1 /**
2  *  Core bignum functions
3  *
4  *  This interface should only be used by the legacy bignum module (bignum.h)
5  *  and the modular bignum modules (bignum_mod.c, bignum_mod_raw.c). All other
6  *  modules should use the high-level modular bignum interface (bignum_mod.h)
7  *  or the legacy bignum interface (bignum.h).
8  *
9  * This module is about processing non-negative integers with a fixed upper
10  * bound that's of the form 2^n-1 where n is a multiple of #biL.
11  * These can be thought of integers written in base 2^#biL with a fixed
12  * number of digits. Digits in this base are called *limbs*.
13  * Many operations treat these numbers as the principal representation of
14  * a number modulo 2^n or a smaller bound.
15  *
16  * The functions in this module obey the following conventions unless
17  * explicitly indicated otherwise:
18  *
19  * - **Overflow**: some functions indicate overflow from the range
20  *   [0, 2^n-1] by returning carry parameters, while others operate
21  *   modulo and so cannot overflow. This should be clear from the function
22  *   documentation.
23  * - **Bignum parameters**: Bignums are passed as pointers to an array of
24  *   limbs. A limb has the type #mbedtls_mpi_uint. Unless otherwise specified:
25  *     - Bignum parameters called \p A, \p B, ... are inputs, and are
26  *       not modified by the function.
27  *     - For operations modulo some number, the modulus is called \p N
28  *       and is input-only.
29  *     - Bignum parameters called \p X, \p Y are outputs or input-output.
30  *       The initial content of output-only parameters is ignored.
31  *     - Some functions use different names that reflect traditional
32  *       naming of operands of certain operations (e.g.
33  *       divisor/dividend/quotient/remainder).
34  *     - \p T is a temporary storage area. The initial content of such
35  *       parameter is ignored and the final content is unspecified.
36  * - **Bignum sizes**: bignum sizes are always expressed in limbs.
37  *   Most functions work on bignums of a given size and take a single
38  *   \p limbs parameter that applies to all parameters that are limb arrays.
39  *   All bignum sizes must be at least 1 and must be significantly less than
40  *   #SIZE_MAX. The behavior if a size is 0 is undefined. The behavior if the
41  *   total size of all parameters overflows #SIZE_MAX is undefined.
42  * - **Parameter ordering**: for bignum parameters, outputs come before inputs.
43  *   Temporaries come last.
44  * - **Aliasing**: in general, output bignums may be aliased to one or more
45  *   inputs. As an exception, parameters that are documented as a modulus value
46  *   may not be aliased to an output. Outputs may not be aliased to one another.
47  *   Temporaries may not be aliased to any other parameter.
48  * - **Overlap**: apart from aliasing of limb array pointers (where two
49  *   arguments are equal pointers), overlap is not supported and may result
50  *   in undefined behavior.
51  * - **Error handling**: This is a low-level module. Functions generally do not
52  *   try to protect against invalid arguments such as nonsensical sizes or
53  *   null pointers. Note that some functions that operate on bignums of
54  *   different sizes have constraints about their size, and violating those
55  *   constraints may lead to buffer overflows.
56  * - **Modular representatives**: functions that operate modulo \p N expect
57  *   all modular inputs to be in the range [0, \p N - 1] and guarantee outputs
58  *   in the range [0, \p N - 1]. If an input is out of range, outputs are
59  *   fully unspecified, though bignum values out of range should not cause
60  *   buffer overflows (beware that this is not extensively tested).
