1 /*
2  * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_convolve_HWC_q15_fast.c
22  * Description:  Fast Q15 version of convolution
23  *
24  * $Date:        January 26, 2021
25  * $Revision:    V.1.0.2
26  *
27  * Target Processor:  Cortex-M cores
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_nnfunctions.h"
32 #include "arm_nnsupportfunctions.h"
33 
34 /**
35  *  @ingroup groupNN
36  */
37 
38 /**
39  * @addtogroup NNConv
40  * @{
41  */
42 
43 /**
44  * @brief Fast Q15 convolution function
45  * @param[in]       Im_in       pointer to input tensor
46  * @param[in]       dim_im_in   input tensor dimention
47  * @param[in]       ch_im_in    number of input tensor channels
48  * @param[in]       wt          pointer to kernel weights
49  * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
50  * @param[in]       dim_kernel  filter kernel size
51  * @param[in]       padding     padding sizes
52  * @param[in]       stride      convolution stride
53  * @param[in]       bias        pointer to bias
54  * @param[in]       bias_shift  amount of left-shift for bias
55  * @param[in]       out_shift   amount of right-shift for output
56  * @param[in,out]   Im_out      pointer to output tensor
57  * @param[in]       dim_im_out  output tensor dimension
58  * @param[in,out]   bufferA     pointer to buffer space for input
59  * @param[in,out]   bufferB     pointer to buffer space for output
60  * @return     The function returns either
61  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
62  *
63  * @details
64  *
65  * <b>Buffer size:</b>
66  *
67  * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
68  *
69  * bufferB size: 0
70  *
71  * <b>Input dimension constraints:</b>
72  *
73  * ch_im_in is multiple of 2
74  *
75  * ch_im_out is multiple of 2
76  *
77  */
78 
arm_convolve_HWC_q15_fast(const q15_t * Im_in,const uint16_t dim_im_in,const uint16_t ch_im_in,const q15_t * wt,const uint16_t ch_im_out,const uint16_t dim_kernel,const uint16_t padding,const uint16_t stride,const q15_t * bias,const uint16_t bias_shift,const uint16_t out_shift,q15_t * Im_out,const uint16_t dim_im_out,q15_t * bufferA,q7_t * bufferB)79 arm_status arm_convolve_HWC_q15_fast(const q15_t *Im_in,
80                                      const uint16_t dim_im_in,
81                                      const uint16_t ch_im_in,
82                                      const q15_t *wt,
83                                      const uint16_t ch_im_out,
84                                      const uint16_t dim_kernel,
85                                      const uint16_t padding,
86                                      const uint16_t stride,
87                                      const q15_t *bias,
88                                      const uint16_t bias_shift,
89                                      const uint16_t out_shift,
90                                      q15_t *Im_out,
91                                      const uint16_t dim_im_out,
92                                      q15_t *bufferA,
93                                      q7_t *bufferB)
94 {
95     (void)bufferB;
96 #if defined(ARM_MATH_DSP)
97     int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
98 
99     q15_t *pBuffer = bufferA;
100     q15_t *im_buffer = bufferA;
101     q15_t *pOut = Im_out;
102 
103     if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
104     {
105         /* check if the input dimension meets the constraints */
106         return ARM_MATH_SIZE_MISMATCH;
107     }
108 
109     /* Run the following code for Cortex-M4 and Cortex-M7 */
110 
111     /* This part implements the im2col function */
112     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
113     {
114         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
115         {
116             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
117             {
118                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
119                 {
120                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
121                     {
122                         /* arm_fill_q15(0, pBuffer, ch_im_in); */
123                         memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
124                     }
125                     else
126                     {
127                         /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer,
128                          * ch_im_in); */
129                         memcpy(pBuffer,
130                                (q15_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in,
131                                sizeof(q15_t) * ch_im_in);
132                     }
133                     pBuffer += ch_im_in;
134                 }
135             }
136 
137             if (i_out_x & 0x1)
138             {
139                 int i;
140                 /* initialize the matrix pointers for A */
