1 /*
2 * Copyright (c) 2011-2014 Wind River Systems, Inc.
3 * Copyright (c) 2017-2020 Intel Corporation
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #include <kernel.h>
9 #include <arch/x86/mmustructs.h>
10 #include <sys/mem_manage.h>
11 #include <sys/__assert.h>
12 #include <logging/log.h>
13 #include <errno.h>
14 #include <ctype.h>
15 #include <spinlock.h>
16 #include <kernel_arch_func.h>
17 #include <x86_mmu.h>
18 #include <init.h>
19 #include <kernel_internal.h>
20 #include <mmu.h>
21 #include <drivers/interrupt_controller/loapic.h>
22 #include <mmu.h>
23 #include <arch/x86/memmap.h>
24
25 LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
26
27 /* We will use some ignored bits in the PTE to backup permission settings
28 * when the mapping was made. This is used to un-apply memory domain memory
29 * partitions to page tables when the partitions are removed.
30 */
31 #define MMU_RW_ORIG MMU_IGNORED0
32 #define MMU_US_ORIG MMU_IGNORED1
33 #define MMU_XD_ORIG MMU_IGNORED2
34
35 /* Bits in the PTE that form the set of permission bits, when resetting */
36 #define MASK_PERM (MMU_RW | MMU_US | MMU_XD)
37
38 /* When we want to set up a new mapping, discarding any previous state */
39 #define MASK_ALL (~((pentry_t)0U))
40
41 /* Bits to set at mapping time for particular permissions. We set the actual
42 * page table bit effecting the policy and also the backup bit.
43 */
44 #define ENTRY_RW (MMU_RW | MMU_RW_ORIG)
45 #define ENTRY_US (MMU_US | MMU_US_ORIG)
46 #define ENTRY_XD (MMU_XD | MMU_XD_ORIG)
47
48 /* Bit position which is always zero in a PTE. We'll use the PAT bit.
49 * This helps disambiguate PTEs that do not have the Present bit set (MMU_P):
50 * - If the entire entry is zero, it's an un-mapped virtual page
51 * - If PTE_ZERO is set, we flipped this page due to KPTI
52 * - Otherwise, this was a page-out
53 */
54 #define PTE_ZERO MMU_PAT
55
56 /* Protects x86_domain_list and serializes instantiation of intermediate
57 * paging structures.
58 */
59 __pinned_bss
60 static struct k_spinlock x86_mmu_lock;
61
62 #if defined(CONFIG_USERSPACE) && !defined(CONFIG_X86_COMMON_PAGE_TABLE)
63 /* List of all active and initialized memory domains. This is used to make
64 * sure all memory mappings are the same across all page tables when invoking
65 * range_map()
66 */
67 __pinned_bss
68 static sys_slist_t x86_domain_list;
69 #endif
70
71 /*
72 * Definitions for building an ontology of paging levels and capabilities
73 * at each level
74 */
75
76 /* Data structure describing the characteristics of a particular paging
77 * level
78 */
79 struct paging_level {
80 /* What bits are used to store physical address */
81 pentry_t mask;
82
83 /* Number of entries in this paging structure */
84 size_t entries;
85
86 /* How many bits to right-shift a virtual address to obtain the
87 * appropriate entry within this table.
88 *
89 * The memory scope of each entry in this table is 1 << shift.
90 */
91 unsigned int shift;
92 #ifdef CONFIG_EXCEPTION_DEBUG
93 /* Name of this level, for debug purposes */
94 const char *name;
95 #endif
96 };
97
98 /* Flags for all entries in intermediate paging levels.
99 * Fortunately, the same bits are set for all intermediate levels for all
100 * three paging modes.
101 *
102 * Obviously P is set.
103 *
104 * We want RW and US bit always set; actual access control will be
105 * done at the leaf level.
106 *
107 * XD (if supported) always 0. Disabling execution done at leaf level.
108 *
109 * PCD/PWT always 0. Caching properties again done at leaf level.
110 */
111 #define INT_FLAGS (MMU_P | MMU_RW | MMU_US)
112
113 /* Paging level ontology for the selected paging mode.
