1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_cfft_f64.c
4  * Description:  Combined Radix Decimation in Frequency CFFT Double Precision Floating point processing function
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/transform_functions.h"
30 #include "arm_common_tables.h"
31 
32 
33 extern void arm_radix4_butterfly_f64(
34         float64_t * pSrc,
35         uint16_t fftLen,
36   const float64_t * pCoef,
37         uint16_t twidCoefModifier);
38 
39 extern void arm_bitreversal_64(
40         uint64_t * pSrc,
41   const uint16_t   bitRevLen,
42   const uint16_t * pBitRevTable);
43 
44 /* ----------------------------------------------------------------------
45  * Internal helper function used by the FFTs
46  * ---------------------------------------------------------------------- */
47 
48 /*
49 * @brief  Core function for the Double Precision floating-point CFFT butterfly process.
50 * @param[in, out] *pSrc            points to the in-place buffer of F64 data type.
51 * @param[in]      fftLen           length of the FFT.
52 * @param[in]      *pCoef           points to the twiddle coefficient buffer.
53 * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
54 */
55 
arm_radix4_butterfly_f64(float64_t * pSrc,uint16_t fftLen,const float64_t * pCoef,uint16_t twidCoefModifier)56 void arm_radix4_butterfly_f64(
57         float64_t * pSrc,
58         uint16_t fftLen,
59   const float64_t * pCoef,
60         uint16_t twidCoefModifier)
61 {
62 
63    float64_t co1, co2, co3, si1, si2, si3;
64    uint32_t ia1, ia2, ia3;
65    uint32_t i0, i1, i2, i3;
66    uint32_t n1, n2, j, k;
67 
68    float64_t t1, t2, r1, r2, s1, s2;
69 
70 
71    /*  Initializations for the fft calculation */
72    n2 = fftLen;
73    n1 = n2;
74    for (k = fftLen; k > 1U; k >>= 2U)
75    {
76       /*  Initializations for the fft calculation */
77       n1 = n2;
78       n2 >>= 2U;
79       ia1 = 0U;
80 
81       /*  FFT Calculation */
82       j = 0;
83       do
84       {
85          /*  index calculation for the coefficients */
86          ia2 = ia1 + ia1;
87          ia3 = ia2 + ia1;
88          co1 = pCoef[ia1 * 2U];
89          si1 = pCoef[(ia1 * 2U) + 1U];
90          co2 = pCoef[ia2 * 2U];
91          si2 = pCoef[(ia2 * 2U) + 1U];
92          co3 = pCoef[ia3 * 2U];
93          si3 = pCoef[(ia3 * 2U) + 1U];
94 
95          /*  Twiddle coefficients index modifier */
96          ia1 = ia1 + twidCoefModifier;
97 
98          i0 = j;
99          do
100          {
101             /*  index calculation for the input as, */
102             /*  pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */
103             i1 = i0 + n2;
104             i2 = i1 + n2;
105             i3 = i2 + n2;
106 
107             /* xa + xc */
108             r1 = pSrc[(2U * i0)] + pSrc[(2U * i2)];
109 
110             /* xa - xc */
111             r2 = pSrc[(2U * i0)] - pSrc[(2U * i2)];
112 
113             /* ya + yc */
114             s1 = pSrc[(2U * i0) + 1U] + pSrc[(2U * i2) + 1U];
115 
116             /* ya - yc */
117             s2 = pSrc[(2U * i0) + 1U] - pSrc[(2U * i2) + 1U];
118 
119             /* xb + xd */
120             t1 = pSrc[2U * i1] + pSrc[2U * i3];
121 
122             /* xa' = xa + xb + xc + xd */
123             pSrc[2U * i0] = r1 + t1;
124 
125             /* xa + xc -(xb + xd) */
126             r1 = r1 - t1;
127 
128             /* yb + yd */
129             t2 = pSrc[(2U * i1) + 1U] + pSrc[(2U * i3) + 1U];
130 
131             /* ya' = ya + yb + yc + yd */
132             pSrc[(2U * i0) + 1U] = s1 + t2;
133 
134             /* (ya + yc) - (yb + yd) */
135             s1 = s1 - t2;
136 
137             /* (yb - yd) */
138             t1 = pSrc[(2U * i1) + 1U] - pSrc[(2U * i3) + 1U];
139 
140             /* (xb - xd) */
141             t2 = pSrc[2U * i1] - pSrc[2U * i3];
142 
143             /* xc' = (xa-xb+xc-xd)co2 + (ya-yb+yc-yd)(si2) */
144             pSrc[2U * i1] = (r1 * co2) + (s1 * si2);
145 
146             /* yc' = (ya-yb+yc-yd)co2 - (xa-xb+xc-xd)(si2) */
147             pSrc[(2U * i1) + 1U] = (s1 * co2) - (r1 * si2);
148 
149             /* (xa - xc) + (yb - yd) */
150             r1 = r2 + t1;
151 
152             /* (xa - xc) - (yb - yd) */
153             r2 = r2 - t1;
154 
155             /* (ya - yc) -  (xb - xd) */
156             s1 = s2 - t2;
157 
158             /* (ya - yc) +  (xb - xd) */
159             s2 = s2 + t2;
160 
161             /* xb' = (xa+yb-xc-yd)co1 + (ya-xb-yc+xd)(si1) */
162             pSrc[2U * i2] = (r1 * co1) + (s1 * si1);
163 
164             /* yb' = (ya-xb-yc+xd)co1 - (xa+yb-xc-yd)(si1) */
165             pSrc[(2U * i2) + 1U] = (s1 * co1) - (r1 * si1);
166 
167             /* xd' = (xa-yb-xc+yd)co3 + (ya+xb-yc-xd)(si3) */
168             pSrc[2U * i3] = (r2 * co3) + (s2 * si3);
169 
170             /* yd' = (ya+xb-yc-xd)co3 - (xa-yb-xc+yd)(si3) */
171             pSrc[(2U * i3) + 1U] = (s2 * co3) - (r2 * si3);
172 
173             i0 += n1;
174          } while ( i0 < fftLen);
175          j++;
176       } while (j <= (n2 - 1U));
177       twidCoefModifier <<= 2U;
178    }
179 }
180 
181 /*
182 * @brief  Core function for the Double Precision floating-point CFFT butterfly process.