61  */
62 
63 /*
64  *  Copyright The Mbed TLS Contributors
65  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
66  */
67 
68 #ifndef MBEDTLS_BIGNUM_CORE_H
69 #define MBEDTLS_BIGNUM_CORE_H
70 
71 #include "common.h"
72 
73 #if defined(MBEDTLS_BIGNUM_C)
74 #include "mbedtls/bignum.h"
75 #endif
76 
77 #include "constant_time_internal.h"
78 
79 #define ciL    (sizeof(mbedtls_mpi_uint))     /** chars in limb  */
80 #define biL    (ciL << 3)                     /** bits  in limb  */
81 #define biH    (ciL << 2)                     /** half limb size */
82 
83 /*
84  * Convert between bits/chars and number of limbs
85  * Divide first in order to avoid potential overflows
86  */
87 #define BITS_TO_LIMBS(i)  ((i) / biL + ((i) % biL != 0))
88 #define CHARS_TO_LIMBS(i) ((i) / ciL + ((i) % ciL != 0))
89 /* Get a specific byte, without range checks. */
90 #define GET_BYTE(X, i)                                \
91     (((X)[(i) / ciL] >> (((i) % ciL) * 8)) & 0xff)
92 
93 /** Count leading zero bits in a given integer.
94  *
95  * \warning     The result is undefined if \p a == 0
96  *
97  * \param a     Integer to count leading zero bits.
98  *
99  * \return      The number of leading zero bits in \p a, if \p a != 0.
100  *              If \p a == 0, the result is undefined.
101  */
102 size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a);
103 
104 /** Return the minimum number of bits required to represent the value held
105  * in the MPI.
106  *
107  * \note This function returns 0 if all the limbs of \p A are 0.
108  *
109  * \param[in] A     The address of the MPI.
110  * \param A_limbs   The number of limbs of \p A.
111  *
112  * \return      The number of bits in \p A.
113  */
114 size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs);
115 
116 /** Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
117  * into the storage form used by mbedtls_mpi.
118  *
119  * \param[in,out] A     The address of the MPI.
120  * \param A_limbs       The number of limbs of \p A.
121  */
122 void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
123                                         size_t A_limbs);
124 
125 /** \brief         Compare a machine integer with an MPI.
126  *
127  *                 This function operates in constant time with respect
128  *                 to the values of \p min and \p A.
129  *
130  * \param min      A machine integer.
131  * \param[in] A    An MPI.
132  * \param A_limbs  The number of limbs of \p A.
133  *                 This must be at least 1.
134  *
135  * \return         MBEDTLS_CT_TRUE if \p min is less than or equal to \p A, otherwise MBEDTLS_CT_FALSE.
136  */
137 mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
138                                                     const mbedtls_mpi_uint *A,
139                                                     size_t A_limbs);
140 
141 /**
142  * \brief          Check if one unsigned MPI is less than another in constant
143  *                 time.
144  *
145  * \param A        The left-hand MPI. This must point to an array of limbs
146  *                 with the same allocated length as \p B.
147  * \param B        The right-hand MPI. This must point to an array of limbs
148  *                 with the same allocated length as \p A.
149  * \param limbs    The number of limbs in \p A and \p B.
150  *                 This must not be 0.
151  *
152  * \return         MBEDTLS_CT_TRUE  if \p A is less than \p B.
153  *                 MBEDTLS_CT_FALSE if \p A is greater than or equal to \p B.
154  */
155 mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
156                                               const mbedtls_mpi_uint *B,
157                                               size_t limbs);
158 
159 /**
160  * \brief   Perform a safe conditional copy of an MPI which doesn't reveal
161  *          whether assignment was done or not.
162  *
163  * \param[out] X        The address of the destination MPI.
164  *                      This must be initialized. Must have enough limbs to
165  *                      store the full value of \p A.
166  * \param[in]  A        The address of the source MPI. This must be initialized.
167  * \param      limbs    The number of limbs of \p A.
168  * \param      assign   The condition deciding whether to perform the
169  *                      assignment or not. Callers will need to use
170  *                      the constant time interface (e.g. `mbedtls_ct_bool()`)
171  *                      to construct this argument.
172  *
173  * \note           This function avoids leaking any information about whether
174  *                 the assignment was done or not.
175  */
176 void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
177                                   const mbedtls_mpi_uint *A,
178                                   size_t limbs,
179                                   mbedtls_ct_condition_t assign);
180 
181 /**
182  * \brief   Perform a safe conditional swap of two MPIs which doesn't reveal
183  *          whether the swap was done or not.
184  *
185  * \param[in,out] X         The address of the first MPI.
