func_data = (spi1_app_func_arg_t) {
248 .common_arg = {
249 .dev_lock = dev_handle,
250 },
251 .no_protect = true,
252 };
253 } else if (host_id == SPI2_HOST || host_id == SPI3_HOST) {
254 //SPI2, SPI3
255 chip->os_func = &esp_flash_spi23_default_os_functions;
256 chip->os_func_data = heap_caps_malloc(sizeof(app_func_arg_t),
257 MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
258 if (chip->os_func_data == NULL) {
259 return ESP_ERR_NO_MEM;
260 }
261 *(app_func_arg_t*) chip->os_func_data = (app_func_arg_t) {
262 .dev_lock = dev_handle,
263 };
264 } else {
265 return ESP_ERR_INVALID_ARG;
266 }
267
268 // Bus lock not initialized, the device ID should be directly given by application.
269 if (dev_handle) {
270 *out_dev_id = spi_bus_lock_get_dev_id(dev_handle);
271 }
272
273 return ESP_OK;
274 }
275
esp_flash_deinit_os_functions(esp_flash_t * chip)276 esp_err_t esp_flash_deinit_os_functions(esp_flash_t* chip)
277 {
278 if (chip->os_func_data) {
279 spi_bus_lock_dev_handle_t dev_lock = ((app_func_arg_t*)chip->os_func_data)->dev_lock;
280 // SPI bus lock is possible not used on SPI1 bus
281 if (dev_lock) {
282 spi_bus_lock_unregister_dev(dev_lock);
283 }
284 free(chip->os_func_data);
285 }
286 chip->os_func = NULL;
287 chip->os_func_data = NULL;
288 return ESP_OK;
289 }
290
esp_flash_init_main_bus_lock(void)291 esp_err_t esp_flash_init_main_bus_lock(void)
292 {
293 /* The following called functions are only defined if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
294 * is set. Thus, we must not call them if the macro is not defined, else the linker
295 * would trigger errors. */
296 #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
297 spi_bus_lock_init_main_bus();
298 spi_bus_lock_set_bg_control(g_main_spi_bus_lock, cache_enable, cache_disable, NULL);
299
300 esp_err_t err = spi_bus_lock_init_main_dev();
301 if (err != ESP_OK) {
302 return err;
303 }
304 return ESP_OK;
305 #else
306 return ESP_ERR_NOT_SUPPORTED;
307 #endif
308 }
309
esp_flash_app_enable_os_functions(esp_flash_t * chip)310 esp_err_t esp_flash_app_enable_os_functions(esp_flash_t* chip)
311 {
312 main_flash_arg = (spi1_app_func_arg_t) {
313 .common_arg = {
314 .dev_lock = g_spi_lock_main_flash_dev, //for SPI1,
315 },
316 .no_protect = false,
317 };
318 chip->os_func = &esp_flash_spi1_default_os_functions;
319 chip->os_func_data = &main_flash_arg;
320 return ESP_OK;
321 }
322
323 // The goal of this part is to manually insert one valid task execution interval, if the time since
324 // last valid interval exceed the limitation (CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS).
325 //
326 // Valid task execution interval: continuous time with the cache enabled, which is longer than
327 // CONFIG_SPI_FLASH_ERASE_YIELD_TICKS. Yield time shorter than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS is
328 // not treated as valid interval.
on_spi1_check_yield(spi1_app_func_arg_t * ctx)329 static inline IRAM_ATTR bool on_spi1_check_yield(spi1_app_func_arg_t* ctx)
330 {
331 #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
332 uint32_t time = esp_system_get_time();
333 // We handle the reset here instead of in `on_spi1_acquired()`, when acquire() and release() is
334 // larger than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS, to save one `esp_system_get_time()` call
335 if ((time - ctx->released_since_us) >= CONFIG_SPI_FLASH_ERASE_YIELD_TICKS * portTICK_PERIOD_MS * 1000) {
336 // Reset the acquired time as if the yield has just happened.
337 ctx->acquired_since_us = time;
338 } else if ((time - ctx->acquired_since_us) >= CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS * 1000) {
339 return true;
340 }
341 #endif
342 return false;
343 }
on_spi1_released(spi1_app_func_arg_t * ctx)344 static inline IRAM_ATTR void on_spi1_released(spi1_app_func_arg_t* ctx)
345 {
346 #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
347 ctx->released_since_us = esp_system_get_time();
348 #endif
349 }
350
on_spi1_acquired(spi1_app_func_arg_t * ctx)351 static inline IRAM_ATTR void on_spi1_acquired(spi1_app_func_arg_t* ctx)
352 {
353 // Ideally, when the time after `on_spi1_released()` before this function is called is larger
354 // than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS, the acquired time should be reset. We assume the
355 // time after `on_spi1_check_yield()` before this function is so short that we can do the reset
356 // in that function instead.
357 }
358
on_spi1_yielded(spi1_app_func_arg_t * ctx)359 static inline IRAM_ATTR void on_spi1_yielded(spi1_app_func_arg_t* ctx)
360 {
361 uint32_t time = esp_system_get_time();
362 ctx->acquired_since_us = time;
363 }
364