183 * @param[in, out] *pSrc            points to the in-place buffer of F64 data type.
184 * @param[in]      fftLen           length of the FFT.
185 * @param[in]      *pCoef           points to the twiddle coefficient buffer.
186 * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
187 */
188 
arm_cfft_radix4by2_f64(float64_t * pSrc,uint32_t fftLen,const float64_t * pCoef)189 void arm_cfft_radix4by2_f64(
190     float64_t * pSrc,
191     uint32_t fftLen,
192     const float64_t * pCoef)
193 {
194     uint32_t i, l;
195     uint32_t n2, ia;
196     float64_t xt, yt, cosVal, sinVal;
197     float64_t p0, p1,p2,p3,a0,a1;
198 
199     n2 = fftLen >> 1;
200     ia = 0;
201     for (i = 0; i < n2; i++)
202     {
203         cosVal = pCoef[2*ia];
204         sinVal = pCoef[2*ia + 1];
205         ia++;
206 
207         l = i + n2;
208 
209         /*  Butterfly implementation */
210         a0 = pSrc[2 * i] + pSrc[2 * l];
211         xt = pSrc[2 * i] - pSrc[2 * l];
212 
213         yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
214         a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
215 
216         p0 = xt * cosVal;
217         p1 = yt * sinVal;
218         p2 = yt * cosVal;
219         p3 = xt * sinVal;
220 
221         pSrc[2 * i]     = a0;
222         pSrc[2 * i + 1] = a1;
223 
224         pSrc[2 * l]     = p0 + p1;
225         pSrc[2 * l + 1] = p2 - p3;
226 
227     }
228 
229     // first col
230     arm_radix4_butterfly_f64( pSrc, n2, (float64_t*)pCoef, 2U);
231     // second col
232     arm_radix4_butterfly_f64( pSrc + fftLen, n2, (float64_t*)pCoef, 2U);
233 
234 }
235 
236 /**
237   @addtogroup ComplexFFTF64
238   @{
239  */
240 
241 /**
242   @brief         Processing function for the Double Precision floating-point complex FFT.
243   @param[in]     S              points to an instance of the Double Precision floating-point CFFT structure
244   @param[in,out] p1             points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
245   @param[in]     ifftFlag       flag that selects transform direction
246                    - value = 0: forward transform
247                    - value = 1: inverse transform
248   @param[in]     bitReverseFlag flag that enables / disables bit reversal of output
249                    - value = 0: disables bit reversal of output
250                    - value = 1: enables bit reversal of output
251  */
252 
arm_cfft_f64(const arm_cfft_instance_f64 * S,float64_t * p1,uint8_t ifftFlag,uint8_t bitReverseFlag)253 void arm_cfft_f64(
254   const arm_cfft_instance_f64 * S,
255         float64_t * p1,
256         uint8_t ifftFlag,
257         uint8_t bitReverseFlag)
258 {
259     uint32_t  L = S->fftLen, l;
260     float64_t invL, * pSrc;
261 
262     if (ifftFlag == 1U)
263     {
264         /*  Conjugate input data  */
265         pSrc = p1 + 1;
266         for(l=0; l<L; l++)
267         {
268             *pSrc = -*pSrc;
269             pSrc += 2;
270         }
271     }
272 
273     switch (L)
274     {
275         case 16:
276         case 64:
277         case 256:
278         case 1024:
279         case 4096:
280         arm_radix4_butterfly_f64  (p1, L, (float64_t*)S->pTwiddle, 1U);
281         break;
282 
283         case 32:
284         case 128:
285         case 512:
286         case 2048:
287         arm_cfft_radix4by2_f64  ( p1, L, (float64_t*)S->pTwiddle);
288         break;
289 
290     }
291 
292     if ( bitReverseFlag )
293         arm_bitreversal_64((uint64_t*)p1, S->bitRevLength,S->pBitRevTable);
294 
295     if (ifftFlag == 1U)
296     {
297         invL = 1.0 / (float64_t)L;
298         /*  Conjugate and scale output data */
299         pSrc = p1;
300         for(l=0; l<L; l++)
301         {
302             *pSrc++ *=   invL ;
303             *pSrc  = -(*pSrc) * invL;
304             pSrc++;
305         }
306     }
307 }
308 
309 /**
310   @} end of ComplexFFTF64 group
311  */
312