1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_dct4_f32.c
4  * Description:  Processing function of DCT4 & IDCT4 F32
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/transform_functions.h"
30 
31 /**
32   @ingroup groupTransforms
33  */
34 
35 /**
36   @defgroup DCT4_IDCT4 DCT Type IV Functions
37 
38   Representation of signals by minimum number of values is important for storage and transmission.
39   The possibility of large discontinuity between the beginning and end of a period of a signal
40   in DFT can be avoided by extending the signal so that it is even-symmetric.
41   Discrete Cosine Transform (DCT) is constructed such that its energy is heavily concentrated in the lower part of the
42   spectrum and is very widely used in signal and image coding applications.
43   The family of DCTs (DCT type- 1,2,3,4) is the outcome of different combinations of homogeneous boundary conditions.
44   DCT has an excellent energy-packing capability, hence has many applications and in data compression in particular.
45 
46   DCT is essentially the Discrete Fourier Transform(DFT) of an even-extended real signal.
47   Reordering of the input data makes the computation of DCT just a problem of
48   computing the DFT of a real signal with a few additional operations.
49   This approach provides regular, simple, and very efficient DCT algorithms for practical hardware and software implementations.
50 
51   DCT type-II can be implemented using Fast fourier transform (FFT) internally, as the transform is applied on real values, Real FFT can be used.
52   DCT4 is implemented using DCT2 as their implementations are similar except with some added pre-processing and post-processing.
53   DCT2 implementation can be described in the following steps:
54   - Re-ordering input
55   - Calculating Real FFT
56   - Multiplication of weights and Real FFT output and getting real part from the product.
57 
58   This process is explained by the block diagram below:
59   \image html DCT4.gif "Discrete Cosine Transform - type-IV"
60 
61   @par           Algorithm
62                    The N-point type-IV DCT is defined as a real, linear transformation by the formula:
63                    \f[
64                    X_c(k) = \sqrt{\frac{2}{N}}\sum_{n=0}^{N-1} x(n)cos\Big[\Big(n+\frac{1}{2}\Big)\Big(k+\frac{1}{2}\Big)\frac{\pi}{N}\Big]
65                    \f]
66                    where <code>k = 0, 1, 2, ..., N-1</code>
67   @par
68                    Its inverse is defined as follows:
69                    \f[
70                    x(n) = \sqrt{\frac{2}{N}}\sum_{k=0}^{N-1} X_c(k)cos\Big[\Big(n+\frac{1}{2}\Big)\Big(k+\frac{1}{2}\Big)\frac{\pi}{N}\Big]
71                    \f]
72                    where <code>n = 0, 1, 2, ..., N-1</code>
73   @par
74                    The DCT4 matrices become involutory (i.e. they are self-inverse) by multiplying with an overall scale factor of sqrt(2/N).
75                    The symmetry of the transform matrix indicates that the fast algorithms for the forward
76                    and inverse transform computation are identical.
77                    Note that the implementation of Inverse DCT4 and DCT4 is same, hence same process function can be used for both.
78 
79   @par           Lengths supported by the transform:
80                    As DCT4 internally uses Real FFT, it supports all the lengths 128, 512, 2048 and 8192.
81                    The library provides separate functions for Q15, Q31, and floating-point data types.
82 
83   @par           Instance Structure
84                    The instances for Real FFT and FFT, cosine values table and twiddle factor table are stored in an instance data structure.
85                    A separate instance structure must be defined for each transform.
86                    There are separate instance structure declarations for each of the 3 supported data types.
87 
88   @par           Initialization Functions
89                    There is also an associated initialization function for each data type.
90                    The initialization function performs the following operations:
91                    - Sets the values of the internal structure fields.
92                    - Initializes Real FFT as its process function is used internally in DCT4, by calling \ref arm_rfft_init_f32().
93   @par
94                    Use of the initialization function is optional.
95                    However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
96                    To place an instance structure into a const data section, the instance structure must be manually initialized.
