1 // Copyright 2018 Espressif Systems (Shanghai) PTE LTD
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 #include <string.h>
15 #include <stdint.h>
16 #include <limits.h>
17 #include <sys/param.h>
18
19 #include "esp_attr.h"
20 #include "esp_log.h"
21
22 #include "esp_rom_sys.h"
23 #include "esp_rom_uart.h"
24 #if CONFIG_IDF_TARGET_ESP32
25 #include "soc/dport_reg.h"
26 #include "esp32/rom/cache.h"
27 #include "esp32/rom/spi_flash.h"
28 #include "esp32/rom/rtc.h"
29 #include "esp32/rom/secure_boot.h"
30 #elif CONFIG_IDF_TARGET_ESP32S2
31 #include "esp32s2/rom/cache.h"
32 #include "esp32s2/rom/spi_flash.h"
33 #include "esp32s2/rom/rtc.h"
34 #include "esp32s2/rom/secure_boot.h"
35 #include "soc/extmem_reg.h"
36 #include "soc/cache_memory.h"
37 #elif CONFIG_IDF_TARGET_ESP32S3
38 #include "esp32s3/rom/cache.h"
39 #include "esp32s3/rom/spi_flash.h"
40 #include "esp32s3/rom/rtc.h"
41 #include "esp32s3/rom/secure_boot.h"
42 #include "soc/extmem_reg.h"
43 #include "soc/cache_memory.h"
44 #elif CONFIG_IDF_TARGET_ESP32C3
45 #include "esp32c3/rom/cache.h"
46 #include "esp32c3/rom/efuse.h"
47 #include "esp32c3/rom/ets_sys.h"
48 #include "esp32c3/rom/spi_flash.h"
49 #include "esp32c3/rom/crc.h"
50 #include "esp32c3/rom/rtc.h"
51 #include "esp32c3/rom/uart.h"
52 #include "esp32c3/rom/gpio.h"
53 #include "esp32c3/rom/secure_boot.h"
54 #include "soc/extmem_reg.h"
55 #include "soc/cache_memory.h"
56 #else // CONFIG_IDF_TARGET_*
57 #error "Unsupported IDF_TARGET"
58 #endif
59
60 #include "soc/soc.h"
61 #include "soc/cpu.h"
62 #include "soc/rtc.h"
63 #include "soc/gpio_periph.h"
64 #include "soc/efuse_periph.h"
65 #include "soc/rtc_periph.h"
66 #include "soc/timer_periph.h"
67
68 #include "sdkconfig.h"
69 #include "esp_image_format.h"
70 #include "esp_secure_boot.h"
71 #include "esp_flash_encrypt.h"
72 #include "esp_flash_partitions.h"
73 #include "bootloader_flash_priv.h"
74 #include "bootloader_random.h"
75 #include "bootloader_config.h"
76 #include "bootloader_common.h"
77 #include "bootloader_utility.h"
78 #include "bootloader_sha.h"
79 #include "bootloader_console.h"
80 #include "esp_efuse.h"
81
82 static const char *TAG = "boot";
83
84 /* Reduce literal size for some generic string literals */
85 #define MAP_ERR_MSG "Image contains multiple %s segments. Only the last one will be mapped."
86
87 static bool ota_has_initial_contents;
88
89 static void load_image(const esp_image_metadata_t *image_data);
90 static void unpack_load_app(const esp_image_metadata_t *data);
91 static void set_cache_and_start_app(uint32_t drom_addr,
92 uint32_t drom_load_addr,
93 uint32_t drom_size,
94 uint32_t irom_addr,
95 uint32_t irom_load_addr,
96 uint32_t irom_size,
97 uint32_t entry_addr);
98
99 // Read ota_info partition and fill array from two otadata structures.
