1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_correlate_fast_q31.c
4  * Description:  Fast Q31 Correlation
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/filtering_functions.h"
30 
31 /**
32   @ingroup groupFilters
33  */
34 
35 /**
36   @addtogroup Corr
37   @{
38  */
39 
40 /**
41   @brief         Correlation of Q31 sequences (fast version).
42   @param[in]     pSrcA      points to the first input sequence
43   @param[in]     srcALen    length of the first input sequence
44   @param[in]     pSrcB      points to the second input sequence
45   @param[in]     srcBLen    length of the second input sequence
46   @param[out]    pDst       points to the location where the output result is written.  Length 2 * max(srcALen, srcBLen) - 1.
47 
48   @par           Scaling and Overflow Behavior
49                    This function is optimized for speed at the expense of fixed-point precision and overflow protection.
50                    The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
51                    These intermediate results are accumulated in a 32-bit register in 2.30 format.
52                    Finally, the accumulator is saturated and converted to a 1.31 result.
53   @par
54                    The fast version has the same overflow behavior as the standard version but provides less precision since it discards the low 32 bits of each multiplication result.
55                    In order to avoid overflows completely the input signals must be scaled down.
56                    The input signals should be scaled down to avoid intermediate overflows.
57                    Scale down one of the inputs by 1/min(srcALen, srcBLen)to avoid overflows since a
58                    maximum of min(srcALen, srcBLen) number of additions is carried internally.
59 
60  @remark
61                    Refer to \ref arm_correlate_q31() for a slower implementation of this function which uses 64-bit accumulation to provide higher precision.
62  */
63 
arm_correlate_fast_q31(const q31_t * pSrcA,uint32_t srcALen,const q31_t * pSrcB,uint32_t srcBLen,q31_t * pDst)64 void arm_correlate_fast_q31(
65   const q31_t * pSrcA,
66         uint32_t srcALen,
67   const q31_t * pSrcB,
68         uint32_t srcBLen,
69         q31_t * pDst)
70 {
71   const q31_t *pIn1;                                   /* InputA pointer */
72   const q31_t *pIn2;                                   /* InputB pointer */
73         q31_t *pOut = pDst;                            /* Output pointer */
74   const q31_t *px;                                     /* Intermediate inputA pointer */
75   const q31_t *py;                                     /* Intermediate inputB pointer */
76   const q31_t *pSrc1;                                  /* Intermediate pointers */
77         q31_t sum, acc0, acc1, acc2, acc3;             /* Accumulators */
78         q31_t x0, x1, x2, x3, c0;                      /* Temporary variables for holding input and coefficient values */
79         uint32_t blockSize1, blockSize2, blockSize3;   /* Loop counters */
80         uint32_t j, k, count, blkCnt;                  /* Loop counters */
81         uint32_t outBlockSize;
82         int32_t inc = 1;                               /* Destination address modifier */
83 
84   /* The algorithm implementation is based on the lengths of the inputs. */
85   /* srcB is always made to slide across srcA. */
86   /* So srcBLen is always considered as shorter or equal to srcALen */
87   if (srcALen >= srcBLen)
88   {
89     /* Initialization of inputA pointer */
90     pIn1 = pSrcA;
91 
92     /* Initialization of inputB pointer */
93     pIn2 = pSrcB;
94 
95     /* Number of output samples is calculated */
96     outBlockSize = (2U * srcALen) - 1U;
97 
98     /* When srcALen > srcBLen, zero padding is done to srcB
99      * to make their lengths equal.
100      * Instead, (outBlockSize - (srcALen + srcBLen - 1))
101      * number of output samples are made zero */
102     j = outBlockSize - (srcALen + (srcBLen - 1U));
103 
104     /* Updating the pointer position to non zero value */
105     pOut += j;
106 
107   }
108   else
109   {
110     /* Initialization of inputA pointer */
111     pIn1 = pSrcB;
112 
113     /* Initialization of inputB pointer */
114     pIn2 = pSrcA;
115 
116     /* srcBLen is always considered as shorter or equal to srcALen */
117     j = srcBLen;
118     srcBLen = srcALen;
119     srcALen = j;
120 
121     /* CORR(x, y) = Reverse order(CORR(y, x)) */
122     /* Hence set the destination pointer to point to the last output sample */
123     pOut = pDst + ((srcALen + srcBLen) - 2U);
124 
125     /* Destination address modifier is set to -1 */
126     inc = -1;
127 
128   }
129 
130   /* The function is internally
131    * divided into three stages according to the number of multiplications that has to be
132    * taken place between inputA samples and inputB samples. In the first stage of the
133    * algorithm, the multiplications increase by one for every iteration.
134    * In the second stage of the algorithm, srcBLen number of multiplications are done.
