1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_lms_norm_q15.c
4 * Description: Processing function for Q15 normalized LMS filter
5 *
6 * $Date: 23 April 2021
7 * $Revision: V1.9.0
8 *
9 * Target Processor: Cortex-M and Cortex-A cores
10 * -------------------------------------------------------------------- */
11 /*
12 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13 *
14 * SPDX-License-Identifier: Apache-2.0
15 *
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
19 *
20 * www.apache.org/licenses/LICENSE-2.0
21 *
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
27 */
28
29 #include "dsp/filtering_functions.h"
30
31 /**
32 @ingroup groupFilters
33 */
34
35 /**
36 @addtogroup LMS_NORM
37 @{
38 */
39
40 /**
41 @brief Processing function for Q15 normalized LMS filter.
42 @param[in] S points to an instance of the Q15 normalized LMS filter structure
43 @param[in] pSrc points to the block of input data
44 @param[in] pRef points to the block of reference data
45 @param[out] pOut points to the block of output data
46 @param[out] pErr points to the block of error data
47 @param[in] blockSize number of samples to process
48
49 @par Scaling and Overflow Behavior
50 The function is implemented using a 64-bit internal accumulator.
51 Both coefficients and state variables are represented in 1.15 format and
52 multiplications yield a 2.30 result. The 2.30 intermediate results are
53 accumulated in a 64-bit accumulator in 34.30 format.
54 There is no risk of internal overflow with this approach and the full
55 precision of intermediate multiplications is preserved. After all additions
56 have been performed, the accumulator is truncated to 34.15 format by
57 discarding low 15 bits. Lastly, the accumulator is saturated to yield a
58 result in 1.15 format.
59 @par
60 In this filter, filter coefficients are updated for each sample and the
61 updation of filter cofficients are saturted.
62 */
63
arm_lms_norm_q15(arm_lms_norm_instance_q15 * S,const q15_t * pSrc,q15_t * pRef,q15_t * pOut,q15_t * pErr,uint32_t blockSize)64 void arm_lms_norm_q15(
65 arm_lms_norm_instance_q15 * S,
66 const q15_t * pSrc,
67 q15_t * pRef,
68 q15_t * pOut,
69 q15_t * pErr,
70 uint32_t blockSize)
71 {
72 q15_t *pState = S->pState; /* State pointer */
73 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
74 q15_t *pStateCurnt; /* Points to the current sample of the state */
75 q15_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
76 q15_t mu = S->mu; /* Adaptive factor */
77 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
78 uint32_t tapCnt, blkCnt; /* Loop counters */
79 q63_t acc; /* Accumulator */
80 q31_t energy; /* Energy of the input */
81 q15_t e = 0, d = 0; /* Error, reference data sample */
82 q15_t w = 0, in; /* Weight factor and state */
83 q15_t x0; /* Temporary variable to hold input sample */
84 q15_t errorXmu, oneByEnergy; /* Temporary variables to store error and mu product and reciprocal of energy */
85 q15_t postShift; /* Post shift to be applied to weight after reciprocal calculation */
86 q31_t coef; /* Temporary variable for coefficient */
87 q31_t acc_l, acc_h; /* Temporary input */
88 int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
89 int32_t uShift = (32 - lShift);
90
91 energy = S->energy;
92 x0 = S->x0;
93
94 /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
95 /* pStateCurnt points to the location where the new input data should be written */
96 pStateCurnt = &(S->pState[(numTaps - 1U)]);
97
98 /* initialise loop count */
99 blkCnt = blockSize;
100
101 while (blkCnt > 0U)
102 {
103 /* Copy the new input sample into the state buffer */
104 *pStateCurnt++ = *pSrc;
105
106 /* Initialize pState pointer */
107 px = pState;
108
109 /* Initialize coefficient pointer */
110 pb = pCoeffs;
111
112 /* Read the sample from input buffer */
113 in = *pSrc++;
114
115 /* Update the energy calculation */
116 energy -= (((q31_t) x0 * (x0)) >> 15);
117 energy += (((q31_t) in * (in)) >> 15);
118 energy = (q15_t) __SSAT(energy, 16);
119
120 /* Set the accumulator to zero */
121 acc = 0;
122
123 #if defined (ARM_MATH_LOOPUNROLL)
124
125 /* Loop unrolling: Compute 4 taps at a time. */
126 tapCnt = numTaps >> 2U;
127
128 while (tapCnt > 0U)
129 {
130 /* Perform the multiply-accumulate */
