1 /*
2 * Copyright (c) 2017 - 2018, Nordic Semiconductor ASA
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6 #include <zephyr/drivers/counter.h>
7 #include <hal/nrf_timer.h>
8 #include <zephyr/sys/atomic.h>
9
10 #define LOG_LEVEL CONFIG_COUNTER_LOG_LEVEL
11 #define LOG_MODULE_NAME counter_timer
12 #include <zephyr/logging/log.h>
13 #include <zephyr/irq.h>
14 LOG_MODULE_REGISTER(LOG_MODULE_NAME, LOG_LEVEL);
15
16 #define DT_DRV_COMPAT nordic_nrf_timer
17
18 #define CC_TO_ID(cc_num) (cc_num - 2)
19
20 #define ID_TO_CC(idx) (nrf_timer_cc_channel_t)(idx + 2)
21
22 #define TOP_CH NRF_TIMER_CC_CHANNEL0
23 #define COUNTER_TOP_EVT NRF_TIMER_EVENT_COMPARE0
24 #define COUNTER_TOP_INT_MASK NRF_TIMER_INT_COMPARE0_MASK
25
26 #define COUNTER_OVERFLOW_SHORT NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK
27 #define COUNTER_READ_CC NRF_TIMER_CC_CHANNEL1
28
29 #if defined(CONFIG_SOC_SERIES_BSIM_NRFXX)
30 #define MAYBE_CONST_CONFIG
31 #else
32 #define MAYBE_CONST_CONFIG const
33 #endif
34
35 struct counter_nrfx_data {
36 counter_top_callback_t top_cb;
37 void *top_user_data;
38 uint32_t guard_period;
39 atomic_t cc_int_pending;
40 };
41
42 struct counter_nrfx_ch_data {
43 counter_alarm_callback_t callback;
44 void *user_data;
45 };
46
47 struct counter_nrfx_config {
48 struct counter_config_info info;
49 struct counter_nrfx_ch_data *ch_data;
50 NRF_TIMER_Type *timer;
51 LOG_INSTANCE_PTR_DECLARE(log);
52 };
53
54 struct counter_timer_config {
55 nrf_timer_bit_width_t bit_width;
56 nrf_timer_mode_t mode;
57 uint32_t prescaler;
58 };
59
start(const struct device * dev)60 static int start(const struct device *dev)
61 {
62 const struct counter_nrfx_config *config = dev->config;
63
64 nrf_timer_task_trigger(config->timer, NRF_TIMER_TASK_START);
65
66 return 0;
67 }
68
stop(const struct device * dev)69 static int stop(const struct device *dev)
70 {
71 const struct counter_nrfx_config *config = dev->config;
72
73 nrf_timer_task_trigger(config->timer, NRF_TIMER_TASK_STOP);
74
75 return 0;
76 }
77
get_top_value(const struct device * dev)78 static uint32_t get_top_value(const struct device *dev)
79 {
80 const struct counter_nrfx_config *config = dev->config;
81
82 return nrf_timer_cc_get(config->timer, TOP_CH);
83 }
84
read(const struct device * dev)85 static uint32_t read(const struct device *dev)
86 {
87 const struct counter_nrfx_config *config = dev->config;
88 NRF_TIMER_Type *timer = config->timer;
89
90 nrf_timer_task_trigger(timer,
91 nrf_timer_capture_task_get(COUNTER_READ_CC));
92 nrf_barrier_w();
93
94 return nrf_timer_cc_get(timer, COUNTER_READ_CC);
95 }
96
get_value(const struct device * dev,uint32_t * ticks)97 static int get_value(const struct device *dev, uint32_t *ticks)
98 {
99 *ticks = read(dev);
100 return 0;
101 }
102
ticks_add(uint32_t val1,uint32_t val2,uint32_t top)103 static uint32_t ticks_add(uint32_t val1, uint32_t val2, uint32_t top)
104 {
105 uint32_t to_top;
106
107 if (likely(IS_BIT_MASK(top))) {
108 return (val1 + val2) & top;
109 }
110
111 to_top = top - val1;
112
113 return (val2 <= to_top) ? val1 + val2 : val2 - to_top;
