1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_dct4_q15.c
4  * Description:  Processing function of DCT4 & IDCT4 Q15
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/transform_functions.h"
30 
31 /**
32   @addtogroup DCT4Q15
33   @{
34  */
35 
36 /**
37   @brief         Processing function for the Q15 DCT4/IDCT4.
38   @deprecated    Do not use this function. It will be removed in future versions.
39   @param[in]     S             points to an instance of the Q15 DCT4 structure.
40   @param[in]     pState        points to state buffer.
41   @param[in,out] pInlineBuffer points to the in-place input and output buffer.
42 
43   @par           Input an output formats
44                    Internally inputs are downscaled in the RFFT process function to avoid overflows.
45                    Number of bits downscaled, depends on the size of the transform. The input and output
46                    formats for different DCT sizes and number of bits to upscale are mentioned in the table below:
47 
48 | DCT Size  | Input format  | Output format | Number of bits to upscale |
49 | --------: | ------------: | ------------: | ------------------------: |
50 | 2048      | 1.15          | 11.5          | 10                        |
51 | 512       | 1.15          | 9.7           | 8                         |
52 | 128       | 1.15          | 7.9           | 6                         |
53 
54 
55  */
56 
arm_dct4_q15(const arm_dct4_instance_q15 * S,q15_t * pState,q15_t * pInlineBuffer)57 void arm_dct4_q15(
58   const arm_dct4_instance_q15 * S,
59         q15_t * pState,
60         q15_t * pInlineBuffer)
61 {
62   const q15_t *weights = S->pTwiddle;                  /* Pointer to the Weights table */
63   const q15_t *cosFact = S->pCosFactor;                /* Pointer to the cos factors table */
64         q15_t *pS1, *pS2, *pbuff;                      /* Temporary pointers for input buffer and pState buffer */
65         q15_t in;                                      /* Temporary variable */
66         uint32_t i;                                    /* Loop counter */
67 
68 
69   /* DCT4 computation involves DCT2 (which is calculated using RFFT)
70    * along with some pre-processing and post-processing.
71    * Computational procedure is explained as follows:
72    * (a) Pre-processing involves multiplying input with cos factor,
73    *     r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n))
74    *              where,
75    *                 r(n) -- output of preprocessing
76    *                 u(n) -- input to preprocessing(actual Source buffer)
77    * (b) Calculation of DCT2 using FFT is divided into three steps:
78    *                  Step1: Re-ordering of even and odd elements of input.
79    *                  Step2: Calculating FFT of the re-ordered input.
80    *                  Step3: Taking the real part of the product of FFT output and weights.
81    * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation:
82    *                   Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
83    *                        where,
84    *                           Y4 -- DCT4 output,   Y2 -- DCT2 output
85    * (d) Multiplying the output with the normalizing factor sqrt(2/N).
86    */
87 
88   /*-------- Pre-processing ------------*/
89   /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */
90   arm_mult_q15 (pInlineBuffer, cosFact, pInlineBuffer, S->N);
91   arm_shift_q15 (pInlineBuffer, 1, pInlineBuffer, S->N);
92 
93   /* ----------------------------------------------------------------
94    * Step1: Re-ordering of even and odd elements as
95    *             pState[i] =  pInlineBuffer[2*i] and
96    *             pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2
97    ---------------------------------------------------------------------*/
98 
99   /* pS1 initialized to pState */
100   pS1 = pState;
101 
102   /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */
103   pS2 = pState + (S->N - 1U);
104 
105   /* pbuff initialized to input buffer */
106   pbuff = pInlineBuffer;
107 
108 
109 #if defined (ARM_MATH_LOOPUNROLL)
110 
111   /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */
112   i = S->Nby2 >> 2U;
113 
114   /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
115    ** a second loop below computes the remaining 1 to 3 samples. */
116   do
117   {
118     /* Re-ordering of even and odd elements */
119     /* pState[i] =  pInlineBuffer[2*i] */
120     *pS1++ = *pbuff++;
121     /* pState[N-i-1] = pInlineBuffer[2*i+1] */
122     *pS2-- = *pbuff++;
123 
124     *pS1++ = *pbuff++;
125     *pS2-- = *pbuff++;
126 
127     *pS1++ = *pbuff++;
128     *pS2-- = *pbuff++;
129 
130     *pS1++ = *pbuff++;
131     *pS2-- = *pbuff++;
132 
133     /* Decrement loop counter */
134     i--;
135   } while (i > 0U);
136 
137   /* pbuff initialized to input buffer */
138   pbuff = pInlineBuffer;
139 
140   /* pS1 initialized to pState */
141   pS1 = pState;
142 
143   /* Initializing the loop counter to N/4 instead of N for loop unrolling */
144   i = S->N >> 2U;
145 
146   /* Processing with loop unrolling 4 times as N is always multiple of 4.
147    * Compute 4 outputs at a time */
148   do
149   {
150     /* Writing the re-ordered output back to inplace input buffer */
151     *pbuff++ = *pS1++;
152     *pbuff++ = *pS1++;
153     *pbuff++ = *pS1++;
154     *pbuff++ = *pS1++;
155 
156     /* Decrement the loop counter */
157     i--;
158   } while (i > 0U);
159 
160 
161   /* ---------------------------------------------------------
162    *     Step2: Calculate RFFT for N-point input
163    * ---------------------------------------------------------- */
164   /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
165   arm_rfft_q15 (S->pRfft, pInlineBuffer, pState);
166 
167   /*----------------------------------------------------------------------
168    *  Step3: Multiply the FFT output with the weights.
169    *----------------------------------------------------------------------*/
170   arm_cmplx_mult_cmplx_q15 (pState, weights, pState, S->N);
171 
172   /* The output of complex multiplication is in 3.13 format.