97                    Manually initialize the instance structure as follows:
98   <pre>
99       arm_dct4_instance_f32 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
100       arm_dct4_instance_q31 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
101       arm_dct4_instance_q15 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
102   </pre>
103                    where \c N is the length of the DCT4; \c Nby2 is half of the length of the DCT4;
104                    \c normalize is normalizing factor used and is equal to <code>sqrt(2/N)</code>;
105                    \c pTwiddle points to the twiddle factor table;
106                    \c pCosFactor points to the cosFactor table;
107                    \c pRfft points to the real FFT instance;
108                    \c pCfft points to the complex FFT instance;
109                    The CFFT and RFFT structures also needs to be initialized, refer to arm_cfft_radix4_f32()
110                    and arm_rfft_f32() respectively for details regarding static initialization.
111 
112   @par           Fixed-Point Behavior
113                    Care must be taken when using the fixed-point versions of the DCT4 transform functions.
114                    In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
115                    Refer to the function specific documentation below for usage guidelines.
116  */
117 
118  /**
119   @addtogroup DCT4F32
120   @{
121  */
122 
123 /**
124   @brief         Processing function for the floating-point DCT4/IDCT4.
125   @deprecated    Do not use this function. It is using a deprecated version of the RFFT.
126   @param[in]     S             points to an instance of the floating-point DCT4/IDCT4 structure
127   @param[in]     pState        points to state buffer
128   @param[in,out] pInlineBuffer points to the in-place input and output buffer
129  */
130 
arm_dct4_f32(const arm_dct4_instance_f32 * S,float32_t * pState,float32_t * pInlineBuffer)131 void arm_dct4_f32(
132   const arm_dct4_instance_f32 * S,
133         float32_t * pState,
134         float32_t * pInlineBuffer)
135 {
136   const float32_t *weights = S->pTwiddle;              /* Pointer to the Weights table */
137   const float32_t *cosFact = S->pCosFactor;            /* Pointer to the cos factors table */
138         float32_t *pS1, *pS2, *pbuff;                  /* Temporary pointers for input buffer and pState buffer */
139         float32_t in;                                  /* Temporary variable */
140         uint32_t i;                                    /* Loop counter */
141 
142 
143   /* DCT4 computation involves DCT2 (which is calculated using RFFT)
144    * along with some pre-processing and post-processing.
145    * Computational procedure is explained as follows:
146    * (a) Pre-processing involves multiplying input with cos factor,
147    *     r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n))
148    *              where,
149    *                 r(n) -- output of preprocessing
150    *                 u(n) -- input to preprocessing(actual Source buffer)
151    * (b) Calculation of DCT2 using FFT is divided into three steps:
152    *                  Step1: Re-ordering of even and odd elements of input.
153    *                  Step2: Calculating FFT of the re-ordered input.
154    *                  Step3: Taking the real part of the product of FFT output and weights.
155    * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation:
156    *                   Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
157    *                        where,
158    *                           Y4 -- DCT4 output,   Y2 -- DCT2 output
159    * (d) Multiplying the output with the normalizing factor sqrt(2/N).