114 *
115 * See Figures 4-4, 4-7, 4-11 in the Intel SDM, vol 3A
116 */
117 __pinned_rodata
118 static const struct paging_level paging_levels[] = {
119 #ifdef CONFIG_X86_64
120 /* Page Map Level 4 */
121 {
122 .mask = 0x7FFFFFFFFFFFF000ULL,
123 .entries = 512U,
124 .shift = 39U,
125 #ifdef CONFIG_EXCEPTION_DEBUG
126 .name = "PML4"
127 #endif
128 },
129 #endif /* CONFIG_X86_64 */
130 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
131 /* Page Directory Pointer Table */
132 {
133 .mask = 0x7FFFFFFFFFFFF000ULL,
134 #ifdef CONFIG_X86_64
135 .entries = 512U,
136 #else
137 /* PAE version */
138 .entries = 4U,
139 #endif
140 .shift = 30U,
141 #ifdef CONFIG_EXCEPTION_DEBUG
142 .name = "PDPT"
143 #endif
144 },
145 #endif /* CONFIG_X86_64 || CONFIG_X86_PAE */
146 /* Page Directory */
147 {
148 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
149 .mask = 0x7FFFFFFFFFFFF000ULL,
150 .entries = 512U,
151 .shift = 21U,
152 #else
153 /* 32-bit */
154 .mask = 0xFFFFF000U,
155 .entries = 1024U,
156 .shift = 22U,
157 #endif /* CONFIG_X86_64 || CONFIG_X86_PAE */
158 #ifdef CONFIG_EXCEPTION_DEBUG
159 .name = "PD"
160 #endif
161 },
162 /* Page Table */
163 {
164 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
165 .mask = 0x07FFFFFFFFFFF000ULL,
166 .entries = 512U,
167 .shift = 12U,
168 #else
169 /* 32-bit */
170 .mask = 0xFFFFF000U,
171 .entries = 1024U,
172 .shift = 12U,
173 #endif /* CONFIG_X86_64 || CONFIG_X86_PAE */
174 #ifdef CONFIG_EXCEPTION_DEBUG
175 .name = "PT"
176 #endif
177 }
178 };
179
180 #define NUM_LEVELS ARRAY_SIZE(paging_levels)
181 #define PTE_LEVEL (NUM_LEVELS - 1)
182 #define PDE_LEVEL (NUM_LEVELS - 2)
183
184 /*
185 * Macros for reserving space for page tables
186 *
187 * We need to reserve a block of memory equal in size to the page tables
188 * generated by gen_mmu.py so that memory addresses do not shift between
189 * build phases. These macros ultimately specify INITIAL_PAGETABLE_SIZE.
190 */
191 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
192 #ifdef CONFIG_X86_64
193 #define NUM_PML4_ENTRIES 512U
194 #define NUM_PDPT_ENTRIES 512U
195 #else
196 #define NUM_PDPT_ENTRIES 4U
197 #endif /* CONFIG_X86_64 */
198 #define NUM_PD_ENTRIES 512U
199 #define NUM_PT_ENTRIES 512U
200 #else
201 #define NUM_PD_ENTRIES 1024U
202 #define NUM_PT_ENTRIES 1024U
203 #endif /* !CONFIG_X86_64 && !CONFIG_X86_PAE */
204
205 /* Memory range covered by an instance of various table types */
206 #define PT_AREA ((uintptr_t)(CONFIG_MMU_PAGE_SIZE * NUM_PT_ENTRIES))
207 #define PD_AREA (PT_AREA * NUM_PD_ENTRIES)
208 #ifdef CONFIG_X86_64
209 #define PDPT_AREA (PD_AREA * NUM_PDPT_ENTRIES)
210 #endif
211
212 #define VM_ADDR CONFIG_KERNEL_VM_BASE
213 #define VM_SIZE CONFIG_KERNEL_VM_SIZE
214
215 /* Define a range [PT_START, PT_END) which is the memory range
216 * covered by all the page tables needed for the address space
217 */
218 #define PT_START ((uintptr_t)ROUND_DOWN(VM_ADDR, PT_AREA))
219 #define PT_END ((uintptr_t)ROUND_UP(VM_ADDR + VM_SIZE, PT_AREA))
220
221 /* Number of page tables needed to cover address space. Depends on the specific
222 * bounds, but roughly 1 page table per 2MB of RAM
223 */
224 #define NUM_PT ((PT_END - PT_START) / PT_AREA)
225
226 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
227 /* Same semantics as above, but for the page directories needed to cover
228 * system RAM.