read_otadata(const esp_partition_pos_t * ota_info,esp_ota_select_entry_t * two_otadata)100 static esp_err_t read_otadata(const esp_partition_pos_t *ota_info, esp_ota_select_entry_t *two_otadata)
101 {
102 const esp_ota_select_entry_t *ota_select_map;
103 if (ota_info->offset == 0) {
104 return ESP_ERR_NOT_FOUND;
105 }
106
107 // partition table has OTA data partition
108 if (ota_info->size < 2 * SPI_SEC_SIZE) {
109 ESP_LOGE(TAG, "ota_info partition size %d is too small (minimum %d bytes)", ota_info->size, sizeof(esp_ota_select_entry_t));
110 return ESP_FAIL; // can't proceed
111 }
112
113 ESP_LOGD(TAG, "OTA data offset 0x%x", ota_info->offset);
114 ota_select_map = bootloader_mmap(ota_info->offset, ota_info->size);
115 if (!ota_select_map) {
116 ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ota_info->offset, ota_info->size);
117 return ESP_FAIL; // can't proceed
118 }
119
120 memcpy(&two_otadata[0], ota_select_map, sizeof(esp_ota_select_entry_t));
121 memcpy(&two_otadata[1], (uint8_t *)ota_select_map + SPI_SEC_SIZE, sizeof(esp_ota_select_entry_t));
122 bootloader_munmap(ota_select_map);
123
124 return ESP_OK;
125 }
126
bootloader_utility_load_partition_table(bootloader_state_t * bs)127 bool bootloader_utility_load_partition_table(bootloader_state_t *bs)
128 {
129 const esp_partition_info_t *partitions;
130 const char *partition_usage;
131 esp_err_t err;
132 int num_partitions;
133
134 partitions = bootloader_mmap(ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
135 if (!partitions) {
136 ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
137 return false;
138 }
139 ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_OFFSET, (intptr_t)partitions);
140
141 err = esp_partition_table_verify(partitions, true, &num_partitions);
142 if (err != ESP_OK) {
143 ESP_LOGE(TAG, "Failed to verify partition table");
144 return false;
145 }
146
147 ESP_LOGI(TAG, "Partition Table:");
148 ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
149
150 for (int i = 0; i < num_partitions; i++) {
151 const esp_partition_info_t *partition = &partitions[i];
152 ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
153 ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
154 partition_usage = "unknown";
155
156 /* valid partition table */
157 switch (partition->type) {
158 case PART_TYPE_APP: /* app partition */
159 switch (partition->subtype) {
160 case PART_SUBTYPE_FACTORY: /* factory binary */
161 bs->factory = partition->pos;
162 partition_usage = "factory app";
163 break;
164 case PART_SUBTYPE_TEST: /* test binary */
165 bs->test = partition->pos;
166 partition_usage = "test app";
167 break;
168 default:
169 /* OTA binary */
170 if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
171 bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
172 ++bs->app_count;
173 partition_usage = "OTA app";
174 } else {
175 partition_usage = "Unknown app";
176 }
177 break;
178 }
179 break; /* PART_TYPE_APP */
180 case PART_TYPE_DATA: /* data partition */
181 switch (partition->subtype) {
182 case PART_SUBTYPE_DATA_OTA: /* ota data */
183 bs->ota_info = partition->pos;
184 partition_usage = "OTA data";
185 break;
186 case PART_SUBTYPE_DATA_RF:
187 partition_usage = "RF data";
188 break;
189 case PART_SUBTYPE_DATA_WIFI:
190 partition_usage = "WiFi data";
191 break;
192 case PART_SUBTYPE_DATA_NVS_KEYS:
193 partition_usage = "NVS keys";
194 break;
195 case PART_SUBTYPE_DATA_EFUSE_EM:
196 partition_usage = "efuse";
197 #ifdef CONFIG_BOOTLOADER_EFUSE_SECURE_VERSION_EMULATE
198 esp_efuse_init(partition->pos.offset, partition->pos.size);
199 #endif
200 break;
201 default:
202 partition_usage = "Unknown data";
203 break;
204 }
205 break; /* PARTITION_USAGE_DATA */
206 default: /* other partition type */
207 break;
208 }
209
210 /* print partition type info */
211 ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
212 partition->type, partition->subtype,
213 partition->pos.offset, partition->pos.size);
214 }
215
216 bootloader_munmap(partitions);
217
218 ESP_LOGI(TAG, "End of partition table");
219 return true;
220 }
221
222 /* Given a partition index, return the partition position data from the bootloader_state_t structure */
index_to_partition(const bootloader_state_t * bs,int index)223 static esp_partition_pos_t index_to_partition(const bootloader_state_t *bs, int index)
224 {
225 if (index == FACTORY_INDEX) {
226 return bs->factory;
227 }
228
229 if (index == TEST_APP_INDEX) {
230 return bs->test;
231 }
232
233 if (index >= 0 && index < MAX_OTA_SLOTS && index < (int)bs->app_count) {
234 return bs->ota[index];
235 }
236
237 esp_partition_pos_t invalid = { 0 };
238 return invalid;
239 }
240
log_invalid_app_partition(int index)241 static void log_invalid_app_partition(int index)
242 {
243 const char *not_bootable = " is not bootable"; /* save a few string literal bytes */
244 switch (index) {
245 case FACTORY_INDEX:
