1 /*
2  * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_depthwise_conv_wrapper_s8.c
22  * Description:  Wrapper API to select appropriate depthwise conv API based
23  *               on dimensions.
24  *
25  * $Date:        11. May 2021
26  * $Revision:    V.1.0.3
27  *
28  * Target Processor:  Cortex-M CPUs
29  *
30  * -------------------------------------------------------------------- */
31 
32 #include "arm_nnfunctions.h"
33 
34 /**
35  *  @ingroup groupNN
36  */
37 
38 /**
39  * @addtogroup NNConv
40  * @{
41  */
42 
43 /*
44  *  s8 Depthwise conv wrapper function
45  *
46  *  Refer header file for details.
47  *
48  */
arm_depthwise_conv_wrapper_s8(const cmsis_nn_context * ctx,const cmsis_nn_dw_conv_params * dw_conv_params,const cmsis_nn_per_channel_quant_params * quant_params,const cmsis_nn_dims * input_dims,const q7_t * input,const cmsis_nn_dims * filter_dims,const q7_t * filter,const cmsis_nn_dims * bias_dims,const int32_t * bias,const cmsis_nn_dims * output_dims,q7_t * output)49 arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx,
50                                          const cmsis_nn_dw_conv_params *dw_conv_params,
51                                          const cmsis_nn_per_channel_quant_params *quant_params,
52                                          const cmsis_nn_dims *input_dims,
53                                          const q7_t *input,
54                                          const cmsis_nn_dims *filter_dims,
55                                          const q7_t *filter,
56                                          const cmsis_nn_dims *bias_dims,
57                                          const int32_t *bias,
58                                          const cmsis_nn_dims *output_dims,
59                                          q7_t *output)
60 {
61     arm_status status = ARM_MATH_SUCCESS;
62     if (1 == dw_conv_params->ch_mult && input_dims->n == 1)
63     {
64 #if !defined(ARM_MATH_MVEI)
65         if ((filter_dims->w == 3) && (filter_dims->h == 3) && (dw_conv_params->padding.h <= 1))
66         {
67             status = arm_depthwise_conv_3x3_s8(ctx,
68                                                dw_conv_params,
69                                                quant_params,
70                                                input_dims,
71                                                input,
72                                                filter_dims,
73                                                filter,
74                                                bias_dims,
75                                                bias,
76                                                output_dims,
77                                                output);
78         }
79         else
80 #endif
81         {
82             status = arm_depthwise_conv_s8_opt(ctx,
83                                                dw_conv_params,
84                                                quant_params,
85                                                input_dims,
86                                                input,
87                                                filter_dims,
88                                                filter,
89                                                bias_dims,
90                                                bias,
91                                                output_dims,
92                                                output);
93         }
94     }
95     else
96     {
97         status = arm_depthwise_conv_s8(ctx,
98                                        dw_conv_params,
99                                        quant_params,
100                                        input_dims,
101                                        input,
102                                        filter_dims,
103                                        filter,
104                                        bias_dims,
105                                        bias,
106                                        output_dims,
107                                        output);
108     }
109 
110     /* Return to application */
111     return status;
112 }
113 
arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params * dw_conv_params,const cmsis_nn_dims * input_dims,const cmsis_nn_dims * filter_dims,const cmsis_nn_dims * output_dims)114 int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params,
115                                                       const cmsis_nn_dims *input_dims,
116                                                       const cmsis_nn_dims *filter_dims,
117                                                       const cmsis_nn_dims *output_dims)
118 {
119     (void)dw_conv_params;
120     int32_t size = 0;
121 
122     if (input_dims->c == output_dims->c && input_dims->n == 1)
123     {
124         size = arm_depthwise_conv_s8_opt_get_buffer_size(input_dims, filter_dims);
125     }
126 
127     return size;
128 }
129 
130 /**
131  * @} end of NNConv group
132  */
133