1 /*
2 * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 *
6 * Licensed under the Apache License, Version 2.0 (the License); you may
7 * not use this file except in compliance with the License.
8 * You may obtain a copy of the License at
9 *
10 * www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 */
18
19 /* ----------------------------------------------------------------------
20 * Project: CMSIS NN Library
21 * Title: arm_convolve_s8.c
22 * Description: s8 version of convolution using symmetric quantization.
23 *
24 * $Date: January 26, 2021
25 * $Revision: V.2.0.4
26 *
27 * Target Processor: Cortex-M cores
28 *
29 * -------------------------------------------------------------------- */
30
31 #include "arm_nnfunctions.h"
32 #include "arm_nnsupportfunctions.h"
33
34 /**
35 * @ingroup groupNN
36 */
37
38 /**
39 * @addtogroup NNConv
40 * @{
41 */
42
43 /*
44 * Basic s8 convolution function.
45 *
46 * Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
47 * are multiples of 4 or atleast greater than 4.
48 *
49 */
50
arm_convolve_s8(const cmsis_nn_context * ctx,const cmsis_nn_conv_params * conv_params,const cmsis_nn_per_channel_quant_params * quant_params,const cmsis_nn_dims * input_dims,const q7_t * input_data,const cmsis_nn_dims * filter_dims,const q7_t * filter_data,const cmsis_nn_dims * bias_dims,const int32_t * bias_data,const cmsis_nn_dims * output_dims,q7_t * output_data)51 arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
52 const cmsis_nn_conv_params *conv_params,
53 const cmsis_nn_per_channel_quant_params *quant_params,
54 const cmsis_nn_dims *input_dims,
55 const q7_t *input_data,
56 const cmsis_nn_dims *filter_dims,
57 const q7_t *filter_data,
58 const cmsis_nn_dims *bias_dims,
59 const int32_t *bias_data,
60 const cmsis_nn_dims *output_dims,
61 q7_t *output_data)
62 {
63 (void)bias_dims;
64 q15_t *buffer_a = (q15_t *)ctx->buf;
65
66 const uint16_t input_batches = input_dims->n;
67 const uint16_t input_x = input_dims->w;
68 const uint16_t input_y = input_dims->h;
69 const uint16_t input_ch = input_dims->c;
70 const uint16_t kernel_x = filter_dims->w;
71 const uint16_t kernel_y = filter_dims->h;
72 const uint16_t output_x = output_dims->w;
73 const uint16_t output_y = output_dims->h;
74 const uint16_t output_ch = output_dims->c;
75
76 const uint16_t pad_x = conv_params->padding.w;
77 const uint16_t pad_y = conv_params->padding.h;
78 const uint16_t stride_x = conv_params->stride.w;
79 const uint16_t stride_y = conv_params->stride.h;
80
81 const int32_t input_offset = conv_params->input_offset;
82 const int32_t out_offset = conv_params->output_offset;
83 const int32_t out_activation_min = conv_params->activation.min;
84 const int32_t out_activation_max = conv_params->activation.max;
85 int32_t *output_mult = quant_params->multiplier;
86 int32_t *output_shift = quant_params->shift;
87
88 int i_batch;
89 for (i_batch = 0; i_batch < input_batches; i_batch++)
90 {
91 #if defined(ARM_MATH_MVEI)
92 /* Generate upto four columns from the input tensor a GEMM computation */
93 q7_t *im2col_buf = (q7_t *)buffer_a;
94 q7_t *out = output_data;
95 int32_t buffer_fill_cnt = 0;
96 int32_t padded = 0;
97 const int32_t num_elem = kernel_x * kernel_y * input_ch;
98
99 /* This part implements the im2col function */
100 for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
101 {
102 for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
103 {
104 for (int i_ker_y = i_out_y * stride_y - pad_y; i_ker_y < i_out_y * stride_y - pad_y + kernel_y;
105 i_ker_y++)
106 {
107 for (int i_ker_x = i_out_x * stride_x - pad_x; i_ker_x < i_out_x * stride_x - pad_x + kernel_x;
108 i_ker_x++)
109 {
110 if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x)