229 */
230 #define PD_START ((uintptr_t)ROUND_DOWN(VM_ADDR, PD_AREA))
231 #define PD_END ((uintptr_t)ROUND_UP(VM_ADDR + VM_SIZE, PD_AREA))
232 /* Number of page directories needed to cover the address space. Depends on the
233 * specific bounds, but roughly 1 page directory per 1GB of RAM
234 */
235 #define NUM_PD ((PD_END - PD_START) / PD_AREA)
236 #else
237 /* 32-bit page tables just have one toplevel page directory */
238 #define NUM_PD 1
239 #endif
240
241 #ifdef CONFIG_X86_64
242 /* Same semantics as above, but for the page directory pointer tables needed
243 * to cover the address space. On 32-bit there is just one 4-entry PDPT.
244 */
245 #define PDPT_START ((uintptr_t)ROUND_DOWN(VM_ADDR, PDPT_AREA))
246 #define PDPT_END ((uintptr_t)ROUND_UP(VM_ADDR + VM_SIZE, PDPT_AREA))
247 /* Number of PDPTs needed to cover the address space. 1 PDPT per 512GB of VM */
248 #define NUM_PDPT ((PDPT_END - PDPT_START) / PDPT_AREA)
249
250 /* All pages needed for page tables, using computed values plus one more for
251 * the top-level PML4
252 */
253 #define NUM_TABLE_PAGES (NUM_PT + NUM_PD + NUM_PDPT + 1)
254 #else /* !CONFIG_X86_64 */
255 /* Number of pages we need to reserve in the stack for per-thread page tables */
256 #define NUM_TABLE_PAGES (NUM_PT + NUM_PD)
257 #endif /* CONFIG_X86_64 */
258
259 #define INITIAL_PTABLE_PAGES \
260 (NUM_TABLE_PAGES + CONFIG_X86_EXTRA_PAGE_TABLE_PAGES)
261
262 #ifdef CONFIG_X86_PAE
263 /* Toplevel PDPT wasn't included as it is not a page in size */
264 #define INITIAL_PTABLE_SIZE \
265 ((INITIAL_PTABLE_PAGES * CONFIG_MMU_PAGE_SIZE) + 0x20)
266 #else
267 #define INITIAL_PTABLE_SIZE \
268 (INITIAL_PTABLE_PAGES * CONFIG_MMU_PAGE_SIZE)
269 #endif
270
271 /* "dummy" pagetables for the first-phase build. The real page tables
272 * are produced by gen-mmu.py based on data read in zephyr-prebuilt.elf,
273 * and this dummy array is discarded.
274 */
275 Z_GENERIC_SECTION(.dummy_pagetables)
276 static __used char dummy_pagetables[INITIAL_PTABLE_SIZE];
277
278 /*
279 * Utility functions
280 */
281
282 /* For a table at a particular level, get the entry index that corresponds to
283 * the provided virtual address
284 */
285 __pinned_func
get_index(void * virt,int level)286 static inline int get_index(void *virt, int level)
287 {
288 return (((uintptr_t)virt >> paging_levels[level].shift) %
289 paging_levels[level].entries);
290 }
291
292 __pinned_func
get_entry_ptr(pentry_t * ptables,void * virt,int level)293 static inline pentry_t *get_entry_ptr(pentry_t *ptables, void *virt, int level)
294 {
295 return &ptables[get_index(virt, level)];
296 }
297
298 __pinned_func
get_entry(pentry_t * ptables,void * virt,int level)299 static inline pentry_t get_entry(pentry_t *ptables, void *virt, int level)
300 {
301 return ptables[get_index(virt, level)];
302 }
303
304 /* Get the physical memory address associated with this table entry */
305 __pinned_func
get_entry_phys(pentry_t entry,int level)306 static inline uintptr_t get_entry_phys(pentry_t entry, int level)
307 {
308 return entry & paging_levels[level].mask;
309 }
310
311 /* Return the virtual address of a linked table stored in the provided entry */
312 __pinned_func
next_table(pentry_t entry,int level)313 static inline pentry_t *next_table(pentry_t entry, int level)
314 {
315 return z_mem_virt_addr(get_entry_phys(entry, level));
316 }
317
318 /* Number of table entries at this level */
319 __pinned_func
get_num_entries(int level)320 static inline size_t get_num_entries(int level)
321 {
322 return paging_levels[level].entries;
323 }
324
325 /* 4K for everything except PAE PDPTs */
326 __pinned_func
table_size(int level)327 static inline size_t table_size(int level)
328 {
329 return get_num_entries(level) * sizeof(pentry_t);
330 }
331
332 /* For a table at a particular level, size of the amount of virtual memory
333 * that an entry within the table covers
334 */
335 __pinned_func
get_entry_scope(int level)336 static inline size_t get_entry_scope(int level)
337 {