186  *                          This must be initialized.
187  * \param[in,out] Y         The address of the second MPI.
188  *                          This must be initialized.
189  * \param         limbs     The number of limbs of \p X and \p Y.
190  * \param         swap      The condition deciding whether to perform
191  *                          the swap or not.
192  *
193  * \note           This function avoids leaking any information about whether
194  *                 the swap was done or not.
195  */
196 void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
197                                 mbedtls_mpi_uint *Y,
198                                 size_t limbs,
199                                 mbedtls_ct_condition_t swap);
200 
201 /** Import X from unsigned binary data, little-endian.
202  *
203  * The MPI needs to have enough limbs to store the full value (including any
204  * most significant zero bytes in the input).
205  *
206  * \param[out] X         The address of the MPI.
207  * \param X_limbs        The number of limbs of \p X.
208  * \param[in] input      The input buffer to import from.
209  * \param input_length   The length bytes of \p input.
210  *
211  * \return       \c 0 if successful.
212  * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
213  *               large enough to hold the value in \p input.
214  */
215 int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
216                              size_t X_limbs,
217                              const unsigned char *input,
218                              size_t input_length);
219 
220 /** Import X from unsigned binary data, big-endian.
221  *
222  * The MPI needs to have enough limbs to store the full value (including any
223  * most significant zero bytes in the input).
224  *
225  * \param[out] X        The address of the MPI.
226  *                      May only be #NULL if \p X_limbs is 0 and \p input_length
227  *                      is 0.
228  * \param X_limbs       The number of limbs of \p X.
229  * \param[in] input     The input buffer to import from.
230  *                      May only be #NULL if \p input_length is 0.
231  * \param input_length  The length in bytes of \p input.
232  *
233  * \return       \c 0 if successful.
234  * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
235  *               large enough to hold the value in \p input.
236  */
237 int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
238                              size_t X_limbs,
239                              const unsigned char *input,
240                              size_t input_length);
241 
242 /** Export A into unsigned binary data, little-endian.
243  *
244  * \note If \p output is shorter than \p A the export is still successful if the
245  *       value held in \p A fits in the buffer (that is, if enough of the most
246  *       significant bytes of \p A are 0).
247  *
248  * \param[in] A         The address of the MPI.
249  * \param A_limbs       The number of limbs of \p A.
250  * \param[out] output   The output buffer to export to.
251  * \param output_length The length in bytes of \p output.
252  *
253  * \return       \c 0 if successful.
254  * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
255  *               large enough to hold the value of \p A.
256  */
257 int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
258                               size_t A_limbs,
259                               unsigned char *output,
260                               size_t output_length);
261 
262 /** Export A into unsigned binary data, big-endian.
263  *
264  * \note If \p output is shorter than \p A the export is still successful if the
265  *       value held in \p A fits in the buffer (that is, if enough of the most
266  *       significant bytes of \p A are 0).
267  *
268  * \param[in] A         The address of the MPI.
269  * \param A_limbs       The number of limbs of \p A.
270  * \param[out] output   The output buffer to export to.
271  * \param output_length The length in bytes of \p output.
272  *
273  * \return       \c 0 if successful.
274  * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
275  *               large enough to hold the value of \p A.
276  */
277 int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *A,
278                               size_t A_limbs,
279                               unsigned char *output,
280                               size_t output_length);
281 
282 /** \brief              Shift an MPI in-place right by a number of bits.
283  *
284  *                      Shifting by more bits than there are bit positions
285  *                      in \p X is valid and results in setting \p X to 0.
286  *
287  *                      This function's execution time depends on the value
288  *                      of \p count (and of course \p limbs).
289  *
290  * \param[in,out] X     The number to shift.
291  * \param limbs         The number of limbs of \p X. This must be at least 1.
292  * \param count         The number of bits to shift by.
293  */
294 void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
295                               size_t count);
296 
297 /**
298  * \brief               Shift an MPI in-place left by a number of bits.
299  *
300  *                      Shifting by more bits than there are bit positions
301  *                      in \p X will produce an unspecified result.