246 ESP_LOGE(TAG, "Factory app partition%s", not_bootable);
247 break;
248 case TEST_APP_INDEX:
249 ESP_LOGE(TAG, "Factory test app partition%s", not_bootable);
250 break;
251 default:
252 ESP_LOGE(TAG, "OTA app partition slot %d%s", index, not_bootable);
253 break;
254 }
255 }
256
write_otadata(esp_ota_select_entry_t * otadata,uint32_t offset,bool write_encrypted)257 static esp_err_t write_otadata(esp_ota_select_entry_t *otadata, uint32_t offset, bool write_encrypted)
258 {
259 esp_err_t err = bootloader_flash_erase_sector(offset / FLASH_SECTOR_SIZE);
260 if (err == ESP_OK) {
261 err = bootloader_flash_write(offset, otadata, sizeof(esp_ota_select_entry_t), write_encrypted);
262 }
263 if (err != ESP_OK) {
264 ESP_LOGE(TAG, "Error in write_otadata operation. err = 0x%x", err);
265 }
266 return err;
267 }
268
check_anti_rollback(const esp_partition_pos_t * partition)269 static bool check_anti_rollback(const esp_partition_pos_t *partition)
270 {
271 #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
272 esp_app_desc_t app_desc;
273 esp_err_t err = bootloader_common_get_partition_description(partition, &app_desc);
274 return err == ESP_OK && esp_efuse_check_secure_version(app_desc.secure_version) == true;
275 #else
276 return true;
277 #endif
278 }
279
280 #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
update_anti_rollback(const esp_partition_pos_t * partition)281 static void update_anti_rollback(const esp_partition_pos_t *partition)
282 {
283 esp_app_desc_t app_desc;
284 esp_err_t err = bootloader_common_get_partition_description(partition, &app_desc);
285 if (err == ESP_OK) {
286 esp_efuse_update_secure_version(app_desc.secure_version);
287 }
288 }
289
get_active_otadata_with_check_anti_rollback(const bootloader_state_t * bs,esp_ota_select_entry_t * two_otadata)290 static int get_active_otadata_with_check_anti_rollback(const bootloader_state_t *bs, esp_ota_select_entry_t *two_otadata)
291 {
292 uint32_t ota_seq;
293 uint32_t ota_slot;
294 bool valid_otadata[2];
295
296 valid_otadata[0] = bootloader_common_ota_select_valid(&two_otadata[0]);
297 valid_otadata[1] = bootloader_common_ota_select_valid(&two_otadata[1]);
298
299 bool sec_ver_valid_otadata[2] = { 0 };
300 for (int i = 0; i < 2; ++i) {
301 if (valid_otadata[i] == true) {
302 ota_seq = two_otadata[i].ota_seq - 1; // Raw OTA sequence number. May be more than # of OTA slots
303 ota_slot = ota_seq % bs->app_count; // Actual OTA partition selection
304 if (check_anti_rollback(&bs->ota[ota_slot]) == false) {
305 // invalid. This otadata[i] will not be selected as active.
306 ESP_LOGD(TAG, "OTA slot %d has an app with secure_version, this version is smaller than in the device. This OTA slot will not be selected.", ota_slot);
307 } else {
308 sec_ver_valid_otadata[i] = true;
309 }
310 }
311 }
312
313 return bootloader_common_select_otadata(two_otadata, sec_ver_valid_otadata, true);
314 }
315 #endif
316
bootloader_utility_get_selected_boot_partition(const bootloader_state_t * bs)317 int bootloader_utility_get_selected_boot_partition(const bootloader_state_t *bs)
318 {
319 esp_ota_select_entry_t otadata[2];
320 int boot_index = FACTORY_INDEX;
321
322 if (bs->ota_info.offset == 0) {
323 return FACTORY_INDEX;
324 }
325
326 if (read_otadata(&bs->ota_info, otadata) != ESP_OK) {
327 return INVALID_INDEX;
328 }
329 ota_has_initial_contents = false;
330
331 ESP_LOGD(TAG, "otadata[0]: sequence values 0x%08x", otadata[0].ota_seq);
332 ESP_LOGD(TAG, "otadata[1]: sequence values 0x%08x", otadata[1].ota_seq);
333
334 #ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
335 bool write_encrypted = esp_flash_encryption_enabled();
336 for (int i = 0; i < 2; ++i) {
337 if (otadata[i].ota_state == ESP_OTA_IMG_PENDING_VERIFY) {
338 ESP_LOGD(TAG, "otadata[%d] is marking as ABORTED", i);
339 otadata[i].ota_state = ESP_OTA_IMG_ABORTED;
340 write_otadata(&otadata[i], bs->ota_info.offset + FLASH_SECTOR_SIZE * i, write_encrypted);
341 }
342 }
343 #endif
344
345 #ifndef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
346 if ((bootloader_common_ota_select_invalid(&otadata[0]) &&
347 bootloader_common_ota_select_invalid(&otadata[1])) ||
348 bs->app_count == 0) {
349 ESP_LOGD(TAG, "OTA sequence numbers both empty (all-0xFF) or partition table does not have bootable ota_apps (app_count=%d)", bs->app_count);
350 if (bs->factory.offset != 0) {
351 ESP_LOGI(TAG, "Defaulting to factory image");
352 boot_index = FACTORY_INDEX;
353 } else {
354 ESP_LOGI(TAG, "No factory image, trying OTA 0");
355 boot_index = 0;
356 // Try to boot from ota_0.
357 if ((otadata[0].ota_seq == UINT32_MAX || otadata[0].crc != bootloader_common_ota_select_crc(&otadata[0])) &&
358 (otadata[1].ota_seq == UINT32_MAX || otadata[1].crc != bootloader_common_ota_select_crc(&otadata[1]))) {
359 // Factory is not found and both otadata are initial(0xFFFFFFFF) or incorrect crc.
360 // will set correct ota_seq.