338 return (1UL << paging_levels[level].shift);
339 }
340
341 /* For a table at a particular level, size of the amount of virtual memory
342 * that this entire table covers
343 */
344 __pinned_func
get_table_scope(int level)345 static inline size_t get_table_scope(int level)
346 {
347 return get_entry_scope(level) * get_num_entries(level);
348 }
349
350 /* Must have checked Present bit first! Non-present entries may have OS data
351 * stored in any other bits
352 */
353 __pinned_func
is_leaf(int level,pentry_t entry)354 static inline bool is_leaf(int level, pentry_t entry)
355 {
356 if (level == PTE_LEVEL) {
357 /* Always true for PTE */
358 return true;
359 }
360
361 return ((entry & MMU_PS) != 0U);
362 }
363
364 /* This does NOT (by design) un-flip KPTI PTEs, it's just the raw PTE value */
365 __pinned_func
pentry_get(int * paging_level,pentry_t * val,pentry_t * ptables,void * virt)366 static inline void pentry_get(int *paging_level, pentry_t *val,
367 pentry_t *ptables, void *virt)
368 {
369 pentry_t *table = ptables;
370
371 for (int level = 0; level < NUM_LEVELS; level++) {
372 pentry_t entry = get_entry(table, virt, level);
373
374 if ((entry & MMU_P) == 0 || is_leaf(level, entry)) {
375 *val = entry;
376 if (paging_level != NULL) {
377 *paging_level = level;
378 }
379 break;
380 } else {
381 table = next_table(entry, level);
382 }
383 }
384 }
385
386 __pinned_func
tlb_flush_page(void * addr)387 static inline void tlb_flush_page(void *addr)
388 {
389 /* Invalidate TLB entries corresponding to the page containing the
390 * specified address
391 */
392 char *page = (char *)addr;
393
394 __asm__ ("invlpg %0" :: "m" (*page));
395 }
396
397 #ifdef CONFIG_X86_KPTI
398 __pinned_func
is_flipped_pte(pentry_t pte)399 static inline bool is_flipped_pte(pentry_t pte)
400 {
401 return (pte & MMU_P) == 0 && (pte & PTE_ZERO) != 0;
402 }
403 #endif
404
405 #if defined(CONFIG_SMP)
406 __pinned_func
z_x86_tlb_ipi(const void * arg)407 void z_x86_tlb_ipi(const void *arg)
408 {
409 uintptr_t ptables_phys;
410
411 ARG_UNUSED(arg);
412
413 #ifdef CONFIG_X86_KPTI
414 /* We're always on the kernel's set of page tables in this context
415 * if KPTI is turned on
416 */
417 ptables_phys = z_x86_cr3_get();
418 __ASSERT(ptables_phys == z_mem_phys_addr(&z_x86_kernel_ptables), "");
419 #else
420 /* We might have been moved to another memory domain, so always invoke
421 * z_x86_thread_page_tables_get() instead of using current CR3 value.
422 */
423 ptables_phys = z_mem_phys_addr(z_x86_thread_page_tables_get(_current));
424 #endif
425 /*
426 * In the future, we can consider making this smarter, such as
427 * propagating which page tables were modified (in case they are
428 * not active on this CPU) or an address range to call
429 * tlb_flush_page() on.
430 */
431 LOG_DBG("%s on CPU %d\n", __func__, arch_curr_cpu()->id);
432
433 z_x86_cr3_set(ptables_phys);
434 }
435
436 /* NOTE: This is not synchronous and the actual flush takes place some short
437 * time after this exits.
438 */
439 __pinned_func
tlb_shootdown(void)440 static inline void tlb_shootdown(void)
441 {
442 z_loapic_ipi(0, LOAPIC_ICR_IPI_OTHERS, CONFIG_TLB_IPI_VECTOR);
443 }
444 #endif /* CONFIG_SMP */
445
446 __pinned_func
assert_addr_aligned(uintptr_t addr)447 static inline void assert_addr_aligned(uintptr_t addr)
448 {
449 #if __ASSERT_ON
450 __ASSERT((addr & (CONFIG_MMU_PAGE_SIZE - 1)) == 0U,
451 "unaligned address 0x%" PRIxPTR, addr);
452 #endif
453 }
454
455 __pinned_func
assert_virt_addr_aligned(void * addr)456 static inline void assert_virt_addr_aligned(void *addr)
457 {
458 assert_addr_aligned((uintptr_t)addr);
459 }
460
461 __pinned_func
assert_region_page_aligned(void * addr,size_t size)462 static inline void assert_region_page_aligned(void *addr, size_t size)
463 {
464 assert_virt_addr_aligned(addr);
465 #if __ASSERT_ON
466 __ASSERT((size & (CONFIG_MMU_PAGE_SIZE - 1)) == 0U,
467 "unaligned size %zu", size);
468 #endif
469 }
470
471 /*
472 * Debug functions. All conditionally compiled with CONFIG_EXCEPTION_DEBUG.