302  *
303  *                      This function's execution time depends on the value
304  *                      of \p count (and of course \p limbs).
305  * \param[in,out] X     The number to shift.
306  * \param limbs         The number of limbs of \p X. This must be at least 1.
307  * \param count         The number of bits to shift by.
308  */
309 void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
310                               size_t count);
311 
312 /**
313  * \brief Add two fixed-size large unsigned integers, returning the carry.
314  *
315  * Calculates `A + B` where `A` and `B` have the same size.
316  *
317  * This function operates modulo `2^(biL*limbs)` and returns the carry
318  * (1 if there was a wraparound, and 0 otherwise).
319  *
320  * \p X may be aliased to \p A or \p B.
321  *
322  * \param[out] X    The result of the addition.
323  * \param[in] A     Little-endian presentation of the left operand.
324  * \param[in] B     Little-endian presentation of the right operand.
325  * \param limbs     Number of limbs of \p X, \p A and \p B.
326  *
327  * \return          1 if `A + B >= 2^(biL*limbs)`, 0 otherwise.
328  */
329 mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
330                                       const mbedtls_mpi_uint *A,
331                                       const mbedtls_mpi_uint *B,
332                                       size_t limbs);
333 
334 /**
335  * \brief Conditional addition of two fixed-size large unsigned integers,
336  *        returning the carry.
337  *
338  * Functionally equivalent to
339  *
340  * ```
341  * if( cond )
342  *    X += A;
343  * return carry;
344  * ```
345  *
346  * This function operates modulo `2^(biL*limbs)`.
347  *
348  * \param[in,out] X  The pointer to the (little-endian) array
349  *                   representing the bignum to accumulate onto.
350  * \param[in] A      The pointer to the (little-endian) array
351  *                   representing the bignum to conditionally add
352  *                   to \p X. This may be aliased to \p X but may not
353  *                   overlap otherwise.
354  * \param limbs      Number of limbs of \p X and \p A.
355  * \param cond       Condition bit dictating whether addition should
356  *                   happen or not. This must be \c 0 or \c 1.
357  *
358  * \warning          If \p cond is neither 0 nor 1, the result of this function
359  *                   is unspecified, and the resulting value in \p X might be
360  *                   neither its original value nor \p X + \p A.
361  *
362  * \return           1 if `X + cond * A >= 2^(biL*limbs)`, 0 otherwise.
363  */
364 mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
365                                          const mbedtls_mpi_uint *A,
366                                          size_t limbs,
367                                          unsigned cond);
368 
369 /**
370  * \brief Subtract two fixed-size large unsigned integers, returning the borrow.
371  *
372  * Calculate `A - B` where \p A and \p B have the same size.
373  * This function operates modulo `2^(biL*limbs)` and returns the carry
374  * (1 if there was a wraparound, i.e. if `A < B`, and 0 otherwise).
375  *
376  * \p X may be aliased to \p A or \p B, or even both, but may not overlap
377  * either otherwise.
378  *
379  * \param[out] X    The result of the subtraction.
380  * \param[in] A     Little-endian presentation of left operand.
381  * \param[in] B     Little-endian presentation of right operand.
382  * \param limbs     Number of limbs of \p X, \p A and \p B.
383  *
384  * \return          1 if `A < B`.
385  *                  0 if `A >= B`.
386  */
387 mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
388                                       const mbedtls_mpi_uint *A,
389                                       const mbedtls_mpi_uint *B,
390                                       size_t limbs);
391 
392 /**
393  * \brief Perform a fixed-size multiply accumulate operation: X += b * A
394  *
395  * \p X may be aliased to \p A (when \p X_limbs == \p A_limbs), but may not
396  * otherwise overlap.
397  *
398  * This function operates modulo `2^(biL*X_limbs)`.
399  *
400  * \param[in,out] X  The pointer to the (little-endian) array
401  *                   representing the bignum to accumulate onto.
402  * \param X_limbs    The number of limbs of \p X. This must be
403  *                   at least \p A_limbs.
404  * \param[in] A      The pointer to the (little-endian) array
405  *                   representing the bignum to multiply with.