160    */
161 
162   /*-------- Pre-processing ------------*/
163   /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */
164   arm_scale_f32(pInlineBuffer, 2.0f, pInlineBuffer, S->N);
165   arm_mult_f32(pInlineBuffer, cosFact, pInlineBuffer, S->N);
166 
167   /* ----------------------------------------------------------------
168    * Step1: Re-ordering of even and odd elements as
169    *             pState[i] =  pInlineBuffer[2*i] and
170    *             pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2
171    ---------------------------------------------------------------------*/
172 
173   /* pS1 initialized to pState */
174   pS1 = pState;
175 
176   /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */
177   pS2 = pState + (S->N - 1U);
178 
179   /* pbuff initialized to input buffer */
180   pbuff = pInlineBuffer;
181 
182 
183 #if defined (ARM_MATH_LOOPUNROLL)
184 
185   /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */
186   i = S->Nby2 >> 2U;
187 
188   /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
189    ** a second loop below computes the remaining 1 to 3 samples. */
190   do
191   {
192     /* Re-ordering of even and odd elements */
193     /* pState[i] =  pInlineBuffer[2*i] */
194     *pS1++ = *pbuff++;
195     /* pState[N-i-1] = pInlineBuffer[2*i+1] */
196     *pS2-- = *pbuff++;
197 
198     *pS1++ = *pbuff++;
199     *pS2-- = *pbuff++;
200 
201     *pS1++ = *pbuff++;
202     *pS2-- = *pbuff++;
203 
204     *pS1++ = *pbuff++;
205     *pS2-- = *pbuff++;
206 
207     /* Decrement loop counter */
208     i--;
209   } while (i > 0U);
210 
211   /* pbuff initialized to input buffer */
212   pbuff = pInlineBuffer;
213 
214   /* pS1 initialized to pState */
215   pS1 = pState;
216 
217   /* Initializing the loop counter to N/4 instead of N for loop unrolling */
218   i = S->N >> 2U;
219 
220   /* Processing with loop unrolling 4 times as N is always multiple of 4.
221    * Compute 4 outputs at a time */
222   do
223   {
224     /* Writing the re-ordered output back to inplace input buffer */
225     *pbuff++ = *pS1++;
226     *pbuff++ = *pS1++;
227     *pbuff++ = *pS1++;
228     *pbuff++ = *pS1++;
229 
230     /* Decrement the loop counter */
231     i--;
232   } while (i > 0U);
233 
234 
235   /* ---------------------------------------------------------
236    *     Step2: Calculate RFFT for N-point input
237    * ---------------------------------------------------------- */
238   /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
239   arm_rfft_f32 (S->pRfft, pInlineBuffer, pState);
240 
241   /*----------------------------------------------------------------------
242    *  Step3: Multiply the FFT output with the weights.
243    *----------------------------------------------------------------------*/
244   arm_cmplx_mult_cmplx_f32 (pState, weights, pState, S->N);
245 
246   /* ----------- Post-processing ---------- */
247   /* DCT-IV can be obtained from DCT-II by the equation,
248    *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
249    *       Hence, Y4(0) = Y2(0)/2  */
250   /* Getting only real part from the output and Converting to DCT-IV */
251 
252   /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */
253   i = (S->N - 1U) >> 2U;
254 
255   /* pbuff initialized to input buffer. */
256   pbuff = pInlineBuffer;
257 
258   /* pS1 initialized to pState */
259   pS1 = pState;
260 
261   /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
262   in = *pS1++ * (float32_t) 0.5;
263   /* input buffer acts as inplace, so output values are stored in the input itself. */
264   *pbuff++ = in;
265 
266   /* pState pointer is incremented twice as the real values are located alternatively in the array */
267   pS1++;
268 
269   /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
270    ** a second loop below computes the remaining 1 to 3 samples. */
271   do
272   {
273     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
274     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
275     in = *pS1++ - in;
276     *pbuff++ = in;
277     /* points to the next real value */
278     pS1++;
279 
280     in = *pS1++ - in;
281     *pbuff++ = in;
282     pS1++;
283 
284     in = *pS1++ - in;
285     *pbuff++ = in;
286     pS1++;
287 
288     in = *pS1++ - in;
289     *pbuff++ = in;
290     pS1++;
291 
292     /* Decrement the loop counter */
293     i--;
294   } while (i > 0U);
295 
296   /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
