1 /*
2  * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_convolve_HWC_q7_basic.c
22  * Description:	 Q7 version of convolution
23  *
24  * $Date:        09. October 2020
25  * $Revision:    V.1.0.1
26  *
27  * Target Processor:  Cortex-M cores
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_nnfunctions.h"
32 #include "arm_nnsupportfunctions.h"
33 
34 /**
35  *  @ingroup groupNN
36  */
37 
38 /**
39  * @addtogroup NNConv
40  * @{
41  */
42 
43 /**
44  * @brief Basic Q7 convolution function
45  * @param[in]       Im_in       pointer to input tensor
46  * @param[in]       dim_im_in   input tensor dimention
47  * @param[in]       ch_im_in    number of input tensor channels
48  * @param[in]       wt          pointer to kernel weights
49  * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
50  * @param[in]       dim_kernel  filter kernel size
51  * @param[in]       padding     padding sizes
52  * @param[in]       stride      convolution stride
53  * @param[in]       bias        pointer to bias
54  * @param[in]       bias_shift  amount of left-shift for bias
55  * @param[in]       out_shift   amount of right-shift for output
56  * @param[in,out]   Im_out      pointer to output tensor
57  * @param[in]       dim_im_out  output tensor dimension
58  * @param[in,out]   bufferA     pointer to buffer space for input
59  * @param[in,out]   bufferB     pointer to buffer space for output
60  * @return     The function returns <code>ARM_MATH_SUCCESS</code>
61  *
62  * @details
63  *
64  * <b>Buffer size:</b>
65  *
66  * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
67  *
68  * bufferB size: 0
69  *
70  * This basic version is designed to work for any input tensor and weight
71  * dimension.
72  */
73 
arm_convolve_HWC_q7_basic(const q7_t * Im_in,const uint16_t dim_im_in,const uint16_t ch_im_in,const q7_t * wt,const uint16_t ch_im_out,const uint16_t dim_kernel,const uint16_t padding,const uint16_t stride,const q7_t * bias,const uint16_t bias_shift,const uint16_t out_shift,q7_t * Im_out,const uint16_t dim_im_out,q15_t * bufferA,q7_t * bufferB)74 arm_status arm_convolve_HWC_q7_basic(const q7_t *Im_in,
75                                      const uint16_t dim_im_in,
76                                      const uint16_t ch_im_in,
77                                      const q7_t *wt,
78                                      const uint16_t ch_im_out,
79                                      const uint16_t dim_kernel,
80                                      const uint16_t padding,
81                                      const uint16_t stride,
82                                      const q7_t *bias,
83                                      const uint16_t bias_shift,
84                                      const uint16_t out_shift,
85                                      q7_t *Im_out,
86                                      const uint16_t dim_im_out,
87                                      q15_t *bufferA,
88                                      q7_t *bufferB)
89 {
90     (void)bufferB;
91 #if defined(ARM_MATH_DSP)
92     /* Run the following code for Cortex-M4 and Cortex-M7 */
93 
94     int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
95 
96     /*
97      *  Here we use bufferA as q15_t internally as computation are done with q15_t level
98      *  im2col are done to output in q15_t format from q7_t input
99      */
100     q15_t *pBuffer = bufferA;
101     q7_t *pOut = Im_out;
102 
103     /* This part implements the im2col function */
104     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
105     {
106         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
107         {
108             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
109             {
110                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
111                 {
112                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
113                     {
114                         /* Filling 0 for out-of-bound paddings */
115                         /* arm_fill_q15(0, pBuffer, ch_im_in); */
116                         memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
117                     }
118                     else
119                     {
120                         /* Copying the pixel data to column */
121                         arm_q7_to_q15_no_shift(
122                             (q7_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
123                     }
124                     pBuffer += ch_im_in;
125                 }
126             }
127 
128             /* Computation is filed for every 2 columns */
129             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
130             {
131                 pOut = arm_nn_mat_mult_kernel_q7_q15(
132                     wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
133 
134                 /* counter reset */
135                 pBuffer = bufferA;
136             }
137         }
138     }
139 
140     /* left-over because odd number of output pixels */
141     if (pBuffer != bufferA)
142     {
143         const q7_t *pA = wt;
144         int i;
145 
146         for (i = 0; i < ch_im_out; i++)
147         {
148             /* Load the accumulator with bias first */
149             q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
150 
151             /* Point to the beging of the im2col buffer */
152             const q15_t *pB = bufferA;
153 
154             /* Each time it process 4 entries */
155             uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
156 
157             while (colCnt)
158             {
159                 q31_t inA1, inA2;
160                 q31_t inB1, inB2;
161 
162                 pA = read_and_pad(pA, &inA1, &inA2);
163 
164                 inB1 = arm_nn_read_q15x2_ia(&pB);
165                 sum = __SMLAD(inA1, inB1, sum);
166                 inB2 = arm_nn_read_q15x2_ia(&pB);
167 
168                 sum = __SMLAD(inA2, inB2, sum);
169 
170                 colCnt--;
171             }
172             colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
173             while (colCnt)
174             {
175                 q7_t inA1 = *pA++;
176                 q15_t inB1 = *pB++;
177                 sum += inA1 * inB1;
178                 colCnt--;
179             }
180             *pOut++ = (q7_t)__SSAT((sum >> out_shift), 8);
181         }
182     }
183 #else
184     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
185 
186     int i, j, k, l, m, n;
187     int conv_out;
188     int in_row, in_col;
189 
190     for (i = 0; i < ch_im_out; i++)
191     {
192         for (j = 0; j < dim_im_out; j++)
193         {
194             for (k = 0; k < dim_im_out; k++)
195             {
196                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
197                 for (m = 0; m < dim_kernel; m++)
198                 {
199                     for (n = 0; n < dim_kernel; n++)
200                     {
201                         // if-for implementation
202                         in_row = stride * j + m - padding;
203                         in_col = stride * k + n - padding;
204                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
205                         {
206                             for (l = 0; l < ch_im_in; l++)
207                             {
208                                 conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + l] *
209                                     wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + n) * ch_im_in + l];
210                             }
211                         }
212                     }
213                 }
214                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t)__SSAT((conv_out >> out_shift), 8);
215             }
216         }
217     }
218 
219 #endif /* ARM_MATH_DSP */
220 
221     /* Return to application */
222     return ARM_MATH_SUCCESS;
223 }
224 
225 /**
226  * @} end of NNConv group
227  */
228