406  *                   This may be aliased to \p X but may not overlap
407  *                   otherwise.
408  * \param A_limbs    The number of limbs of \p A.
409  * \param b          X scalar to multiply with.
410  *
411  * \return           The carry at the end of the operation.
412  */
413 mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *X, size_t X_limbs,
414                                       const mbedtls_mpi_uint *A, size_t A_limbs,
415                                       mbedtls_mpi_uint b);
416 
417 /**
418  * \brief Perform a known-size multiplication
419  *
420  * \p X may not be aliased to any of the inputs for this function.
421  * \p A may be aliased to \p B.
422  *
423  * \param[out] X     The pointer to the (little-endian) array to receive
424  *                   the product of \p A_limbs and \p B_limbs.
425  *                   This must be of length \p A_limbs + \p B_limbs.
426  * \param[in] A      The pointer to the (little-endian) array
427  *                   representing the first factor.
428  * \param A_limbs    The number of limbs in \p A.
429  * \param[in] B      The pointer to the (little-endian) array
430  *                   representing the second factor.
431  * \param B_limbs    The number of limbs in \p B.
432  */
433 void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
434                           const mbedtls_mpi_uint *A, size_t A_limbs,
435                           const mbedtls_mpi_uint *B, size_t B_limbs);
436 
437 /**
438  * \brief Calculate initialisation value for fast Montgomery modular
439  *        multiplication
440  *
441  * \param[in] N  Little-endian presentation of the modulus. This must have
442  *               at least one limb.
443  *
444  * \return       The initialisation value for fast Montgomery modular multiplication
445  */
446 mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N);
447 
448 /**
449  * \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36)
450  *
451  * \p A and \p B must be in canonical form. That is, < \p N.
452  *
453  * \p X may be aliased to \p A or \p N, or even \p B (if \p AN_limbs ==
454  * \p B_limbs) but may not overlap any parameters otherwise.
455  *
456  * \p A and \p B may alias each other, if \p AN_limbs == \p B_limbs. They may
457  * not alias \p N (since they must be in canonical form, they cannot == \p N).
458  *
459  * \param[out]    X         The destination MPI, as a little-endian array of
460  *                          length \p AN_limbs.
461  *                          On successful completion, X contains the result of
462  *                          the multiplication `A * B * R^-1` mod N where
463  *                          `R = 2^(biL*AN_limbs)`.
464  * \param[in]     A         Little-endian presentation of first operand.
465  *                          Must have the same number of limbs as \p N.
466  * \param[in]     B         Little-endian presentation of second operand.
467  * \param[in]     B_limbs   The number of limbs in \p B.
468  *                          Must be <= \p AN_limbs.
469  * \param[in]     N         Little-endian presentation of the modulus.
470  *                          This must be odd, and have exactly the same number
471  *                          of limbs as \p A.
472  *                          It may alias \p X, but must not alias or otherwise
473  *                          overlap any of the other parameters.
474  * \param[in]     AN_limbs  The number of limbs in \p X, \p A and \p N.
475  * \param         mm        The Montgomery constant for \p N: -N^-1 mod 2^biL.
476  *                          This can be calculated by `mbedtls_mpi_core_montmul_init()`.
477  * \param[in,out] T         Temporary storage of size at least 2*AN_limbs+1 limbs.
478  *                          Its initial content is unused and
479  *                          its final content is indeterminate.
480  *                          It must not alias or otherwise overlap any of the
481  *                          other parameters.
482  */
483 void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
484                               const mbedtls_mpi_uint *A,
485                               const mbedtls_mpi_uint *B, size_t B_limbs,
486                               const mbedtls_mpi_uint *N, size_t AN_limbs,
487                               mbedtls_mpi_uint mm, mbedtls_mpi_uint *T);
488 
489 /**
490  * \brief Calculate the square of the Montgomery constant. (Needed
491  *        for conversion and operations in Montgomery form.)
492  *
493  * \param[out] X  A pointer to the result of the calculation of
494  *                the square of the Montgomery constant:
495  *                2^{2*n*biL} mod N.