361 ota_has_initial_contents = true;
362 }
363 }
364 } else {
365 int active_otadata = bootloader_common_get_active_otadata(otadata);
366 #else
367 ESP_LOGI(TAG, "Enabled a check secure version of app for anti rollback");
368 ESP_LOGI(TAG, "Secure version (from eFuse) = %d", esp_efuse_read_secure_version());
369 // When CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK is enabled factory partition should not be in partition table, only two ota_app are there.
370 if ((otadata[0].ota_seq == UINT32_MAX || otadata[0].crc != bootloader_common_ota_select_crc(&otadata[0])) &&
371 (otadata[1].ota_seq == UINT32_MAX || otadata[1].crc != bootloader_common_ota_select_crc(&otadata[1]))) {
372 ESP_LOGI(TAG, "otadata[0..1] in initial state");
373 // both otadata are initial(0xFFFFFFFF) or incorrect crc.
374 // will set correct ota_seq.
375 ota_has_initial_contents = true;
376 } else {
377 int active_otadata = get_active_otadata_with_check_anti_rollback(bs, otadata);
378 #endif
379 if (active_otadata != -1) {
380 ESP_LOGD(TAG, "Active otadata[%d]", active_otadata);
381 uint32_t ota_seq = otadata[active_otadata].ota_seq - 1; // Raw OTA sequence number. May be more than # of OTA slots
382 boot_index = ota_seq % bs->app_count; // Actual OTA partition selection
383 ESP_LOGD(TAG, "Mapping seq %d -> OTA slot %d", ota_seq, boot_index);
384 #ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
385 if (otadata[active_otadata].ota_state == ESP_OTA_IMG_NEW) {
386 ESP_LOGD(TAG, "otadata[%d] is selected as new and marked PENDING_VERIFY state", active_otadata);
387 otadata[active_otadata].ota_state = ESP_OTA_IMG_PENDING_VERIFY;
388 write_otadata(&otadata[active_otadata], bs->ota_info.offset + FLASH_SECTOR_SIZE * active_otadata, write_encrypted);
389 }
390 #endif // CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
391
392 #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
393 if (otadata[active_otadata].ota_state == ESP_OTA_IMG_VALID) {
394 update_anti_rollback(&bs->ota[boot_index]);
395 }
396 #endif // CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
397
398 } else if (bs->factory.offset != 0) {
399 ESP_LOGE(TAG, "ota data partition invalid, falling back to factory");
400 boot_index = FACTORY_INDEX;
401 } else {
402 ESP_LOGE(TAG, "ota data partition invalid and no factory, will try all partitions");
403 boot_index = FACTORY_INDEX;
404 }
405 }
406
407 return boot_index;
408 }
409
410 /* Return true if a partition has a valid app image that was successfully loaded */
411 static bool try_load_partition(const esp_partition_pos_t *partition, esp_image_metadata_t *data)
412 {
413 if (partition->size == 0) {
414 ESP_LOGD(TAG, "Can't boot from zero-length partition");
415 return false;
416 }
417 #ifdef BOOTLOADER_BUILD
418 if (bootloader_load_image(partition, data) == ESP_OK) {
419 ESP_LOGI(TAG, "Loaded app from partition at offset 0x%x",
420 partition->offset);
421 return true;
422 }
423 #endif
424
425 return false;
426 }
427
428 // ota_has_initial_contents flag is set if factory does not present in partition table and
429 // otadata has initial content(0xFFFFFFFF), then set actual ota_seq.
430 static void set_actual_ota_seq(const bootloader_state_t *bs, int index)
431 {
432 if (index > FACTORY_INDEX && ota_has_initial_contents == true) {
433 esp_ota_select_entry_t otadata;
434 memset(&otadata, 0xFF, sizeof(otadata));
435 otadata.ota_seq = index + 1;
436 otadata.ota_state = ESP_OTA_IMG_VALID;
437 otadata.crc = bootloader_common_ota_select_crc(&otadata);
438
439 bool write_encrypted = esp_flash_encryption_enabled();
440 write_otadata(&otadata, bs->ota_info.offset + FLASH_SECTOR_SIZE * 0, write_encrypted);
441 ESP_LOGI(TAG, "Set actual ota_seq=%d in otadata[0]", otadata.ota_seq);
442 #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
443 update_anti_rollback(&bs->ota[index]);
444 #endif
445 }
446 #if defined( CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP ) || defined( CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC )
447 esp_partition_pos_t partition = index_to_partition(bs, index);
448 bootloader_common_update_rtc_retain_mem(&partition, true);
449 #endif
450 }
451
452 #ifdef CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP
453 void bootloader_utility_load_boot_image_from_deep_sleep(void)
454 {
455 if (rtc_get_reset_reason(0) == DEEPSLEEP_RESET) {
456 esp_partition_pos_t *partition = bootloader_common_get_rtc_retain_mem_partition();
457 if (partition != NULL) {
458 esp_image_metadata_t image_data;
459 if (bootloader_load_image_no_verify(partition, &image_data) == ESP_OK) {
460 ESP_LOGI(TAG, "Fast booting app from partition at offset 0x%x", partition->offset);
461 bootloader_common_update_rtc_retain_mem(NULL, true);
462 load_image(&image_data);
463 }
464 }
465 ESP_LOGE(TAG, "Fast booting is not successful");
466 ESP_LOGI(TAG, "Try to load an app as usual with all validations");
467 }
468 }
469 #endif
470