131 /* acc += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
132 acc = __SMLALD(read_q15x2_ia (&px), read_q15x2_ia (&pb), acc);
133 acc = __SMLALD(read_q15x2_ia (&px), read_q15x2_ia (&pb), acc);
134
135 /* Decrement loop counter */
136 tapCnt--;
137 }
138
139 /* Loop unrolling: Compute remaining taps */
140 tapCnt = numTaps % 0x4U;
141
142 #else
143
144 /* Initialize tapCnt with number of samples */
145 tapCnt = numTaps;
146
147 #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
148
149 while (tapCnt > 0U)
150 {
151 /* Perform the multiply-accumulate */
152 acc += (q63_t) (((q31_t) (*px++) * (*pb++)));
153
154 /* Decrement the loop counter */
155 tapCnt--;
156 }
157
158 /* Calc lower part of acc */
159 acc_l = acc & 0xffffffff;
160
161 /* Calc upper part of acc */
162 acc_h = (acc >> 32) & 0xffffffff;
163
164 /* Apply shift for lower part of acc and upper part of acc */
165 acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
166
167 /* Converting the result to 1.15 format and saturate the output */
168 acc = __SSAT(acc, 16U);
169
170 /* Store the result from accumulator into the destination buffer. */
171 *pOut++ = (q15_t) acc;
172
173 /* Compute and store error */
174 d = *pRef++;
175 e = d - (q15_t) acc;
176 *pErr++ = e;
177
178 /* Calculation of 1/energy */
179 postShift = arm_recip_q15((q15_t) energy + DELTA_Q15, &oneByEnergy, S->recipTable);
180
181 /* Calculation of e * mu value */
182 errorXmu = (q15_t) (((q31_t) e * mu) >> 15);
183
184 /* Calculation of (e * mu) * (1/energy) value */
185 acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));
186
187 /* Weighting factor for the normalized version */
188 w = (q15_t) __SSAT((q31_t) acc, 16);
189
190 /* Initialize pState pointer */
191 px = pState;
192
193 /* Initialize coefficient pointer */
194 pb = pCoeffs;
195
196 #if defined (ARM_MATH_LOOPUNROLL)
197
198 /* Loop unrolling: Compute 4 taps at a time. */
199 tapCnt = numTaps >> 2U;
200
201 /* Update filter coefficients */
202 while (tapCnt > 0U)
203 {
204 coef = (q31_t) *pb + (((q31_t) w * (*px++)) >> 15);
205 *pb++ = (q15_t) __SSAT(coef, 16);
206
207 coef = (q31_t) *pb + (((q31_t) w * (*px++)) >> 15);
208 *pb++ = (q15_t) __SSAT(coef, 16);
209
210 coef = (q31_t) *pb + (((q31_t) w * (*px++)) >> 15);
211 *pb++ = (q15_t) __SSAT(coef, 16);
212
213 coef = (q31_t) *pb + (((q31_t) w * (*px++)) >> 15);
214 *pb++ = (q15_t) __SSAT(coef, 16);
215
216 /* Decrement loop counter */
217 tapCnt--;
218 }
219
220 /* Loop unrolling: Compute remaining taps */
221 tapCnt = numTaps % 0x4U;
222
223 #else
224
225 /* Initialize tapCnt with number of samples */
226 tapCnt = numTaps;
227
228 #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
229
230 while (tapCnt > 0U)
231 {
232 /* Perform the multiply-accumulate */
233 coef = (q31_t) *pb + (((q31_t) w * (*px++)) >> 15);
234 *pb++ = (q15_t) __SSAT(coef, 16);
235
236 /* Decrement loop counter */
237 tapCnt--;
238 }
239
240 x0 = *pState;
241
242 /* Advance state pointer by 1 for the next sample */
243 pState = pState + 1;
244
245 /* Decrement loop counter */
246 blkCnt--;
247 }
248
249 /* Save energy and x0 values for the next frame */
250 S->energy = (q15_t) energy;
251 S->x0 = x0;
252
253 /* Processing is complete.
254 Now copy the last numTaps - 1 samples to the start of the state buffer.
255 This prepares the state buffer for the next function call. */
256
257 /* Points to the start of the pState buffer */
258 pStateCurnt = S->pState;
259
260 /* copy data */
261 #if defined (ARM_MATH_LOOPUNROLL)
262
263 /* Loop unrolling: Compute 4 taps at a time. */
264 tapCnt = (numTaps - 1U) >> 2U;
265
266 while (tapCnt > 0U)
267 {
268 write_q15x2_ia (&pStateCurnt, read_q15x2_ia (&pState));
269 write_q15x2_ia (&pStateCurnt, read_q15x2_ia (&pState));
270
271 /* Decrement loop counter */
272 tapCnt--;
273 }
274
275 /* Loop unrolling: Compute remaining taps */
276 tapCnt = (numTaps - 1U) % 0x4U;
277
278 #else
279
280 /* Initialize tapCnt with number of samples */
281 tapCnt = (numTaps - 1U);
282
283 #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
284
285 while (tapCnt > 0U)
286 {
287 *pStateCurnt++ = *pState++;
288
289 /* Decrement loop counter */
290 tapCnt--;
291 }
292
293 }
294
295 /**
296 @} end of LMS_NORM group
297 */
298