496  * \param[in]  N  Little-endian presentation of the modulus, which must be odd.
497  *
498  * \return        0 if successful.
499  * \return        #MBEDTLS_ERR_MPI_ALLOC_FAILED if there is not enough space
500  *                to store the value of Montgomery constant squared.
501  * \return        #MBEDTLS_ERR_MPI_DIVISION_BY_ZERO if \p N modulus is zero.
502  * \return        #MBEDTLS_ERR_MPI_NEGATIVE_VALUE if \p N modulus is negative.
503  */
504 int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
505                                         const mbedtls_mpi *N);
506 
507 #if defined(MBEDTLS_TEST_HOOKS)
508 /**
509  * Copy an MPI from a table without leaking the index.
510  *
511  * \param dest              The destination buffer. This must point to a writable
512  *                          buffer of at least \p limbs limbs.
513  * \param table             The address of the table. This must point to a readable
514  *                          array of \p count elements of \p limbs limbs each.
515  * \param limbs             The number of limbs in each table entry.
516  * \param count             The number of entries in \p table.
517  * \param index             The (secret) table index to look up. This must be in the
518  *                          range `0 .. count-1`.
519  */
520 void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
521                                            const mbedtls_mpi_uint *table,
522                                            size_t limbs,
523                                            size_t count,
524                                            size_t index);
525 #endif /* MBEDTLS_TEST_HOOKS */
526 
527 /**
528  * \brief          Fill an integer with a number of random bytes.
529  *
530  * \param X        The destination MPI.
531  * \param X_limbs  The number of limbs of \p X.
532  * \param bytes    The number of random bytes to generate.
533  * \param f_rng    The RNG function to use. This must not be \c NULL.
534  * \param p_rng    The RNG parameter to be passed to \p f_rng. This may be
535  *                 \c NULL if \p f_rng doesn't need a context argument.
536  *
537  * \return         \c 0 if successful.
538  * \return         #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p X does not have
539  *                 enough room for \p bytes bytes.
540  * \return         A negative error code on RNG failure.
541  *
542  * \note           The bytes obtained from the RNG are interpreted
543  *                 as a big-endian representation of an MPI; this can
544  *                 be relevant in applications like deterministic ECDSA.
545  */
546 int mbedtls_mpi_core_fill_random(mbedtls_mpi_uint *X, size_t X_limbs,
547                                  size_t bytes,
548                                  int (*f_rng)(void *, unsigned char *, size_t),
549                                  void *p_rng);
550 
551 /** Generate a random number uniformly in a range.
552  *
553  * This function generates a random number between \p min inclusive and
554  * \p N exclusive.
555  *
556  * The procedure complies with RFC 6979 §3.3 (deterministic ECDSA)
557  * when the RNG is a suitably parametrized instance of HMAC_DRBG
558  * and \p min is \c 1.
559  *
560  * \note           There are `N - min` possible outputs. The lower bound
561  *                 \p min can be reached, but the upper bound \p N cannot.
562  *
563  * \param X        The destination MPI, with \p limbs limbs.
564  *                 It must not be aliased with \p N or otherwise overlap it.
565  * \param min      The minimum value to return.
566  * \param N        The upper bound of the range, exclusive, with \p limbs limbs.
567  *                 In other words, this is one plus the maximum value to return.
568  *                 \p N must be strictly larger than \p min.
569  * \param limbs    The number of limbs of \p N and \p X.
570  *                 This must not be 0.
571  * \param f_rng    The RNG function to use. This must not be \c NULL.
572  * \param p_rng    The RNG parameter to be passed to \p f_rng.
573  *
574  * \return         \c 0 if successful.
575  * \return         #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the implementation was
576  *                 unable to find a suitable value within a limited number
577  *                 of attempts. This has a negligible probability if \p N
578  *                 is significantly larger than \p min, which is the case
579  *                 for all usual cryptographic applications.