111 {
112 memset(im2col_buf, (int8_t)-input_offset, sizeof(q7_t) * input_ch);
113 padded = 1;
114 }
115 else
116 {
117 arm_memcpy_q7(im2col_buf, input_data + (i_ker_y * input_x + i_ker_x) * input_ch, input_ch);
118 }
119 im2col_buf += input_ch;
120 }
121 }
122
123 buffer_fill_cnt++;
124
125 /* Computation is filed for every 4 columns */
126 if (buffer_fill_cnt == 4 && (padded == 0))
127 {
128 buffer_fill_cnt = 0;
129 for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
130 {
131 int32_t sum_row;
132 int32_t acc[4];
133
134 (void)arm_nn_mat_mul_core_4x_s8(
135 num_elem, num_elem, (q7_t *)buffer_a, filter_data + num_elem * i_out_ch, &sum_row, acc);
136 int32x4_t s_offset = vdupq_n_s32(sum_row);
137
138 int32x4_t res = vldrwq_s32(acc);
139 s_offset = vmulq_n_s32(s_offset, input_offset);
140 if (bias_data)
141 {
142 res = vaddq_n_s32(res, bias_data[i_out_ch]);
143 }
144 res = vaddq_s32(res, s_offset);
145 res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]);
146 res = vaddq_n_s32(res, out_offset);
147
148 res = vmaxq_s32(res, vdupq_n_s32(out_activation_min));
149 res = vminq_s32(res, vdupq_n_s32(out_activation_max));
150
151 const uint32x4_t scatter_offset = {0, output_ch, output_ch * 2, output_ch * 3};
152 vstrbq_scatter_offset_s32(out, scatter_offset, res);
153 out++;
154 }
155 out += (3 * output_ch);
156 im2col_buf = (q7_t *)buffer_a;
157 }
158 else if (buffer_fill_cnt == 4 && (padded != 0))
159 {
160 buffer_fill_cnt = 0;
161 out = arm_nn_mat_mult_s8(filter_data,
162 (q7_t *)buffer_a,
163 output_ch,
164 4,
165 output_shift,
166 output_mult,
167 out_offset,
168 input_offset,
169 0,
170 out_activation_min,
171 out_activation_max,
172 num_elem,
173 bias_data,
174 out);
175
176 im2col_buf = (q7_t *)buffer_a;
177 padded = 0;
178 }
179 }
180 }
181 /* Handle left over columns */
182 if (buffer_fill_cnt != 0)
183 {
184 out = arm_nn_mat_mult_s8(filter_data,
185 (q7_t *)buffer_a,
186 output_ch,
187 buffer_fill_cnt,
188 output_shift,
189 output_mult,
190 out_offset,
191 input_offset,
192 0,
193 out_activation_min,
194 out_activation_max,
195 num_elem,
196 bias_data,
197 out);
198 }
199
200 #elif defined(ARM_MATH_DSP)
201 int32_t i_out_y, i_out_x, i_ker_y, i_ker_x;
202
203 /* Generate two columns from the input tensor a GEMM computation */
204 q15_t *two_column_buf = buffer_a;
205 q7_t *out = output_data;
206
207 /* This part implements the im2col function */
208 for (i_out_y = 0; i_out_y < output_y; i_out_y++)
209 {
210 for (i_out_x = 0; i_out_x < output_x; i_out_x++)
211 {
212 for (i_ker_y = i_out_y * stride_y - pad_y; i_ker_y < i_out_y * stride_y - pad_y + kernel_y; i_ker_y++)
213 {
214 for (i_ker_x = i_out_x * stride_x - pad_x; i_ker_x < i_out_x * stride_x - pad_x + kernel_x;
215 i_ker_x++)
216 {
217 if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x)
218 {
219 /* Filling 0 for out-of-bound paddings */
220 memset(two_column_buf, 0, sizeof(q15_t) * input_ch);
221 }
222 else
223 {
224 /* Copying the pixel data to column */
225 arm_q7_to_q15_with_offset(input_data + (i_ker_y * input_x + i_ker_x) * input_ch,
226 two_column_buf,
227 input_ch,
228 input_offset);
229 }
230 two_column_buf += input_ch;
231 }
232 }
233
234 /* Computation is filed for every 2 columns */
235 if (two_column_buf == buffer_a + 2 * input_ch * kernel_y * kernel_x)
236 {
237 out = arm_nn_mat_mult_kernel_s8_s16(filter_data,
238 buffer_a,
239 output_ch,
240 output_shift,
241 output_mult,
242 out_offset,
243 out_activation_min,
244 out_activation_max,
245 input_ch * kernel_y * kernel_x,
246 bias_data,
247 out);
248
249 /* counter reset */
250 two_column_buf = buffer_a;
251 }
252 }
253 }
254
255 /* left-over because odd number of output pixels */