297    ** No loop unrolling is used. */
298   i = (S->N - 1U) % 0x4U;
299 
300   while (i > 0U)
301   {
302     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
303     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
304     in = *pS1++ - in;
305     *pbuff++ = in;
306 
307     /* points to the next real value */
308     pS1++;
309 
310     /* Decrement the loop counter */
311     i--;
312   }
313 
314 
315   /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
316 
317   /* Initializing the loop counter to N/4 instead of N for loop unrolling */
318   i = S->N >> 2U;
319 
320   /* pbuff initialized to the pInlineBuffer(now contains the output values) */
321   pbuff = pInlineBuffer;
322 
323   /* Processing with loop unrolling 4 times as N is always multiple of 4.  Compute 4 outputs at a time */
324   do
325   {
326     /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
327     in = *pbuff;
328     *pbuff++ = in * S->normalize;
329 
330     in = *pbuff;
331     *pbuff++ = in * S->normalize;
332 
333     in = *pbuff;
334     *pbuff++ = in * S->normalize;
335 
336     in = *pbuff;
337     *pbuff++ = in * S->normalize;
338 
339     /* Decrement the loop counter */
340     i--;
341   } while (i > 0U);
342 
343 
344 #else
345 
346   /* Initializing the loop counter to N/2 */
347   i = S->Nby2;
348 
349   do
350   {
351     /* Re-ordering of even and odd elements */
352     /* pState[i] =  pInlineBuffer[2*i] */
353     *pS1++ = *pbuff++;
354     /* pState[N-i-1] = pInlineBuffer[2*i+1] */
355     *pS2-- = *pbuff++;
356 
357     /* Decrement the loop counter */
358     i--;
359   } while (i > 0U);
360 
361   /* pbuff initialized to input buffer */
362   pbuff = pInlineBuffer;
363 
364   /* pS1 initialized to pState */
365   pS1 = pState;
366 
367   /* Initializing the loop counter */
368   i = S->N;
369 
370   do
371   {
372     /* Writing the re-ordered output back to inplace input buffer */
373     *pbuff++ = *pS1++;
374 
375     /* Decrement the loop counter */
376     i--;
377   } while (i > 0U);
378 
379 
380   /* ---------------------------------------------------------
381    *     Step2: Calculate RFFT for N-point input
382    * ---------------------------------------------------------- */
383   /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
384   arm_rfft_f32 (S->pRfft, pInlineBuffer, pState);
385 
386   /*----------------------------------------------------------------------
387    *  Step3: Multiply the FFT output with the weights.
388    *----------------------------------------------------------------------*/
389   arm_cmplx_mult_cmplx_f32 (pState, weights, pState, S->N);
390 
391   /* ----------- Post-processing ---------- */
392   /* DCT-IV can be obtained from DCT-II by the equation,
393    *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
394    *       Hence, Y4(0) = Y2(0)/2  */
395   /* Getting only real part from the output and Converting to DCT-IV */
396 
397   /* pbuff initialized to input buffer. */
398   pbuff = pInlineBuffer;
399 
400   /* pS1 initialized to pState */
401   pS1 = pState;
402 
403   /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
404   in = *pS1++ * (float32_t) 0.5;
405   /* input buffer acts as inplace, so output values are stored in the input itself. */
406   *pbuff++ = in;
407 
408   /* pState pointer is incremented twice as the real values are located alternatively in the array */
409   pS1++;
410 
411   /* Initializing the loop counter */
412   i = (S->N - 1U);
413 
414   do
415   {
416     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
417     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
418     in = *pS1++ - in;
419     *pbuff++ = in;
420 
421     /* points to the next real value */
422     pS1++;
423 
424     /* Decrement loop counter */
425     i--;
426   } while (i > 0U);
427 
428   /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
429 
430   /* Initializing loop counter */
431   i = S->N;
432 
433   /* pbuff initialized to the pInlineBuffer (now contains the output values) */
434   pbuff = pInlineBuffer;
435 
436   do
437   {
438     /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
439     in = *pbuff;
440     *pbuff++ = in * S->normalize;
441 
442     /* Decrement loop counter */
443     i--;
444   } while (i > 0U);
445 
446 #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
447 
448 }
449 
450 /**
451   @} end of DCT4F32 group
452  */
453