580  */
581 int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
582                             mbedtls_mpi_uint min,
583                             const mbedtls_mpi_uint *N,
584                             size_t limbs,
585                             int (*f_rng)(void *, unsigned char *, size_t),
586                             void *p_rng);
587 
588 /**
589  * \brief          Returns the number of limbs of working memory required for
590  *                 a call to `mbedtls_mpi_core_exp_mod()`.
591  *
592  * \note           This will always be at least
593  *                 `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`,
594  *                 i.e. sufficient for a call to `mbedtls_mpi_core_montmul()`.
595  *
596  * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
597  *                 (they must be the same size) that will be given to
598  *                 `mbedtls_mpi_core_exp_mod()`.
599  * \param E_limbs  The number of limbs in the exponent `E` that will be given
600  *                 to `mbedtls_mpi_core_exp_mod()`.
601  *
602  * \return         The number of limbs of working memory required by
603  *                 `mbedtls_mpi_core_exp_mod()`.
604  */
605 size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs);
606 
607 /**
608  * \brief            Perform a modular exponentiation with secret exponent:
609  *                   X = A^E mod N, where \p A is already in Montgomery form.
610  *
611  * \p X may be aliased to \p A, but not to \p RR or \p E, even if \p E_limbs ==
612  * \p AN_limbs.
613  *
614  * \param[out] X     The destination MPI, as a little endian array of length
615  *                   \p AN_limbs.
616  * \param[in] A      The base MPI, as a little endian array of length \p AN_limbs.
617  *                   Must be in Montgomery form.
618  * \param[in] N      The modulus, as a little endian array of length \p AN_limbs.
619  * \param AN_limbs   The number of limbs in \p X, \p A, \p N, \p RR.
620  * \param[in] E      The exponent, as a little endian array of length \p E_limbs.
621  * \param E_limbs    The number of limbs in \p E.
622  * \param[in] RR     The precomputed residue of 2^{2*biL} modulo N, as a little
623  *                   endian array of length \p AN_limbs.
624  * \param[in,out] T  Temporary storage of at least the number of limbs returned
625  *                   by `mbedtls_mpi_core_exp_mod_working_limbs()`.
626  *                   Its initial content is unused and its final content is
627  *                   indeterminate.
628  *                   It must not alias or otherwise overlap any of the other
629  *                   parameters.
630  *                   It is up to the caller to zeroize \p T when it is no
631  *                   longer needed, and before freeing it if it was dynamically
632  *                   allocated.
633  */
634 void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
635                               const mbedtls_mpi_uint *A,
636                               const mbedtls_mpi_uint *N, size_t AN_limbs,
637                               const mbedtls_mpi_uint *E, size_t E_limbs,
638                               const mbedtls_mpi_uint *RR,
639                               mbedtls_mpi_uint *T);
640 
641 /**
642  * \brief Subtract unsigned integer from known-size large unsigned integers.
643  *        Return the borrow.
644  *
645  * \param[out] X    The result of the subtraction.
646  * \param[in] A     The left operand.
647  * \param b         The unsigned scalar to subtract.
648  * \param limbs     Number of limbs of \p X and \p A.
649  *
650  * \return          1 if `A < b`.
651  *                  0 if `A >= b`.
652  */
653 mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
654                                           const mbedtls_mpi_uint *A,
655                                           mbedtls_mpi_uint b,
656                                           size_t limbs);
657 
658 /**
659  * \brief Determine if a given MPI has the value \c 0 in constant time with
660  *        respect to the value (but not with respect to the number of limbs).
661  *
662  * \param[in] A   The MPI to test.
663  * \param limbs   Number of limbs in \p A.
664  *
665  * \return        MBEDTLS_CT_FALSE if `A == 0`
666  *                MBEDTLS_CT_TRUE  if `A != 0`.
667  */
668 mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
669                                                       size_t limbs);
670 
671 /**
672  * \brief          Returns the number of limbs of working memory required for
673  *                 a call to `mbedtls_mpi_core_montmul()`.
674  *
675  * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
676  *                 (they must be the same size) that will be given to
677  *                 `mbedtls_mpi_core_montmul()` or one of the other functions
678  *                 that specifies this as the amount of working memory needed.