114 }
115
ticks_sub(uint32_t val,uint32_t old,uint32_t top)116 static uint32_t ticks_sub(uint32_t val, uint32_t old, uint32_t top)
117 {
118 if (likely(IS_BIT_MASK(top))) {
119 return (val - old) & top;
120 }
121
122 /* if top is not 2^n-1 */
123 return (val >= old) ? (val - old) : val + top + 1 - old;
124 }
125
set_cc_int_pending(const struct device * dev,uint8_t chan)126 static void set_cc_int_pending(const struct device *dev, uint8_t chan)
127 {
128 const struct counter_nrfx_config *config = dev->config;
129 struct counter_nrfx_data *data = dev->data;
130
131 atomic_or(&data->cc_int_pending, BIT(chan));
132 NRFX_IRQ_PENDING_SET(NRFX_IRQ_NUMBER_GET(config->timer));
133 }
134
set_cc(const struct device * dev,uint8_t id,uint32_t val,uint32_t flags)135 static int set_cc(const struct device *dev, uint8_t id, uint32_t val,
136 uint32_t flags)
137 {
138 const struct counter_nrfx_config *config = dev->config;
139 struct counter_nrfx_data *data = dev->data;
140
141 __ASSERT_NO_MSG(data->guard_period < get_top_value(dev));
142 bool absolute = flags & COUNTER_ALARM_CFG_ABSOLUTE;
143 bool irq_on_late;
144 NRF_TIMER_Type *reg = config->timer;
145 uint8_t chan = ID_TO_CC(id);
146 nrf_timer_event_t evt = nrf_timer_compare_event_get(chan);
147 uint32_t top = get_top_value(dev);
148 int err = 0;
149 uint32_t prev_val;
150 uint32_t now;
151 uint32_t diff;
152 uint32_t max_rel_val;
153
154 __ASSERT(nrf_timer_int_enable_check(reg,
155 nrf_timer_compare_int_get(chan)) == 0,
156 "Expected that CC interrupt is disabled.");
157
158 /* First take care of a risk of an event coming from CC being set to
159 * next tick. Reconfigure CC to future (now tick is the furthest
160 * future).
161 */
162 now = read(dev);
163 prev_val = nrf_timer_cc_get(reg, chan);
164 nrf_barrier_r();
165 nrf_timer_cc_set(reg, chan, now);
166 nrf_timer_event_clear(reg, evt);
167
168 if (absolute) {
169 max_rel_val = top - data->guard_period;
170 irq_on_late = flags & COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE;
171 } else {
172 /* If relative value is smaller than half of the counter range
173 * it is assumed that there is a risk of setting value too late
174 * and late detection algorithm must be applied. When late
175 * setting is detected, interrupt shall be triggered for
176 * immediate expiration of the timer. Detection is performed
177 * by limiting relative distance between CC and counter.
178 *
179 * Note that half of counter range is an arbitrary value.
180 */
181 irq_on_late = val < (top / 2);
182 /* limit max to detect short relative being set too late. */
183 max_rel_val = irq_on_late ? top / 2 : top;
184 val = ticks_add(now, val, top);
185 }
186
187 nrf_timer_cc_set(reg, chan, val);
188
189 /* decrement value to detect also case when val == read(dev). Otherwise,
190 * condition would need to include comparing diff against 0.
191 */
192 diff = ticks_sub(val - 1, read(dev), top);
193 if (diff > max_rel_val) {
194 if (absolute) {
195 err = -ETIME;
196 }
197
198 /* Interrupt is triggered always for relative alarm and
199 * for absolute depending on the flag.