473 */
474 #ifdef CONFIG_EXCEPTION_DEBUG
475
476 /* Add colors to page table dumps to indicate mapping type */
477 #define COLOR_PAGE_TABLES 1
478
479 #if COLOR_PAGE_TABLES
480 #define ANSI_DEFAULT "\x1B[0m"
481 #define ANSI_RED "\x1B[1;31m"
482 #define ANSI_GREEN "\x1B[1;32m"
483 #define ANSI_YELLOW "\x1B[1;33m"
484 #define ANSI_BLUE "\x1B[1;34m"
485 #define ANSI_MAGENTA "\x1B[1;35m"
486 #define ANSI_CYAN "\x1B[1;36m"
487 #define ANSI_GREY "\x1B[1;90m"
488
489 #define COLOR(x) printk(_CONCAT(ANSI_, x))
490 #else
491 #define COLOR(x) do { } while (0)
492 #endif
493
494 __pinned_func
get_entry_code(pentry_t value)495 static char get_entry_code(pentry_t value)
496 {
497 char ret;
498
499 if (value == 0U) {
500 /* Unmapped entry */
501 ret = '.';
502 } else {
503 if ((value & MMU_RW) != 0U) {
504 /* Writable page */
505 if ((value & MMU_XD) != 0U) {
506 /* RW */
507 ret = 'w';
508 } else {
509 /* RWX */
510 ret = 'a';
511 }
512 } else {
513 if ((value & MMU_XD) != 0U) {
514 /* R */
515 ret = 'r';
516 } else {
517 /* RX */
518 ret = 'x';
519 }
520 }
521
522 if ((value & MMU_US) != 0U) {
523 /* Uppercase indicates user mode access */
524 ret = toupper(ret);
525 }
526 }
527
528 return ret;
529 }
530
531 __pinned_func
print_entries(pentry_t entries_array[],uint8_t * base,int level,size_t count)532 static void print_entries(pentry_t entries_array[], uint8_t *base, int level,
533 size_t count)
534 {
535 int column = 0;
536
537 for (int i = 0; i < count; i++) {
538 pentry_t entry = entries_array[i];
539
540 uintptr_t phys = get_entry_phys(entry, level);
541 uintptr_t virt =
542 (uintptr_t)base + (get_entry_scope(level) * i);
543
544 if ((entry & MMU_P) != 0U) {
545 if (is_leaf(level, entry)) {
546 if (phys == virt) {
547 /* Identity mappings */
548 COLOR(YELLOW);
549 } else if (phys + Z_MEM_VM_OFFSET == virt) {
550 /* Permanent RAM mappings */
551 COLOR(GREEN);
552 } else {
553 /* General mapped pages */
554 COLOR(CYAN);
555 }
556 } else {
557 /* Intermediate entry */
558 COLOR(MAGENTA);
559 }
560 } else {
561 if (is_leaf(level, entry)) {
562 if (entry == 0U) {
563 /* Unmapped */
564 COLOR(GREY);
565 #ifdef CONFIG_X86_KPTI
566 } else if (is_flipped_pte(entry)) {
567 /* KPTI, un-flip it */
568 COLOR(BLUE);
569 entry = ~entry;
570 phys = get_entry_phys(entry, level);
571 if (phys == virt) {
572 /* Identity mapped */
573 COLOR(CYAN);
574 } else {
575 /* Non-identity mapped */
576 COLOR(BLUE);
577 }
578 #endif
579 } else {
580 /* Paged out */
581 COLOR(RED);
582 }
583 } else {
584 /* Un-mapped intermediate entry */
585 COLOR(GREY);
586 }
587 }
588
589 printk("%c", get_entry_code(entry));
590
591 column++;
592 if (column == 64) {
593 column = 0;
594 printk("\n");
595 }
596 }
597 COLOR(DEFAULT);
598
599 if (column != 0) {
600 printk("\n");
601 }
602 }
603
604 __pinned_func
dump_ptables(pentry_t * table,uint8_t * base,int level)605 static void dump_ptables(pentry_t *table, uint8_t *base, int level)
606 {
607 const struct paging_level *info = &paging_levels[level];
608
609 #ifdef CONFIG_X86_64
610 /* Account for the virtual memory "hole" with sign-extension */