471 #define TRY_LOG_FORMAT "Trying partition index %d offs 0x%x size 0x%x"
472
473 void bootloader_utility_load_boot_image(const bootloader_state_t *bs, int start_index)
474 {
475 int index = start_index;
476 esp_partition_pos_t part;
477 esp_image_metadata_t image_data;
478
479 if (start_index == TEST_APP_INDEX) {
480 if (check_anti_rollback(&bs->test) && try_load_partition(&bs->test, &image_data)) {
481 load_image(&image_data);
482 } else {
483 ESP_LOGE(TAG, "No bootable test partition in the partition table");
484 bootloader_reset();
485 }
486 }
487
488 /* work backwards from start_index, down to the factory app */
489 for (index = start_index; index >= FACTORY_INDEX; index--) {
490 part = index_to_partition(bs, index);
491 if (part.size == 0) {
492 continue;
493 }
494 ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
495 if (check_anti_rollback(&part) && try_load_partition(&part, &image_data)) {
496 set_actual_ota_seq(bs, index);
497 load_image(&image_data);
498 }
499 log_invalid_app_partition(index);
500 }
501
502 /* failing that work forwards from start_index, try valid OTA slots */
503 for (index = start_index + 1; index < (int)bs->app_count; index++) {
504 part = index_to_partition(bs, index);
505 if (part.size == 0) {
506 continue;
507 }
508 ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
509 if (check_anti_rollback(&part) && try_load_partition(&part, &image_data)) {
510 set_actual_ota_seq(bs, index);
511 load_image(&image_data);
512 }
513 log_invalid_app_partition(index);
514 }
515
516 if (check_anti_rollback(&bs->test) && try_load_partition(&bs->test, &image_data)) {
517 ESP_LOGW(TAG, "Falling back to test app as only bootable partition");
518 load_image(&image_data);
519 }
520
521 ESP_LOGE(TAG, "No bootable app partitions in the partition table");
522 bzero(&image_data, sizeof(esp_image_metadata_t));
523 bootloader_reset();
524 }
525
526 // Copy loaded segments to RAM, set up caches for mapped segments, and start application.
527 static void load_image(const esp_image_metadata_t *image_data)
528 {
529 /**
530 * Rough steps for a first boot, when encryption and secure boot are both disabled:
531 * 1) Generate secure boot key and write to EFUSE.
532 * 2) Write plaintext digest based on plaintext bootloader
533 * 3) Generate flash encryption key and write to EFUSE.
534 * 4) Encrypt flash in-place including bootloader, then digest,
535 * then app partitions and other encrypted partitions
536 * 5) Burn EFUSE to enable flash encryption (FLASH_CRYPT_CNT)
537 * 6) Burn EFUSE to enable secure boot (ABS_DONE_0)
538 *
539 * If power failure happens during Step 1, probably the next boot will continue from Step 2.
540 * There is some small chance that EFUSEs will be part-way through being written so will be
541 * somehow corrupted here. Thankfully this window of time is very small, but if that's the
542 * case, one has to use the espefuse tool to manually set the remaining bits and enable R/W
543 * protection. Once the relevant EFUSE bits are set and R/W protected, Step 1 will be skipped
544 * successfully on further reboots.
545 *
546 * If power failure happens during Step 2, Step 1 will be skipped and Step 2 repeated:
547 * the digest will get re-written on the next boot.
548 *
549 * If power failure happens during Step 3, it's possible that EFUSE was partially written
550 * with the generated flash encryption key, though the time window for that would again
551 * be very small. On reboot, Step 1 will be skipped and Step 2 repeated, though, Step 3
552 * may fail due to the above mentioned reason, in which case, one has to use the espefuse
553 * tool to manually set the remaining bits and enable R/W protection. Once the relevant EFUSE
554 * bits are set and R/W protected, Step 3 will be skipped successfully on further reboots.
555 *
556 * If power failure happens after start of 4 and before end of 5, the next boot will fail
557 * (bootloader header is encrypted and flash encryption isn't enabled yet, so it looks like
558 * noise to the ROM bootloader). The check in the ROM is pretty basic so if the first byte of
559 * ciphertext happens to be the magic byte E9 then it may try to boot, but it will definitely
560 * crash (no chance that the remaining ciphertext will look like a valid bootloader image).
561 * Only solution is to reflash with all plaintext and the whole process starts again: skips
562 * Step 1, repeats Step 2, skips Step 3, etc.
563 *
564 * If power failure happens after 5 but before 6, the device will reboot with flash
565 * encryption on and will regenerate an encrypted digest in Step 2. This should still
566 * be valid as the input data for the digest is read via flash cache (so will be decrypted)
567 * and the code in secure_boot_generate() tells bootloader_flash_write() to encrypt the data
568 * on write if flash encryption is enabled. Steps 3 - 5 are skipped (encryption already on),
569 * then Step 6 enables secure boot.