200 */
201 if (irq_on_late) {
202 set_cc_int_pending(dev, chan);
203 } else {
204 config->ch_data[id].callback = NULL;
205 }
206 } else {
207 nrf_timer_int_enable(reg, nrf_timer_compare_int_get(chan));
208 }
209
210 return err;
211 }
212
set_alarm(const struct device * dev,uint8_t chan,const struct counter_alarm_cfg * alarm_cfg)213 static int set_alarm(const struct device *dev, uint8_t chan,
214 const struct counter_alarm_cfg *alarm_cfg)
215 {
216 const struct counter_nrfx_config *nrfx_config = dev->config;
217 struct counter_nrfx_ch_data *chdata = &nrfx_config->ch_data[chan];
218
219 if (alarm_cfg->ticks > get_top_value(dev)) {
220 return -EINVAL;
221 }
222
223 if (chdata->callback) {
224 return -EBUSY;
225 }
226
227 chdata->callback = alarm_cfg->callback;
228 chdata->user_data = alarm_cfg->user_data;
229
230 return set_cc(dev, chan, alarm_cfg->ticks, alarm_cfg->flags);
231 }
232
cancel_alarm(const struct device * dev,uint8_t chan_id)233 static int cancel_alarm(const struct device *dev, uint8_t chan_id)
234 {
235 const struct counter_nrfx_config *config = dev->config;
236 uint32_t int_mask = nrf_timer_compare_int_get(ID_TO_CC(chan_id));
237
238 nrf_timer_int_disable(config->timer, int_mask);
239 config->ch_data[chan_id].callback = NULL;
240
241 return 0;
242 }
243
set_top_value(const struct device * dev,const struct counter_top_cfg * cfg)244 static int set_top_value(const struct device *dev,
245 const struct counter_top_cfg *cfg)
246 {
247 const struct counter_nrfx_config *nrfx_config = dev->config;
248 NRF_TIMER_Type *timer = nrfx_config->timer;
249 struct counter_nrfx_data *data = dev->data;
250 int err = 0;
251 for (int i = 0; i < counter_get_num_of_channels(dev); i++) {
252 /* Overflow can be changed only when all alarms are
253 * disables.
254 */
255 if (nrfx_config->ch_data[i].callback) {
256 return -EBUSY;
257 }
258 }
259
260 nrf_timer_int_disable(timer, COUNTER_TOP_INT_MASK);
261 nrf_timer_cc_set(timer, TOP_CH, cfg->ticks);
262 nrf_timer_event_clear(timer, COUNTER_TOP_EVT);
263 nrf_timer_shorts_enable(timer, COUNTER_OVERFLOW_SHORT);
264
265 data->top_cb = cfg->callback;
266 data->top_user_data = cfg->user_data;
267
268 if (!(cfg->flags & COUNTER_TOP_CFG_DONT_RESET)) {
269 nrf_timer_task_trigger(timer, NRF_TIMER_TASK_CLEAR);
270 } else if (read(dev) >= cfg->ticks) {
271 err = -ETIME;
272 if (cfg->flags & COUNTER_TOP_CFG_RESET_WHEN_LATE) {
273 nrf_timer_task_trigger(timer, NRF_TIMER_TASK_CLEAR);
274 }
275 }
276
277 if (cfg->callback) {
278 nrf_timer_int_enable(timer, COUNTER_TOP_INT_MASK);
279 }
280
281 return err;
282 }
283
get_pending_int(const struct device * dev)284 static uint32_t get_pending_int(const struct device *dev)
285 {
286 return 0;
287 }
288
init_timer(const struct device * dev,const struct counter_timer_config * config)289 static int init_timer(const struct device *dev,
290 const struct counter_timer_config *config)
291 {
292 MAYBE_CONST_CONFIG struct counter_nrfx_config *nrfx_config =
293 (MAYBE_CONST_CONFIG struct counter_nrfx_config *)dev->config;
294
295 #if defined(CONFIG_SOC_SERIES_BSIM_NRFXX)
296 /* For simulated devices we need to convert the hardcoded DT address from the real
297 * peripheral into the correct one for simulation
298 */
299 nrfx_config->timer = nhw_convert_periph_base_addr(nrfx_config->timer);
300 #endif
301
302 NRF_TIMER_Type *reg = nrfx_config->timer;
303