611 if (((uintptr_t)base & BITL(47)) != 0) {
612 base = (uint8_t *)((uintptr_t)base | (0xFFFFULL << 48));
613 }
614 #endif
615
616 printk("%s at %p (0x%" PRIxPTR "): ", info->name, table,
617 z_mem_phys_addr(table));
618 if (level == 0) {
619 printk("entire address space\n");
620 } else {
621 printk("for %p - %p\n", base,
622 base + get_table_scope(level) - 1);
623 }
624
625 print_entries(table, base, level, info->entries);
626
627 /* Check if we're a page table */
628 if (level == PTE_LEVEL) {
629 return;
630 }
631
632 /* Dump all linked child tables */
633 for (int j = 0; j < info->entries; j++) {
634 pentry_t entry = table[j];
635 pentry_t *next;
636
637 if ((entry & MMU_P) == 0U ||
638 (entry & MMU_PS) != 0U) {
639 /* Not present or big page, skip */
640 continue;
641 }
642
643 next = next_table(entry, level);
644 dump_ptables(next, base + (j * get_entry_scope(level)),
645 level + 1);
646 }
647 }
648
649 __pinned_func
z_x86_dump_page_tables(pentry_t * ptables)650 void z_x86_dump_page_tables(pentry_t *ptables)
651 {
652 dump_ptables(ptables, NULL, 0);
653 }
654
655 /* Enable to dump out the kernel's page table right before main() starts,
656 * sometimes useful for deep debugging. May overwhelm twister.
657 */
658 #define DUMP_PAGE_TABLES 0
659
660 #if DUMP_PAGE_TABLES
661 __pinned_func
dump_kernel_tables(const struct device * unused)662 static int dump_kernel_tables(const struct device *unused)
663 {
664 z_x86_dump_page_tables(z_x86_kernel_ptables);
665
666 return 0;
667 }
668
669 SYS_INIT(dump_kernel_tables, APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
670 #endif
671
672 __pinned_func
str_append(char ** buf,size_t * size,const char * str)673 static void str_append(char **buf, size_t *size, const char *str)
674 {
675 int ret = snprintk(*buf, *size, "%s", str);
676
677 if (ret >= *size) {
678 /* Truncated */
679 *size = 0U;
680 } else {
681 *size -= ret;
682 *buf += ret;
683 }
684
685 }
686
687 __pinned_func
dump_entry(int level,void * virt,pentry_t entry)688 static void dump_entry(int level, void *virt, pentry_t entry)
689 {
690 const struct paging_level *info = &paging_levels[level];
691 char buf[24] = { 0 };
692 char *pos = buf;
693 size_t sz = sizeof(buf);
694 uint8_t *virtmap = (uint8_t *)ROUND_DOWN(virt, get_entry_scope(level));
695
696 #define DUMP_BIT(bit) do { \
697 if ((entry & MMU_##bit) != 0U) { \
698 str_append(&pos, &sz, #bit " "); \
699 } \
700 } while (0)
701
702 DUMP_BIT(RW);
703 DUMP_BIT(US);
704 DUMP_BIT(PWT);
705 DUMP_BIT(PCD);
706 DUMP_BIT(A);
707 DUMP_BIT(D);
708 DUMP_BIT(G);
709 DUMP_BIT(XD);
710
711 LOG_ERR("%sE: %p -> " PRI_ENTRY ": %s", info->name,
712 virtmap, entry & info->mask, log_strdup(buf));
713
714 #undef DUMP_BIT
715 }
716
717 __pinned_func
z_x86_pentry_get(int * paging_level,pentry_t * val,pentry_t * ptables,void * virt)718 void z_x86_pentry_get(int *paging_level, pentry_t *val, pentry_t *ptables,
719 void *virt)
720 {
721 pentry_get(paging_level, val, ptables, virt);
722 }
723
724 /*
725 * Debug function for dumping out MMU table information to the LOG for a
726 * specific virtual address, such as when we get an unexpected page fault.