135    * In the third stage of the algorithm, the multiplications decrease by one
136    * for every iteration. */
137 
138   /* The algorithm is implemented in three stages.
139      The loop counters of each stage is initiated here. */
140   blockSize1 = srcBLen - 1U;
141   blockSize2 = srcALen - (srcBLen - 1U);
142   blockSize3 = blockSize1;
143 
144   /* --------------------------
145    * Initializations of stage1
146    * -------------------------*/
147 
148   /* sum = x[0] * y[srcBlen - 1]
149    * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
150    * ....
151    * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
152    */
153 
154   /* In this stage the MAC operations are increased by 1 for every iteration.
155      The count variable holds the number of MAC operations performed */
156   count = 1U;
157 
158   /* Working pointer of inputA */
159   px = pIn1;
160 
161   /* Working pointer of inputB */
162   pSrc1 = pIn2 + (srcBLen - 1U);
163   py = pSrc1;
164 
165   /* ------------------------
166    * Stage1 process
167    * ----------------------*/
168 
169   /* The first stage starts here */
170   while (blockSize1 > 0U)
171   {
172     /* Accumulator is made zero for every iteration */
173     sum = 0;
174 
175     /* Apply loop unrolling and compute 4 MACs simultaneously. */
176     k = count >> 2U;
177 
178     /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
179      ** a second loop below computes MACs for the remaining 1 to 3 samples. */
180     while (k > 0U)
181     {
182       /* x[0] * y[srcBLen - 4] */
183       sum = (q31_t) ((((q63_t) sum << 32) +
184                       ((q63_t) *px++ * (*py++))) >> 32);
185 
186       /* x[1] * y[srcBLen - 3] */
187       sum = (q31_t) ((((q63_t) sum << 32) +
188                       ((q63_t) *px++ * (*py++))) >> 32);
189 
190       /* x[2] * y[srcBLen - 2] */
191       sum = (q31_t) ((((q63_t) sum << 32) +
192                       ((q63_t) *px++ * (*py++))) >> 32);
193 
194       /* x[3] * y[srcBLen - 1] */
195       sum = (q31_t) ((((q63_t) sum << 32) +
196                       ((q63_t) *px++ * (*py++))) >> 32);
197 
198       /* Decrement loop counter */
199       k--;
200     }
201 
202     /* If the count is not a multiple of 4, compute any remaining MACs here.
203      ** No loop unrolling is used. */
204     k = count % 0x4U;
205 
206     while (k > 0U)
207     {
208       /* Perform the multiply-accumulate */
209       /* x[0] * y[srcBLen - 1] */
210       sum = (q31_t) ((((q63_t) sum << 32) +
211                       ((q63_t) *px++ * (*py++))) >> 32);
212 
213       /* Decrement loop counter */
214       k--;
215     }
216 
217     /* Store the result in the accumulator in the destination buffer. */
218     *pOut = sum << 1;
219     /* Destination pointer is updated according to the address modifier, inc */
220     pOut += inc;
221 
222     /* Update the inputA and inputB pointers for next MAC calculation */
223     py = pSrc1 - count;
224     px = pIn1;
225 
226     /* Increment MAC count */
227     count++;
228 
229     /* Decrement loop counter */
230     blockSize1--;
231   }
232 
233   /* --------------------------
234    * Initializations of stage2
235    * ------------------------*/
236 
237   /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
238    * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
239    * ....
240    * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
241    */
242 
243   /* Working pointer of inputA */
244   px = pIn1;
245 
246   /* Working pointer of inputB */
247   py = pIn2;
248 
249   /* count is index by which the pointer pIn1 to be incremented */
250   count = 0U;
251 
252   /* -------------------
253    * Stage2 process
254    * ------------------*/
255 
256   /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
257    * So, to loop unroll over blockSize2,
258    * srcBLen should be greater than or equal to 4 */
259   if (srcBLen >= 4U)
260   {
261     /* Loop unroll over blockSize2, by 4 */
262     blkCnt = blockSize2 >> 2U;
263 
264     while (blkCnt > 0U)
265     {
266       /* Set all accumulators to zero */
267       acc0 = 0;
268       acc1 = 0;
269       acc2 = 0;
270       acc3 = 0;
271 
272       /* read x[0], x[1], x[2] samples */
273       x0 = *px++;
274       x1 = *px++;
275       x2 = *px++;
276 
277       /* Apply loop unrolling and compute 4 MACs simultaneously. */
278       k = srcBLen >> 2U;
279 
280       /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
281        ** a second loop below computes MACs for the remaining 1 to 3 samples. */
282       do
283       {
284         /* Read y[0] sample */
285         c0 = *py++;
286         /* Read x[3] sample */
287         x3 = *px++;
288 
289         /* Perform the multiply-accumulate */
290         /* acc0 +=  x[0] * y[0] */
291         acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
292         /* acc1 +=  x[1] * y[0] */
293         acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