679  *
680  * \return         The number of limbs of working memory required by
681  *                 `mbedtls_mpi_core_montmul()` (or other similar function).
682  */
mbedtls_mpi_core_montmul_working_limbs(size_t AN_limbs)683 static inline size_t mbedtls_mpi_core_montmul_working_limbs(size_t AN_limbs)
684 {
685     return 2 * AN_limbs + 1;
686 }
687 
688 /** Convert an MPI into Montgomery form.
689  *
690  * \p X may be aliased to \p A, but may not otherwise overlap it.
691  *
692  * \p X may not alias \p N (it is in canonical form, so must be strictly less
693  * than \p N). Nor may it alias or overlap \p rr (this is unlikely to be
694  * required in practice.)
695  *
696  * This function is a thin wrapper around `mbedtls_mpi_core_montmul()` that is
697  * an alternative to calling `mbedtls_mpi_mod_raw_to_mont_rep()` when we
698  * don't want to allocate memory.
699  *
700  * \param[out]    X         The result of the conversion.
701  *                          Must have the same number of limbs as \p A.
702  * \param[in]     A         The MPI to convert into Montgomery form.
703  *                          Must have the same number of limbs as the modulus.
704  * \param[in]     N         The address of the modulus, which gives the size of
705  *                          the base `R` = 2^(biL*N->limbs).
706  * \param[in]     AN_limbs  The number of limbs in \p X, \p A, \p N and \p rr.
707  * \param         mm        The Montgomery constant for \p N: -N^-1 mod 2^biL.
708  *                          This can be determined by calling
709  *                          `mbedtls_mpi_core_montmul_init()`.
710  * \param[in]     rr        The residue for `2^{2*n*biL} mod N`.
711  * \param[in,out] T         Temporary storage of size at least
712  *                          `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`
713  *                          limbs.
714  *                          Its initial content is unused and
715  *                          its final content is indeterminate.
716  *                          It must not alias or otherwise overlap any of the
717  *                          other parameters.
718  */
719 void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
720                                   const mbedtls_mpi_uint *A,
721                                   const mbedtls_mpi_uint *N,
722                                   size_t AN_limbs,
723                                   mbedtls_mpi_uint mm,
724                                   const mbedtls_mpi_uint *rr,
725                                   mbedtls_mpi_uint *T);
726 
727 /** Convert an MPI from Montgomery form.
728  *
729  * \p X may be aliased to \p A, but may not otherwise overlap it.
730  *
731  * \p X may not alias \p N (it is in canonical form, so must be strictly less
732  * than \p N).
733  *
734  * This function is a thin wrapper around `mbedtls_mpi_core_montmul()` that is
735  * an alternative to calling `mbedtls_mpi_mod_raw_from_mont_rep()` when we
736  * don't want to allocate memory.
737  *
738  * \param[out]    X         The result of the conversion.
739  *                          Must have the same number of limbs as \p A.
740  * \param[in]     A         The MPI to convert from Montgomery form.
741  *                          Must have the same number of limbs as the modulus.
742  * \param[in]     N         The address of the modulus, which gives the size of
743  *                          the base `R` = 2^(biL*N->limbs).
744  * \param[in]     AN_limbs  The number of limbs in \p X, \p A and \p N.
745  * \param         mm        The Montgomery constant for \p N: -N^-1 mod 2^biL.
746  *                          This can be determined by calling
747  *                          `mbedtls_mpi_core_montmul_init()`.
748  * \param[in,out] T         Temporary storage of size at least
749  *                          `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`
750  *                          limbs.
751  *                          Its initial content is unused and
752  *                          its final content is indeterminate.
753  *                          It must not alias or otherwise overlap any of the
754  *                          other parameters.
755  */
756 void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
757                                     const mbedtls_mpi_uint *A,
758                                     const mbedtls_mpi_uint *N,
759                                     size_t AN_limbs,
760                                     mbedtls_mpi_uint mm,
761                                     mbedtls_mpi_uint *T);
762 
763 #endif /* MBEDTLS_BIGNUM_CORE_H */
764