727 */
728 __pinned_func
z_x86_dump_mmu_flags(pentry_t * ptables,void * virt)729 void z_x86_dump_mmu_flags(pentry_t *ptables, void *virt)
730 {
731 pentry_t entry = 0;
732 int level = 0;
733
734 pentry_get(&level, &entry, ptables, virt);
735
736 if ((entry & MMU_P) == 0) {
737 LOG_ERR("%sE: not present", paging_levels[level].name);
738 } else {
739 dump_entry(level, virt, entry);
740 }
741 }
742 #endif /* CONFIG_EXCEPTION_DEBUG */
743
744 /* Reset permissions on a PTE to original state when the mapping was made */
745 __pinned_func
reset_pte(pentry_t old_val)746 static inline pentry_t reset_pte(pentry_t old_val)
747 {
748 pentry_t new_val;
749
750 /* Clear any existing state in permission bits */
751 new_val = old_val & (~K_MEM_PARTITION_PERM_MASK);
752
753 /* Now set permissions based on the stashed original values */
754 if ((old_val & MMU_RW_ORIG) != 0) {
755 new_val |= MMU_RW;
756 }
757 if ((old_val & MMU_US_ORIG) != 0) {
758 new_val |= MMU_US;
759 }
760 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
761 if ((old_val & MMU_XD_ORIG) != 0) {
762 new_val |= MMU_XD;
763 }
764 #endif
765 return new_val;
766 }
767
768 /* Wrapper functions for some gross stuff we have to do for Kernel
769 * page table isolation. If these are User mode page tables, the user bit
770 * isn't set, and this is not the shared page, all the bits in the PTE
771 * are flipped. This serves three purposes:
772 * - The page isn't present, implementing page table isolation
773 * - Flipping the physical address bits cheaply mitigates L1TF
774 * - State is preserved; to get original PTE, just complement again
775 */
776 __pinned_func
pte_finalize_value(pentry_t val,bool user_table,int level)777 static inline pentry_t pte_finalize_value(pentry_t val, bool user_table,
778 int level)
779 {
780 #ifdef CONFIG_X86_KPTI
781 static const uintptr_t shared_phys_addr =
782 Z_MEM_PHYS_ADDR(POINTER_TO_UINT(&z_shared_kernel_page_start));
783
784 if (user_table && (val & MMU_US) == 0 && (val & MMU_P) != 0 &&
785 get_entry_phys(val, level) != shared_phys_addr) {
786 val = ~val;
787 }
788 #endif
789 return val;
790 }
791
792 /* Atomic functions for modifying PTEs. These don't map nicely to Zephyr's
793 * atomic API since the only types supported are 'int' and 'void *' and
794 * the size of pentry_t depends on other factors like PAE.
795 */
796 #ifndef CONFIG_X86_PAE
797 /* Non-PAE, pentry_t is same size as void ptr so use atomic_ptr_* APIs */
798 __pinned_func
atomic_pte_get(const pentry_t * target)799 static inline pentry_t atomic_pte_get(const pentry_t *target)
800 {
801 return (pentry_t)atomic_ptr_get((atomic_ptr_t *)target);
802 }
803
804 __pinned_func
atomic_pte_cas(pentry_t * target,pentry_t old_value,pentry_t new_value)805 static inline bool atomic_pte_cas(pentry_t *target, pentry_t old_value,
806 pentry_t new_value)
807 {
808 return atomic_ptr_cas((atomic_ptr_t *)target, (void *)old_value,
809 (void *)new_value);
810 }
811 #else
812 /* Atomic builtins for 64-bit values on 32-bit x86 require floating point.
813 * Don't do this, just lock local interrupts. Needless to say, this
814 * isn't workable if someone ever adds SMP to the 32-bit x86 port.
815 */
816 BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP));
817
818 __pinned_func
atomic_pte_get(const pentry_t * target)819 static inline pentry_t atomic_pte_get(const pentry_t *target)
820 {
821 return *target;
822 }
823
824 __pinned_func
atomic_pte_cas(pentry_t * target,pentry_t old_value,pentry_t new_value)825 static inline bool atomic_pte_cas(pentry_t *target, pentry_t old_value,
826 pentry_t new_value)
827 {
828 bool ret = false;
829 int key = arch_irq_lock();
830
831 if (*target == old_value) {
832 *target = new_value;
833 ret = true;
834 }
835 arch_irq_unlock(key);
836
837 return ret;
838 }
839 #endif /* CONFIG_X86_PAE */
840
841 /* Indicates that the target page tables will be used by user mode threads.
842 * This only has implications for CONFIG_X86_KPTI where user thread facing
843 * page tables need nearly all pages that don't have the US bit to also
844 * not be Present.
845 */
846 #define OPTION_USER BIT(0)
847
848 /* Indicates that the operation requires TLBs to be flushed as we are altering
849 * existing mappings. Not needed for establishing new mappings
850 */
851 #define OPTION_FLUSH BIT(1)
852
853 /* Indicates that each PTE's permission bits should be restored to their
854 * original state when the memory was mapped. All other bits in the PTE are
855 * preserved.