570 */
571
572 #if defined(CONFIG_SECURE_BOOT) || defined(CONFIG_SECURE_FLASH_ENC_ENABLED)
573 esp_err_t err;
574 #endif
575
576 #ifdef CONFIG_SECURE_BOOT_V2_ENABLED
577 err = esp_secure_boot_v2_permanently_enable(image_data);
578 if (err != ESP_OK) {
579 ESP_LOGE(TAG, "Secure Boot v2 failed (%d)", err);
580 return;
581 }
582 #endif
583
584 #ifdef CONFIG_SECURE_BOOT_V1_ENABLED
585 /* Steps 1 & 2 (see above for full description):
586 * 1) Generate secure boot EFUSE key
587 * 2) Compute digest of plaintext bootloader
588 */
589 err = esp_secure_boot_generate_digest();
590 if (err != ESP_OK) {
591 ESP_LOGE(TAG, "Bootloader digest generation for secure boot failed (%d).", err);
592 return;
593 }
594 #endif
595
596 #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
597 /* Steps 3, 4 & 5 (see above for full description):
598 * 3) Generate flash encryption EFUSE key
599 * 4) Encrypt flash contents
600 * 5) Burn EFUSE to enable flash encryption
601 */
602 ESP_LOGI(TAG, "Checking flash encryption...");
603 bool flash_encryption_enabled = esp_flash_encryption_enabled();
604 err = esp_flash_encrypt_check_and_update();
605 if (err != ESP_OK) {
606 ESP_LOGE(TAG, "Flash encryption check failed (%d).", err);
607 return;
608 }
609 #endif
610
611 #ifdef CONFIG_SECURE_BOOT_V1_ENABLED
612 /* Step 6 (see above for full description):
613 * 6) Burn EFUSE to enable secure boot
614 */
615 ESP_LOGI(TAG, "Checking secure boot...");
616 err = esp_secure_boot_permanently_enable();
617 if (err != ESP_OK) {
618 ESP_LOGE(TAG, "FAILED TO ENABLE SECURE BOOT (%d).", err);
619 /* Panic here as secure boot is not properly enabled
620 due to one of the reasons in above function
621 */
622 abort();
623 }
624 #endif
625
626 #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
627 if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
628 /* Flash encryption was just enabled for the first time,
629 so issue a system reset to ensure flash encryption
630 cache resets properly */
631 ESP_LOGI(TAG, "Resetting with flash encryption enabled...");
632 esp_rom_uart_tx_wait_idle(0);
633 bootloader_reset();
634 }
635 #endif
636
637 ESP_LOGI(TAG, "Disabling RNG early entropy source...");
638 bootloader_random_disable();
639
640 // copy loaded segments to RAM, set up caches for mapped segments, and start application
641 unpack_load_app(image_data);
642 }
643
644 static void unpack_load_app(const esp_image_metadata_t *data)
645 {
646 uint32_t drom_addr = 0;
647 uint32_t drom_load_addr = 0;
648 uint32_t drom_size = 0;
649 uint32_t irom_addr = 0;
650 uint32_t irom_load_addr = 0;
651 uint32_t irom_size = 0;
652
653 // Find DROM & IROM addresses, to configure cache mappings
654 for (int i = 0; i < data->image.segment_count; i++) {
655 const esp_image_segment_header_t *header = &data->segments[i];
656 if (header->load_addr >= SOC_DROM_LOW && header->load_addr < SOC_DROM_HIGH) {
657 if (drom_addr != 0) {
658 ESP_LOGE(TAG, MAP_ERR_MSG, "DROM");
659 } else {
660 ESP_LOGD(TAG, "Mapping segment %d as %s", i, "DROM");
661 }
662 drom_addr = data->segment_data[i];
663 drom_load_addr = header->load_addr;
664 drom_size = header->data_len;
665 }
666 if (header->load_addr >= SOC_IROM_LOW && header->load_addr < SOC_IROM_HIGH) {
667 if (irom_addr != 0) {
668 ESP_LOGE(TAG, MAP_ERR_MSG, "IROM");
669 } else {
670 ESP_LOGD(TAG, "Mapping segment %d as %s", i, "IROM");
671 }
672 irom_addr = data->segment_data[i];
673 irom_load_addr = header->load_addr;
674 irom_size = header->data_len;
675 }
676 }
677
678 ESP_LOGD(TAG, "calling set_cache_and_start_app");
679 set_cache_and_start_app(drom_addr,
680 drom_load_addr,
681 drom_size,
682 irom_addr,
683 irom_load_addr,
684 irom_size,
685 data->image.entry_addr);
686 }
687
688 static void set_cache_and_start_app(
689 uint32_t drom_addr,
690 uint32_t drom_load_addr,
691 uint32_t drom_size,
692 uint32_t irom_addr,
693 uint32_t irom_load_addr,
694 uint32_t irom_size,
695 uint32_t entry_addr)
696 {
697 int rc;
698 ESP_LOGD(TAG, "configure drom and irom and start");
699 #if CONFIG_IDF_TARGET_ESP32
700 Cache_Read_Disable(0);
701 Cache_Flush(0);
702 #elif CONFIG_IDF_TARGET_ESP32S2
703 uint32_t autoload = Cache_Suspend_ICache();
704 Cache_Invalidate_ICache_All();
705 #elif CONFIG_IDF_TARGET_ESP32S3
706 uint32_t autoload = Cache_Suspend_DCache();
707 Cache_Invalidate_DCache_All();
708 #elif CONFIG_IDF_TARGET_ESP32C3
709 uint32_t autoload = Cache_Suspend_ICache();
710 Cache_Invalidate_ICache_All();
711 #endif
712
713 /* Clear the MMU entries that are already set up,
714 so the new app only has the mappings it creates.