141                 const q15_t *pA = wt;
142 
143                 /* set up the second output pointers */
144                 q15_t *pOut2 = pOut + ch_im_out;
145 
146                 /* this loop over rows in A */
147                 for (i = 0; i < ch_im_out; i += 2)
148                 {
149                     /* setup pointers for B */
150                     const q15_t *pB = im_buffer;
151                     const q15_t *pB2 = pB + ch_im_in * dim_kernel * dim_kernel;
152 
153                     /* aling the second pointer for A */
154                     const q15_t *pA2 = pA + ch_im_in * dim_kernel * dim_kernel;
155 
156                     /* init the sum with bias */
157                     q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
158                     q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
159                     q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
160                     q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
161 
162                     uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 1;
163                     /* accumulate over the vector */
164                     while (colCnt)
165                     {
166                         q31_t inA1 = arm_nn_read_q15x2_ia(&pA);
167                         q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
168                         q31_t inA2 = arm_nn_read_q15x2_ia(&pA2);
169                         q31_t inB2 = arm_nn_read_q15x2_ia(&pB2);
170 
171                         sum = __SMLAD(inA1, inB1, sum);
172                         sum2 = __SMLAD(inA1, inB2, sum2);
173                         sum3 = __SMLAD(inA2, inB1, sum3);
174                         sum4 = __SMLAD(inA2, inB2, sum4);
175 
176                         colCnt--;
177                     } /* while over colCnt */
178                     colCnt = ch_im_in * dim_kernel * dim_kernel & 0x1;
179                     while (colCnt)
180                     {
181                         q15_t inA1 = *pA++;
182                         q15_t inB1 = *pB++;
183                         q15_t inA2 = *pA2++;
184                         q15_t inB2 = *pB2++;
185 
186                         sum += inA1 * inB1;
187                         sum2 += inA1 * inB2;
188                         sum3 += inA2 * inB1;
189                         sum4 += inA2 * inB2;
190                         colCnt--;
191                     } /* while over colCnt */
192                     *pOut++ = (q15_t)__SSAT(sum >> out_shift, 16);
193                     *pOut++ = (q15_t)__SSAT(sum3 >> out_shift, 16);
194                     *pOut2++ = (q15_t)__SSAT(sum2 >> out_shift, 16);
195                     *pOut2++ = (q15_t)__SSAT(sum4 >> out_shift, 16);
196 
197                     /* skip the row computed with A2 */
198                     pA += ch_im_in * dim_kernel * dim_kernel;
199                 } /* for over ch_im_out */
200 
201                 pOut += ch_im_out;
202                 /* counter reset */
203                 pBuffer = im_buffer;
204             }
205         }
206     }
207 
208 #else
209     (void)bufferA;
210     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
211     int i, j, k, l, m, n;
212     int conv_out;
213     int in_row, in_col;
214 
215     if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
216     {
217         /* check if the input dimension meets the constraints */
218         return ARM_MATH_SIZE_MISMATCH;
219     }
220 
221     for (i = 0; i < ch_im_out; i++)
222     {
223         for (j = 0; j < dim_im_out; j++)
224         {
225             for (k = 0; k < dim_im_out; k++)
226             {
227                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
228                 for (m = 0; m < dim_kernel; m++)
229                 {
230                     for (n = 0; n < dim_kernel; n++)
231                     {
232                         in_row = stride * j + m - padding;
233                         in_col = stride * k + n - padding;
234                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
235                         {
236                             for (l = 0; l < ch_im_in; l++)
237                             {
238                                 conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + l] *
239                                     wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + n) * ch_im_in + l];
240                             }
241                         }
242                     }
243                 }
244                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t)__SSAT((conv_out >> out_shift), 16);
245             }
246         }
247     }
248 
249 #endif /* ARM_MATH_DSP */
250 
251     /* Return to application */
252     return ARM_MATH_SUCCESS;
253 }
254 
255 /**
256  * @} end of NNConv group
257  */
258