294         /* acc2 +=  x[2] * y[0] */
295         acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
296         /* acc3 +=  x[3] * y[0] */
297         acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
298 
299 
300         /* Read y[1] sample */
301         c0 = *py++;
302         /* Read x[4] sample */
303         x0 = *px++;
304 
305         /* Perform the multiply-accumulate */
306         /* acc0 +=  x[1] * y[1] */
307         acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32);
308         /* acc1 +=  x[2] * y[1] */
309         acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32);
310         /* acc2 +=  x[3] * y[1] */
311         acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32);
312         /* acc3 +=  x[4] * y[1] */
313         acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32);
314 
315 
316         /* Read y[2] sample */
317         c0 = *py++;
318         /* Read x[5] sample */
319         x1 = *px++;
320 
321         /* Perform the multiply-accumulates */
322         /* acc0 +=  x[2] * y[2] */
323         acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32);
324         /* acc1 +=  x[3] * y[2] */
325         acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32);
326         /* acc2 +=  x[4] * y[2] */
327         acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32);
328         /* acc3 +=  x[5] * y[2] */
329         acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32);
330 
331 
332         /* Read y[3] sample */
333         c0 = *py++;
334         /* Read x[6] sample */
335         x2 = *px++;
336 
337         /* Perform the multiply-accumulates */
338         /* acc0 +=  x[3] * y[3] */
339         acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32);
340         /* acc1 +=  x[4] * y[3] */
341         acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32);
342         /* acc2 +=  x[5] * y[3] */
343         acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32);
344         /* acc3 +=  x[6] * y[3] */
345         acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32);
346 
347 
348       } while (--k);
349 
350       /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
351        ** No loop unrolling is used. */
352       k = srcBLen % 0x4U;
353 
354       while (k > 0U)
355       {
356         /* Read y[4] sample */
357         c0 = *py++;
358         /* Read x[7] sample */
359         x3 = *px++;
360 
361         /* Perform the multiply-accumulates */
362         /* acc0 +=  x[4] * y[4] */
363         acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
364         /* acc1 +=  x[5] * y[4] */
365         acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
366         /* acc2 +=  x[6] * y[4] */
367         acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
368         /* acc3 +=  x[7] * y[4] */
369         acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
370 
371         /* Reuse the present samples for the next MAC */
372         x0 = x1;
373         x1 = x2;
374         x2 = x3;
375 
376         /* Decrement loop counter */
377         k--;
378       }
379 
380       /* Store the result in the accumulator in the destination buffer. */
381       *pOut = (q31_t) (acc0 << 1);
382       /* Destination pointer is updated according to the address modifier, inc */
383       pOut += inc;
384 
385       *pOut = (q31_t) (acc1 << 1);
386       pOut += inc;
387 
388       *pOut = (q31_t) (acc2 << 1);
389       pOut += inc;
390 
391       *pOut = (q31_t) (acc3 << 1);
392       pOut += inc;
393 
394       /* Increment the pointer pIn1 index, count by 4 */
395       count += 4U;
396 
397       /* Update the inputA and inputB pointers for next MAC calculation */
398       px = pIn1 + count;
399       py = pIn2;
400 
401       /* Decrement loop counter */
402       blkCnt--;
403     }
404 
405     /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
406      ** No loop unrolling is used. */
407     blkCnt = blockSize2 % 0x4U;
408 
409     while (blkCnt > 0U)
410     {
411       /* Accumulator is made zero for every iteration */
412       sum = 0;
413 
414       /* Apply loop unrolling and compute 4 MACs simultaneously. */
415       k = srcBLen >> 2U;
416 
417       /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
418        ** a second loop below computes MACs for the remaining 1 to 3 samples. */
419       while (k > 0U)
420       {
421         /* Perform the multiply-accumulates */
422         sum = (q31_t) ((((q63_t) sum << 32) +
423                         ((q63_t) *px++ * (*py++))) >> 32);
424         sum = (q31_t) ((((q63_t) sum << 32) +
425                         ((q63_t) *px++ * (*py++))) >> 32);
426         sum = (q31_t) ((((q63_t) sum << 32) +
427                         ((q63_t) *px++ * (*py++))) >> 32);
428         sum = (q31_t) ((((q63_t) sum << 32) +
429                         ((q63_t) *px++ * (*py++))) >> 32);
430 
431         /* Decrement loop counter */
432         k--;
433       }
434 