304 nrf_timer_bit_width_set(reg, config->bit_width);
305 nrf_timer_mode_set(reg, config->mode);
306 nrf_timer_prescaler_set(reg, config->prescaler);
307
308 nrf_timer_cc_set(reg, TOP_CH, counter_get_max_top_value(dev));
309
310 NRFX_IRQ_ENABLE(NRFX_IRQ_NUMBER_GET(reg));
311
312 return 0;
313 }
314
get_guard_period(const struct device * dev,uint32_t flags)315 static uint32_t get_guard_period(const struct device *dev, uint32_t flags)
316 {
317 struct counter_nrfx_data *data = dev->data;
318
319 return data->guard_period;
320 }
321
set_guard_period(const struct device * dev,uint32_t guard,uint32_t flags)322 static int set_guard_period(const struct device *dev, uint32_t guard,
323 uint32_t flags)
324 {
325 struct counter_nrfx_data *data = dev->data;
326
327 __ASSERT_NO_MSG(guard < get_top_value(dev));
328
329 data->guard_period = guard;
330 return 0;
331 }
332
top_irq_handle(const struct device * dev)333 static void top_irq_handle(const struct device *dev)
334 {
335 const struct counter_nrfx_config *config = dev->config;
336 struct counter_nrfx_data *data = dev->data;
337
338 NRF_TIMER_Type *reg = config->timer;
339 counter_top_callback_t cb = data->top_cb;
340
341 if (nrf_timer_event_check(reg, COUNTER_TOP_EVT) &&
342 nrf_timer_int_enable_check(reg, COUNTER_TOP_INT_MASK)) {
343 nrf_timer_event_clear(reg, COUNTER_TOP_EVT);
344 __ASSERT(cb != NULL, "top event enabled - expecting callback");
345 cb(dev, data->top_user_data);
346 }
347 }
348
alarm_irq_handle(const struct device * dev,uint32_t id)349 static void alarm_irq_handle(const struct device *dev, uint32_t id)
350 {
351 const struct counter_nrfx_config *config = dev->config;
352 struct counter_nrfx_data *data = dev->data;
353
354 uint32_t cc = ID_TO_CC(id);
355 NRF_TIMER_Type *reg = config->timer;
356 uint32_t int_mask = nrf_timer_compare_int_get(cc);
357 nrf_timer_event_t evt = nrf_timer_compare_event_get(cc);
358 bool hw_irq_pending = nrf_timer_event_check(reg, evt) &&
359 nrf_timer_int_enable_check(reg, int_mask);
360 bool sw_irq_pending = data->cc_int_pending & BIT(cc);
361
362 if (hw_irq_pending || sw_irq_pending) {
363 struct counter_nrfx_ch_data *chdata;
364 counter_alarm_callback_t cb;
365
366 nrf_timer_event_clear(reg, evt);
367 atomic_and(&data->cc_int_pending, ~BIT(cc));
368 nrf_timer_int_disable(reg, int_mask);
369
370 chdata = &config->ch_data[id];
371 cb = chdata->callback;
372 chdata->callback = NULL;
373
374 if (cb) {
375 uint32_t cc_val = nrf_timer_cc_get(reg, cc);
376
377 cb(dev, id, cc_val, chdata->user_data);
378 }
379 }
380 }
381
irq_handler(const void * arg)382 static void irq_handler(const void *arg)
383 {
384 const struct device *dev = arg;
385
386 top_irq_handle(dev);
387
388 for (uint32_t i = 0; i < counter_get_num_of_channels(dev); i++) {
389 alarm_irq_handle(dev, i);
390 }
391 }
392
393 static DEVICE_API(counter, counter_nrfx_driver_api) = {
394 .start = start,
395 .stop = stop,
396 .get_value = get_value,
397 .set_alarm = set_alarm,
398 .cancel_alarm = cancel_alarm,
399 .set_top_value = set_top_value,
400 .get_pending_int = get_pending_int,
401 .get_top_value = get_top_value,
402 .get_guard_period = get_guard_period,
403 .set_guard_period = set_guard_period,
404 };
405
406 /*
407 * Device instantiation is done with node labels due to HAL API
408 * requirements. In particular, TIMERx_MAX_SIZE values from HALs
409 * are indexed by peripheral number, so DT_INST APIs won't work.