173    * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */
174   arm_shift_q15 (pState, 2, pState, S->N * 2);
175 
176   /* ----------- Post-processing ---------- */
177   /* DCT-IV can be obtained from DCT-II by the equation,
178    *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
179    *       Hence, Y4(0) = Y2(0)/2  */
180   /* Getting only real part from the output and Converting to DCT-IV */
181 
182   /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */
183   i = (S->N - 1U) >> 2U;
184 
185   /* pbuff initialized to input buffer. */
186   pbuff = pInlineBuffer;
187 
188   /* pS1 initialized to pState */
189   pS1 = pState;
190 
191   /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
192   in = *pS1++ >> 1U;
193   /* input buffer acts as inplace, so output values are stored in the input itself. */
194   *pbuff++ = in;
195 
196   /* pState pointer is incremented twice as the real values are located alternatively in the array */
197   pS1++;
198 
199   /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
200    ** a second loop below computes the remaining 1 to 3 samples. */
201   do
202   {
203     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
204     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
205     in = *pS1++ - in;
206     *pbuff++ = in;
207     /* points to the next real value */
208     pS1++;
209 
210     in = *pS1++ - in;
211     *pbuff++ = in;
212     pS1++;
213 
214     in = *pS1++ - in;
215     *pbuff++ = in;
216     pS1++;
217 
218     in = *pS1++ - in;
219     *pbuff++ = in;
220     pS1++;
221 
222     /* Decrement the loop counter */
223     i--;
224   } while (i > 0U);
225 
226   /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
227    ** No loop unrolling is used. */
228   i = (S->N - 1U) % 0x4U;
229 
230   while (i > 0U)
231   {
232     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
233     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
234     in = *pS1++ - in;
235     *pbuff++ = in;
236 
237     /* points to the next real value */
238     pS1++;
239 
240     /* Decrement loop counter */
241     i--;
242   }
243 
244 
245   /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
246 
247   /* Initializing the loop counter to N/4 instead of N for loop unrolling */
248   i = S->N >> 2U;
249 
250   /* pbuff initialized to the pInlineBuffer(now contains the output values) */
251   pbuff = pInlineBuffer;
252 
253   /* Processing with loop unrolling 4 times as N is always multiple of 4.  Compute 4 outputs at a time */
254   do
255   {
256     /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
257     in = *pbuff;
258     *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
259 
260     in = *pbuff;
261     *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
262 
263     in = *pbuff;
264     *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
265 
266     in = *pbuff;
267     *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
268 
269     /* Decrement loop counter */
270     i--;
271   } while (i > 0U);
272 
273 
274 #else
275 
276   /* Initializing the loop counter to N/2 */
277   i = S->Nby2;
278 
279   do
280   {
281     /* Re-ordering of even and odd elements */
282     /* pState[i] =  pInlineBuffer[2*i] */
283     *pS1++ = *pbuff++;
284     /* pState[N-i-1] = pInlineBuffer[2*i+1] */
285     *pS2-- = *pbuff++;
286 
287     /* Decrement the loop counter */
288     i--;
289   } while (i > 0U);
290 
291   /* pbuff initialized to input buffer */
292   pbuff = pInlineBuffer;
293 
294   /* pS1 initialized to pState */
295   pS1 = pState;
296 
297   /* Initializing the loop counter */
298   i = S->N;
299 
300   do
301   {
302     /* Writing the re-ordered output back to inplace input buffer */
303     *pbuff++ = *pS1++;
304 
305     /* Decrement the loop counter */
306     i--;
307   } while (i > 0U);
308 
309 
310   /* ---------------------------------------------------------
311    *     Step2: Calculate RFFT for N-point input
312    * ---------------------------------------------------------- */
313   /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
314   arm_rfft_q15 (S->pRfft, pInlineBuffer, pState);
315 
316   /*----------------------------------------------------------------------
317    *  Step3: Multiply the FFT output with the weights.
318    *----------------------------------------------------------------------*/
319   arm_cmplx_mult_cmplx_q15 (pState, weights, pState, S->N);
320 
321   /* The output of complex multiplication is in 3.13 format.
322    * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */
323   arm_shift_q15 (pState, 2, pState, S->N * 2);
324 
325   /* ----------- Post-processing ---------- */
326   /* DCT-IV can be obtained from DCT-II by the equation,
327    *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
328    *       Hence, Y4(0) = Y2(0)/2  */
329   /* Getting only real part from the output and Converting to DCT-IV */
330 
331   /* pbuff initialized to input buffer. */
332   pbuff = pInlineBuffer;
333 
334   /* pS1 initialized to pState */
335   pS1 = pState;
336 
337   /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
338   in = *pS1++ >> 1U;
339   /* input buffer acts as inplace, so output values are stored in the input itself. */
340   *pbuff++ = in;
341 
342   /* pState pointer is incremented twice as the real values are located alternatively in the array */
343   pS1++;
344 
345   /* Initializing the loop counter */
346   i = (S->N - 1U);
347 
348   do
349   {
350     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
351     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
352     in = *pS1++ - in;
353     *pbuff++ = in;
354 
355     /* points to the next real value */
356     pS1++;
357 
358     /* Decrement loop counter */
359     i--;
360   } while (i > 0U);
361 
362   /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
363 
364   /* Initializing loop counter */
365   i = S->N;
366 
367   /* pbuff initialized to the pInlineBuffer (now contains the output values) */
368   pbuff = pInlineBuffer;
369 
370   do
371   {
372     /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
373     in = *pbuff;
374     *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15));
375 
376     /* Decrement loop counter */
377     i--;
378 
379   } while (i > 0U);
380 
381 #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
382 
383 }
384 
385 /**
386   @} end of DCT4Q15 group
387  */
388