435       /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
436        ** No loop unrolling is used. */
437       k = srcBLen % 0x4U;
438 
439       while (k > 0U)
440       {
441         /* Perform the multiply-accumulate */
442         sum = (q31_t) ((((q63_t) sum << 32) +
443                         ((q63_t) *px++ * (*py++))) >> 32);
444 
445         /* Decrement loop counter */
446         k--;
447       }
448 
449       /* Store the result in the accumulator in the destination buffer. */
450       *pOut = sum << 1;
451       /* Destination pointer is updated according to the address modifier, inc */
452       pOut += inc;
453 
454       /* Increment MAC count */
455       count++;
456 
457       /* Update the inputA and inputB pointers for next MAC calculation */
458       px = pIn1 + count;
459       py = pIn2;
460 
461       /* Decrement loop counter */
462       blkCnt--;
463     }
464   }
465   else
466   {
467     /* If the srcBLen is not a multiple of 4,
468      * the blockSize2 loop cannot be unrolled by 4 */
469     blkCnt = blockSize2;
470 
471     while (blkCnt > 0U)
472     {
473       /* Accumulator is made zero for every iteration */
474       sum = 0;
475 
476       /* srcBLen number of MACS should be performed */
477       k = srcBLen;
478 
479       while (k > 0U)
480       {
481         /* Perform the multiply-accumulate */
482         sum = (q31_t) ((((q63_t) sum << 32) +
483                         ((q63_t) *px++ * (*py++))) >> 32);
484 
485         /* Decrement loop counter */
486         k--;
487       }
488 
489       /* Store the result in the accumulator in the destination buffer. */
490       *pOut = sum << 1;
491       /* Destination pointer is updated according to the address modifier, inc */
492       pOut += inc;
493 
494       /* Increment MAC count */
495       count++;
496 
497       /* Update the inputA and inputB pointers for next MAC calculation */
498       px = pIn1 + count;
499       py = pIn2;
500 
501       /* Decrement loop counter */
502       blkCnt--;
503     }
504   }
505 
506 
507   /* --------------------------
508    * Initializations of stage3
509    * -------------------------*/
510 
511   /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
512    * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
513    * ....
514    * sum +=  x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
515    * sum +=  x[srcALen-1] * y[0]
516    */
517 
518   /* In this stage the MAC operations are decreased by 1 for every iteration.
519      The count variable holds the number of MAC operations performed */
520   count = srcBLen - 1U;
521 
522   /* Working pointer of inputA */
523   pSrc1 = ((pIn1 + srcALen) - srcBLen) + 1U;
524   px = pSrc1;
525 
526   /* Working pointer of inputB */
527   py = pIn2;
528 
529   /* -------------------
530    * Stage3 process
531    * ------------------*/
532 
533   while (blockSize3 > 0U)
534   {
535     /* Accumulator is made zero for every iteration */
536     sum = 0;
537 
538     /* Apply loop unrolling and compute 4 MACs simultaneously. */
539     k = count >> 2U;
540 
541     /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.
542      ** a second loop below computes MACs for the remaining 1 to 3 samples. */
543     while (k > 0U)
544     {
545       /* Perform the multiply-accumulate */
546       /* sum += x[srcALen - srcBLen + 4] * y[3] */
547       sum = (q31_t) ((((q63_t) sum << 32) +
548                       ((q63_t) *px++ * (*py++))) >> 32);
549 
550       /* sum += x[srcALen - srcBLen + 3] * y[2] */
551       sum = (q31_t) ((((q63_t) sum << 32) +
552                       ((q63_t) *px++ * (*py++))) >> 32);
553 
554       /* sum += x[srcALen - srcBLen + 2] * y[1] */
555       sum = (q31_t) ((((q63_t) sum << 32) +
556                       ((q63_t) *px++ * (*py++))) >> 32);
557 
558       /* sum += x[srcALen - srcBLen + 1] * y[0] */
559       sum = (q31_t) ((((q63_t) sum << 32) +
560                       ((q63_t) *px++ * (*py++))) >> 32);
561 
562       /* Decrement loop counter */
563       k--;
564     }
565 
566     /* If the count is not a multiple of 4, compute any remaining MACs here.
567      ** No loop unrolling is used. */
568     k = count % 0x4U;
569 
570     while (k > 0U)
571     {
572       /* Perform the multiply-accumulate */
573       sum = (q31_t) ((((q63_t) sum << 32) +
574                       ((q63_t) *px++ * (*py++))) >> 32);
575 
576       /* Decrement loop counter */
577       k--;
578     }
579 
580     /* Store the result in the accumulator in the destination buffer. */
581     *pOut = sum << 1;
582     /* Destination pointer is updated according to the address modifier, inc */
583     pOut += inc;
584 
585     /* Update the inputA and inputB pointers for next MAC calculation */
586     px = ++pSrc1;
587     py = pIn2;
588 
589     /* Decrement MAC count */
590     count--;
591 
592     /* Decrement loop counter */
593     blockSize3--;
594   }
595 
596 }
597 
598 /**
599   @} end of Corr group
600  */
601