256 if (two_column_buf != buffer_a)
257 {
258 const q7_t *ker_a = filter_data;
259 int i;
260
261 for (i = 0; i < output_ch; i++)
262 {
263 /* Load the accumulator with bias first */
264 q31_t sum = 0;
265 if (bias_data)
266 {
267 sum = bias_data[i];
268 }
269
270 /* Point to the beginning of the im2col buffer where the input is available as a rearranged column */
271 const q15_t *ip_as_col = buffer_a;
272
273 /* 4 multiply and accumulates are done in one loop. */
274 uint16_t col_count = (input_ch * kernel_y * kernel_x) >> 2;
275
276 while (col_count)
277 {
278 q31_t ker_a1, ker_a2;
279 q31_t ip_b1, ip_b2;
280
281 ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2);
282
283 ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
284 sum = __SMLAD(ker_a1, ip_b1, sum);
285 ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
286 sum = __SMLAD(ker_a2, ip_b2, sum);
287
288 col_count--;
289 }
290 /* Handle left over mac */
291 col_count = input_ch * kernel_y * kernel_x & 0x3;
292 while (col_count)
293 {
294 q7_t ker_a1 = *ker_a++;
295 q15_t ip_b1 = *ip_as_col++;
296 sum += ker_a1 * ip_b1;
297 col_count--;
298 }
299
300 sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
301 sum += out_offset;
302 sum = MAX(sum, out_activation_min);
303 sum = MIN(sum, out_activation_max);
304 *out++ = (q7_t)sum;
305 }
306 }
307 #else
308 /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
309 (void)buffer_a;
310 int32_t i_out_ch, i_out_y, i_out_x, i_input_ch, i_ker_y, i_ker_x;
311 int32_t conv_out;
312
313 for (i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
314 {
315 for (i_out_y = 0; i_out_y < output_y; i_out_y++)
316 {
317 for (i_out_x = 0; i_out_x < output_x; i_out_x++)
318 {
319 conv_out = 0;
320
321 const int32_t base_idx_y = stride_y * i_out_y - pad_y;
322 const int32_t base_idx_x = stride_x * i_out_x - pad_x;
323
324 const int32_t ker_y_start = MAX(0, -base_idx_y);
325 const int32_t ker_x_start = MAX(0, -base_idx_x);
326
327 const int32_t ker_y_end = MIN(kernel_y, input_y - base_idx_y);
328 const int32_t ker_x_end = MIN(kernel_x, input_x - base_idx_x);
329
330 for (i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
331 {
332 for (i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
333 {
334 const int32_t in_row = base_idx_y + i_ker_y;
335 const int32_t in_col = base_idx_x + i_ker_x;
336 for (i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
337 {
338 conv_out +=
339 (input_data[(in_row * input_x + in_col) * input_ch + i_input_ch] + input_offset) *
340 filter_data[i_out_ch * input_ch * kernel_y * kernel_x +
341 (i_ker_y * kernel_x + i_ker_x) * input_ch + i_input_ch];
342 }
343 }
344 }
345 if (bias_data)
346 {
347 conv_out += bias_data[i_out_ch];
348 }
349 conv_out = arm_nn_requantize(conv_out, output_mult[i_out_ch], output_shift[i_out_ch]);
350 conv_out += out_offset;
351 conv_out = MAX(conv_out, out_activation_min);
352 conv_out = MIN(conv_out, out_activation_max);
353 output_data[i_out_ch + (i_out_y * output_x + i_out_x) * output_ch] = (int8_t)conv_out;
354 }
355 }
356 }
357 #endif
358 /* Advance to the next batch */
359 input_data += (input_x * input_y * input_ch);
360 output_data += (output_x * output_y * output_ch);
361 }
362
363 /* Return to application */
364 return ARM_MATH_SUCCESS;
365 }
366
arm_convolve_s8_get_buffer_size(const cmsis_nn_dims * input_dims,const cmsis_nn_dims * filter_dims)367 int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
368 {
369 #if defined(ARM_MATH_DSP)
370 return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t);
371 #else
372 (void)input_dims;
373 (void)filter_dims;
374 return 0;
375 #endif
376 }
377
378 /**
379 * @} end of NNConv group
380 */
381