410 */
411
412 #define TIMER_IRQ_CONNECT(idx) \
413 COND_CODE_1(DT_INST_PROP(idx, zli), \
414 (IRQ_DIRECT_CONNECT(DT_INST_IRQN(idx), \
415 DT_INST_IRQ(idx, priority), \
416 counter_timer##idx##_isr_wrapper, \
417 IRQ_ZERO_LATENCY)), \
418 (IRQ_CONNECT(DT_INST_IRQN(idx), DT_INST_IRQ(idx, priority), \
419 irq_handler, DEVICE_DT_INST_GET(idx), 0)) \
420 )
421
422 #if !defined(CONFIG_SOC_SERIES_BSIM_NRFXX)
423 #define CHECK_MAX_FREQ(idx) \
424 BUILD_ASSERT(DT_INST_PROP(idx, max_frequency) == \
425 NRF_TIMER_BASE_FREQUENCY_GET((NRF_TIMER_Type *)DT_INST_REG_ADDR(idx)))
426 #else
427 #define CHECK_MAX_FREQ(idx)
428 #endif
429
430 #define COUNTER_NRFX_TIMER_DEVICE(idx) \
431 BUILD_ASSERT(DT_INST_PROP(idx, prescaler) <= \
432 TIMER_PRESCALER_PRESCALER_Msk, \
433 "TIMER prescaler out of range"); \
434 COND_CODE_1(DT_INST_PROP(idx, zli), ( \
435 ISR_DIRECT_DECLARE(counter_timer##idx##_isr_wrapper) \
436 { \
437 irq_handler(DEVICE_DT_INST_GET(idx)); \
438 /* No rescheduling, it shall not access zephyr primitives. */ \
439 return 0; \
440 }), ()) \
441 static int counter_##idx##_init(const struct device *dev) \
442 { \
443 TIMER_IRQ_CONNECT(idx); \
444 static const struct counter_timer_config config = { \
445 .prescaler = DT_INST_PROP(idx, prescaler), \
446 .mode = NRF_TIMER_MODE_TIMER, \
447 .bit_width = (DT_INST_PROP(idx, max_bit_width) == 32) ? \
448 NRF_TIMER_BIT_WIDTH_32 : NRF_TIMER_BIT_WIDTH_16, \
449 }; \
450 return init_timer(dev, &config); \
451 } \
452 static struct counter_nrfx_data counter_##idx##_data; \
453 static struct counter_nrfx_ch_data \
454 counter##idx##_ch_data[CC_TO_ID(DT_INST_PROP(idx, cc_num))]; \
455 LOG_INSTANCE_REGISTER(LOG_MODULE_NAME, idx, CONFIG_COUNTER_LOG_LEVEL); \
456 static MAYBE_CONST_CONFIG struct counter_nrfx_config nrfx_counter_##idx##_config = { \
457 .info = { \
458 .max_top_value = (uint32_t)BIT64_MASK(DT_INST_PROP(idx, max_bit_width)),\
459 .freq = DT_INST_PROP(idx, max_frequency) / \
460 BIT(DT_INST_PROP(idx, prescaler)), \
461 .flags = COUNTER_CONFIG_INFO_COUNT_UP, \
462 .channels = CC_TO_ID(DT_INST_PROP(idx, cc_num)), \
463 }, \
464 .ch_data = counter##idx##_ch_data, \
465 .timer = (NRF_TIMER_Type *)DT_INST_REG_ADDR(idx), \
466 LOG_INSTANCE_PTR_INIT(log, LOG_MODULE_NAME, idx) \
467 }; \
468 CHECK_MAX_FREQ(idx); \
469 DEVICE_DT_INST_DEFINE(idx, \
470 counter_##idx##_init, \
471 NULL, \
472 &counter_##idx##_data, \
473 &nrfx_counter_##idx##_config.info, \
474 PRE_KERNEL_1, CONFIG_COUNTER_INIT_PRIORITY, \
475 &counter_nrfx_driver_api);
476
477 DT_INST_FOREACH_STATUS_OKAY(COUNTER_NRFX_TIMER_DEVICE)
478