715 */
716 #if CONFIG_IDF_TARGET_ESP32
717 for (int i = 0; i < DPORT_FLASH_MMU_TABLE_SIZE; i++) {
718 DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
719 }
720 #else
721 for (size_t i = 0; i < FLASH_MMU_TABLE_SIZE; i++) {
722 FLASH_MMU_TABLE[i] = MMU_TABLE_INVALID_VAL;
723 }
724 #endif
725 uint32_t drom_load_addr_aligned = drom_load_addr & MMU_FLASH_MASK;
726 uint32_t drom_page_count = bootloader_cache_pages_to_map(drom_size, drom_load_addr);
727 ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d",
728 drom_addr & MMU_FLASH_MASK, drom_load_addr_aligned, drom_size, drom_page_count);
729 #if CONFIG_IDF_TARGET_ESP32
730 rc = cache_flash_mmu_set(0, 0, drom_load_addr_aligned, drom_addr & MMU_FLASH_MASK, 64, drom_page_count);
731 #elif CONFIG_IDF_TARGET_ESP32S2
732 rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count, 0);
733 #elif CONFIG_IDF_TARGET_ESP32S3
734 rc = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count, 0);
735 #elif CONFIG_IDF_TARGET_ESP32C3
736 rc = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count, 0);
737 #endif
738 ESP_LOGV(TAG, "rc=%d", rc);
739 #if CONFIG_IDF_TARGET_ESP32
740 rc = cache_flash_mmu_set(1, 0, drom_load_addr_aligned, drom_addr & MMU_FLASH_MASK, 64, drom_page_count);
741 ESP_LOGV(TAG, "rc=%d", rc);
742 #endif
743 uint32_t irom_load_addr_aligned = irom_load_addr & MMU_FLASH_MASK;
744 uint32_t irom_page_count = bootloader_cache_pages_to_map(irom_size, irom_load_addr);
745 ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d",
746 irom_addr & MMU_FLASH_MASK, irom_load_addr_aligned, irom_size, irom_page_count);
747 #if CONFIG_IDF_TARGET_ESP32
748 rc = cache_flash_mmu_set(0, 0, irom_load_addr_aligned, irom_addr & MMU_FLASH_MASK, 64, irom_page_count);
749 #elif CONFIG_IDF_TARGET_ESP32S2
750 uint32_t iram1_used = 0;
751 if (irom_load_addr + irom_size > IRAM1_ADDRESS_LOW) {
752 iram1_used = 1;
753 }
754 if (iram1_used) {
755 rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, IRAM0_ADDRESS_LOW, 0, 64, 64, 1);
756 rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, IRAM1_ADDRESS_LOW, 0, 64, 64, 1);
757 REG_CLR_BIT(EXTMEM_PRO_ICACHE_CTRL1_REG, EXTMEM_PRO_ICACHE_MASK_IRAM1);
758 }
759 rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count, 0);
760 #elif CONFIG_IDF_TARGET_ESP32S3
761 rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count, 0);
762 #elif CONFIG_IDF_TARGET_ESP32C3
763 rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count, 0);
764 #endif
765 ESP_LOGV(TAG, "rc=%d", rc);
766 #if CONFIG_IDF_TARGET_ESP32
767 rc = cache_flash_mmu_set(1, 0, irom_load_addr_aligned, irom_addr & MMU_FLASH_MASK, 64, irom_page_count);
768 ESP_LOGV(TAG, "rc=%d", rc);
769 DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG,
770 (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) |
771 (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 |
772 DPORT_PRO_CACHE_MASK_DRAM1 );
773 DPORT_REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG,
774 (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) |
775 (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 |
776 DPORT_APP_CACHE_MASK_DRAM1 );
777 #elif CONFIG_IDF_TARGET_ESP32S2
778 REG_CLR_BIT( EXTMEM_PRO_ICACHE_CTRL1_REG, (EXTMEM_PRO_ICACHE_MASK_IRAM0) | (EXTMEM_PRO_ICACHE_MASK_IRAM1 & 0) | EXTMEM_PRO_ICACHE_MASK_DROM0 );
779 #elif CONFIG_IDF_TARGET_ESP32S3
780 REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE0_BUS);
781 #if !CONFIG_FREERTOS_UNICORE
782 REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE1_BUS);
783 #endif
784 #elif CONFIG_IDF_TARGET_ESP32C3
785 REG_CLR_BIT(EXTMEM_ICACHE_CTRL1_REG, EXTMEM_ICACHE_SHUT_IBUS);
786 REG_CLR_BIT(EXTMEM_ICACHE_CTRL1_REG, EXTMEM_ICACHE_SHUT_DBUS);
787 #endif
788 #if CONFIG_IDF_TARGET_ESP32
789 Cache_Read_Enable(0);
790 #elif CONFIG_IDF_TARGET_ESP32S2
791 Cache_Resume_ICache(autoload);
792 #elif CONFIG_IDF_TARGET_ESP32S3
793 Cache_Resume_DCache(autoload);
794 #elif CONFIG_IDF_TARGET_ESP32C3
795 Cache_Resume_ICache(autoload);
796 #endif
797 // Application will need to do Cache_Flush(1) and Cache_Read_Enable(1)
798
799 ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
800 bootloader_atexit();
801 typedef void (*entry_t)(void) __attribute__((noreturn));
802 entry_t entry = ((entry_t) entry_addr);
803
804 // TODO: we have used quite a bit of stack at this point.
