1 /*
2  * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_softmax_q7.c
22  * Description:  Q7 softmax function
23  *
24  * $Date:        09. October 2020
25  * $Revision:    V.1.0.2
26  *
27  * Target Processor:  Cortex-M cores
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_nnfunctions.h"
32 
33 /**
34  *  @ingroup groupNN
35  */
36 
37 /**
38  * @addtogroup Softmax
39  * @{
40  */
41 
42 /**
43  * @brief Q7 softmax function
44  * @param[in]       vec_in      pointer to input vector
45  * @param[in]       dim_vec     input vector dimention
46  * @param[out]      p_out       pointer to output vector
47  *
48  * @details
49  *
50  *  Here, instead of typical natural logarithm e based softmax, we use
51  *  2-based softmax here, i.e.,:
52  *
53  *  y_i = 2^(x_i) / sum(2^x_j)
54  *
55  *  The relative output will be different here.
56  *  But mathematically, the gradient will be the same
57  *  with a log(2) scaling factor.
58  *
59  */
60 
arm_softmax_q7(const q7_t * vec_in,const uint16_t dim_vec,q7_t * p_out)61 void arm_softmax_q7(const q7_t *vec_in, const uint16_t dim_vec, q7_t *p_out)
62 {
63     q31_t sum;
64     int16_t i;
65     uint8_t shift;
66     q15_t base;
67     base = -128;
68 
69     /* We first search for the maximum */
70     for (i = 0; i < dim_vec; i++)
71     {
72         if (vec_in[i] > base)
73         {
74             base = vec_in[i];
75         }
76     }
77 
78     /*
79      * So the base is set to max-8, meaning
80      * that we ignore really small values.
81      * anyway, they will be 0 after shrinking to q7_t.
82      */
83     base = base - (1 << 3);
84 
85     sum = 0;
86 
87     for (i = 0; i < dim_vec; i++)
88     {
89         shift = (uint8_t)__USAT(vec_in[i] - base, 3);
90         sum += 0x1 << shift;
91     }
92 
93     /* This is effectively (0x1 << 20) / sum */
94     int output_base = (1 << 20) / sum;
95 
96     for (i = 0; i < dim_vec; i++)
97     {
98 
99         /* Here minimum value of 13+base-vec_in[i] will be 5 */
100         shift = (uint8_t)__USAT(13 + base - vec_in[i], 5);
101         p_out[i] = (q7_t)__SSAT((output_base >> shift), 8);
102     }
103 }
104 
105 /**
106  * @} end of Softmax group
107  */
108