1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_mfcc_q15.c
4  * Description:  MFCC function for the q15 version
5  *
6  * $Date:        07 September 2021
7  * $Revision:    V1.10.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 
30 
31 #include "dsp/transform_functions.h"
32 #include "dsp/statistics_functions.h"
33 #include "dsp/basic_math_functions.h"
34 #include "dsp/complex_math_functions.h"
35 #include "dsp/fast_math_functions.h"
36 #include "dsp/matrix_functions.h"
37 
38 /* Constants for Q15 implementation */
39 #define LOG2TOLOG_Q15 0x02C5C860
40 #define MICRO_Q15 0x00000219
41 #define SHIFT_MELFILTER_SATURATION_Q15 10
42 /**
43   @ingroup MFCC
44  */
45 
46 
47 
48 /**
49   @addtogroup MFCCQ15
50   @{
51  */
52 
53 /**
54   @brief         MFCC Q15
55   @param[in]    S       points to the mfcc instance structure
56   @param[in]     pSrc points to the input samples in Q15
57   @param[out]     pDst  points to the output MFCC values in q8.7 format
58   @param[inout]     pTmp  points to a temporary buffer of complex
59 
60   @par           Description
61                    The number of input samples is the FFT length used
62                    when initializing the instance data structure.
63 
64                    The temporary buffer has a 2*fft length.
65 
66                    The source buffer is modified by this function.
67 
68                    The function may saturate. If the FFT length is too
69                    big and the number of MEL filters too small then the fixed
70                    point computations may saturate.
71 
72  */
arm_mfcc_q15(const arm_mfcc_instance_q15 * S,q15_t * pSrc,q15_t * pDst,q31_t * pTmp)73 arm_status arm_mfcc_q15(
74   const arm_mfcc_instance_q15 * S,
75   q15_t *pSrc,
76   q15_t *pDst,
77   q31_t *pTmp
78   )
79 {
80     q15_t m;
81     uint32_t index;
82     uint32_t fftShift=0;
83     q31_t logExponent;
84     q63_t result;
85     arm_matrix_instance_q15 pDctMat;
86     uint32_t i;
87     uint32_t coefsPos;
88     uint32_t filterLimit;
89     q15_t *pTmp2=(q15_t*)pTmp;
90 
91     arm_status status = ARM_MATH_SUCCESS;
92 
93     // q15
94     arm_absmax_q15(pSrc,S->fftLen,&m,&index);
95 
96     if ((m != 0) && (m != 0x7FFF))
97     {
98        q15_t quotient;
99        int16_t shift;
100 
101        status = arm_divide_q15(0x7FFF,m,&quotient,&shift);
102        if (status != ARM_MATH_SUCCESS)
103        {
104           return(status);
105        }
106 
107        arm_scale_q15(pSrc,quotient,shift,pSrc,S->fftLen);
108     }
109 
110 
111     // q15
112     arm_mult_q15(pSrc,S->windowCoefs, pSrc, S->fftLen);
113 
114 
115     /* Compute spectrum magnitude
116     */
117     fftShift = 31 - __CLZ(S->fftLen);
118 #if defined(ARM_MFCC_CFFT_BASED)
119     /* some HW accelerator for CMSIS-DSP used in some boards
120        are only providing acceleration for CFFT.
121        With ARM_MFCC_CFFT_BASED enabled, CFFT is used and the MFCC
122        will be accelerated on those boards.
123 
124        The default is to use RFFT
125     */
126     /* Convert from real to complex */
127     for(i=0; i < S->fftLen ; i++)
128     {
129       pTmp2[2*i] = pSrc[i];
130       pTmp2[2*i+1] = 0;
131     }
132     arm_cfft_q15(&(S->cfft),pTmp2,0,1);
133 #else
134     /* Default RFFT based implementation */
135     arm_rfft_q15(&(S->rfft),pSrc,pTmp2);
136 #endif
137     filterLimit = 1 + (S->fftLen >> 1);
138 
139 
140     // q15 - fftShift
141     arm_cmplx_mag_q15(pTmp2,pSrc,filterLimit);
142     // q14 - fftShift
143 
144     /* Apply MEL filters */
145     coefsPos = 0;
146     for(i=0; i<S->nbMelFilters; i++)
147     {
148       arm_dot_prod_q15(pSrc+S->filterPos[i],
149         &(S->filterCoefs[coefsPos]),
150         S->filterLengths[i],
151         &result);
152 
153       coefsPos += S->filterLengths[i];
154 
155       // q34.29 - fftShift
156       result += MICRO_Q15;
157       result >>= SHIFT_MELFILTER_SATURATION_Q15;
158       // q34.29 - fftShift - satShift
159       pTmp[i] = __SSAT(result,31) ;
160 
161     }
162 
163     if ((m != 0) && (m != 0x7FFF))
164     {
165       arm_scale_q31(pTmp,m<<16,0,pTmp,S->nbMelFilters);
166     }
167 
168     // q34.29 - fftShift - satShift
169     /* Compute the log */
170     arm_vlog_q31(pTmp,pTmp,S->nbMelFilters);
171 
172 
173     // q5.26
174 
175     logExponent = fftShift + 2 + SHIFT_MELFILTER_SATURATION_Q15;
176     logExponent = logExponent * LOG2TOLOG_Q15;
177 
178 
179     // q8.26
180     arm_offset_q31(pTmp,logExponent,pTmp,S->nbMelFilters);
181     arm_shift_q31(pTmp,-19,pTmp,S->nbMelFilters);
182     for(i=0; i<S->nbMelFilters; i++)
183     {
184       pSrc[i] = __SSAT((q15_t)pTmp[i],16);
185     }
186 
187     // q8.7
188 
189     pDctMat.numRows=S->nbDctOutputs;
190     pDctMat.numCols=S->nbMelFilters;
191     pDctMat.pData=(q15_t*)S->dctCoefs;
192 
193     arm_mat_vec_mult_q15(&pDctMat, pSrc, pDst);
194 
195     return(status);
196 }
197 
198 /**
199   @} end of MFCCQ15 group
200  */
201