805 // use "movsp" instruction to reset stack back to where ROM stack starts.
806 (*entry)();
807 }
808
809 void bootloader_reset(void)
810 {
811 #ifdef BOOTLOADER_BUILD
812 bootloader_atexit();
813 esp_rom_delay_us(1000); /* Allow last byte to leave FIFO */
814 REG_WRITE(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
815 while (1) { } /* This line will never be reached, used to keep gcc happy */
816 #else
817 abort(); /* This function should really not be called from application code */
818 #endif
819 }
820
821 void bootloader_atexit(void)
822 {
823 bootloader_console_deinit();
824 }
825
826 esp_err_t bootloader_sha256_hex_to_str(char *out_str, const uint8_t *in_array_hex, size_t len)
827 {
828 if (out_str == NULL || in_array_hex == NULL || len == 0) {
829 return ESP_ERR_INVALID_ARG;
830 }
831 for (size_t i = 0; i < len; i++) {
832 for (int shift = 0; shift < 2; shift++) {
833 uint8_t nibble = (in_array_hex[i] >> (shift ? 0 : 4)) & 0x0F;
834 if (nibble < 10) {
835 out_str[i * 2 + shift] = '0' + nibble;
836 } else {
837 out_str[i * 2 + shift] = 'a' + nibble - 10;
838 }
839 }
840 }
841 return ESP_OK;
842 }
843
844 void bootloader_debug_buffer(const void *buffer, size_t length, const char *label)
845 {
846 #if BOOT_LOG_LEVEL >= LOG_LEVEL_DEBUG
847 assert(length <= 128); // Avoid unbounded VLA size
848 const uint8_t *bytes = (const uint8_t *)buffer;
849 char hexbuf[length * 2 + 1];
850 hexbuf[length * 2] = 0;
851 for (size_t i = 0; i < length; i++) {
852 for (int shift = 0; shift < 2; shift++) {
853 uint8_t nibble = (bytes[i] >> (shift ? 0 : 4)) & 0x0F;
854 if (nibble < 10) {
855 hexbuf[i * 2 + shift] = '0' + nibble;
856 } else {
857 hexbuf[i * 2 + shift] = 'a' + nibble - 10;
858 }
859 }
860 }
861 ESP_LOGD(TAG, "%s: %s", label, hexbuf);
862 #endif
863 }
864
865 esp_err_t bootloader_sha256_flash_contents(uint32_t flash_offset, uint32_t len, uint8_t *digest)
866 {
867
868 if (digest == NULL) {
869 return ESP_ERR_INVALID_ARG;
870 }
871
872 /* Handling firmware images larger than MMU capacity */
873 uint32_t mmu_free_pages_count = bootloader_mmap_get_free_pages();
874 bootloader_sha256_handle_t sha_handle = NULL;
875
876 sha_handle = bootloader_sha256_start();
877 if (sha_handle == NULL) {
878 return ESP_ERR_NO_MEM;
879 }
880
881 while (len > 0) {
882 uint32_t mmu_page_offset = ((flash_offset & MMAP_ALIGNED_MASK) != 0) ? 1 : 0; /* Skip 1st MMU Page if it is already populated */
883 uint32_t partial_image_len = MIN(len, ((mmu_free_pages_count - mmu_page_offset) * SPI_FLASH_MMU_PAGE_SIZE)); /* Read the image that fits in the free MMU pages */
884
885 const void * image = bootloader_mmap(flash_offset, partial_image_len);
886 if (image == NULL) {
887 bootloader_sha256_finish(sha_handle, NULL);
888 return ESP_FAIL;
889 }
890 bootloader_sha256_data(sha_handle, image, partial_image_len);
891 bootloader_munmap(image);
892
893 flash_offset += partial_image_len;
894 len -= partial_image_len;
895 }
896 bootloader_sha256_finish(sha_handle, digest);
897 return ESP_OK;
898 }
899