856 */
857 #define OPTION_RESET BIT(2)
858
859 /* Indicates that the mapping will need to be cleared entirely. This is
860 * mainly used for unmapping the memory region.
861 */
862 #define OPTION_CLEAR BIT(3)
863
864 /**
865 * Atomically update bits in a page table entry
866 *
867 * This is atomic with respect to modifications by other CPUs or preempted
868 * contexts, which can be very important when making decisions based on
869 * the PTE's prior "dirty" state.
870 *
871 * @param pte Pointer to page table entry to update
872 * @param update_val Updated bits to set/clear in PTE. Ignored with
873 * OPTION_RESET or OPTION_CLEAR.
874 * @param update_mask Which bits to modify in the PTE. Ignored with
875 * OPTION_RESET or OPTION_CLEAR.
876 * @param options Control flags
877 * @retval Old PTE value
878 */
879 __pinned_func
pte_atomic_update(pentry_t * pte,pentry_t update_val,pentry_t update_mask,uint32_t options)880 static inline pentry_t pte_atomic_update(pentry_t *pte, pentry_t update_val,
881 pentry_t update_mask,
882 uint32_t options)
883 {
884 bool user_table = (options & OPTION_USER) != 0U;
885 bool reset = (options & OPTION_RESET) != 0U;
886 bool clear = (options & OPTION_CLEAR) != 0U;
887 pentry_t old_val, new_val;
888
889 do {
890 old_val = atomic_pte_get(pte);
891
892 new_val = old_val;
893 #ifdef CONFIG_X86_KPTI
894 if (is_flipped_pte(new_val)) {
895 /* Page was flipped for KPTI. Un-flip it */
896 new_val = ~new_val;
897 }
898 #endif /* CONFIG_X86_KPTI */
899
900 if (reset) {
901 new_val = reset_pte(new_val);
902 } else if (clear) {
903 new_val = 0;
904 } else {
905 new_val = ((new_val & ~update_mask) |
906 (update_val & update_mask));
907 }
908
909 new_val = pte_finalize_value(new_val, user_table, PTE_LEVEL);
910 } while (atomic_pte_cas(pte, old_val, new_val) == false);
911
912 #ifdef CONFIG_X86_KPTI
913 if (is_flipped_pte(old_val)) {
914 /* Page was flipped for KPTI. Un-flip it */
915 old_val = ~old_val;
916 }
917 #endif /* CONFIG_X86_KPTI */
918
919 return old_val;
920 }
921
922 /**
923 * Low level page table update function for a virtual page
924 *
925 * For the provided set of page tables, update the PTE associated with the
926 * virtual address to a new value, using the mask to control what bits
927 * need to be preserved.
928 *
929 * It is permitted to set up mappings without the Present bit set, in which
930 * case all other bits may be used for OS accounting.
931 *
932 * This function is atomic with respect to the page table entries being
933 * modified by another CPU, using atomic operations to update the requested
934 * bits and return the previous PTE value.
935 *
936 * Common mask values:
937 * MASK_ALL - Update all PTE bits. Exitsing state totally discarded.
938 * MASK_PERM - Only update permission bits. All other bits and physical
939 * mapping preserved.
940 *
941 * @param ptables Page tables to modify
942 * @param virt Virtual page table entry to update
943 * @param entry_val Value to update in the PTE (ignored if OPTION_RESET or
944 * OPTION_CLEAR)
945 * @param [out] old_val_ptr Filled in with previous PTE value. May be NULL.
946 * @param mask What bits to update in the PTE (ignored if OPTION_RESET or
947 * OPTION_CLEAR)
948 * @param options Control options, described above
949 */
950 __pinned_func
page_map_set(pentry_t * ptables,void * virt,pentry_t entry_val,pentry_t * old_val_ptr,pentry_t mask,uint32_t options)951 static void page_map_set(pentry_t *ptables, void *virt, pentry_t entry_val,
952 pentry_t *old_val_ptr, pentry_t mask, uint32_t options)
953 {
954 pentry_t *table = ptables;
955 bool flush = (options & OPTION_FLUSH) != 0U;
956
957 for (int level = 0; level < NUM_LEVELS; level++) {
958 int index;
959 pentry_t *entryp;
960
961 index = get_index(virt, level);
962 entryp = &table[index];
963
964 /* Check if we're a PTE */
965 if (level == PTE_LEVEL) {
966 pentry_t old_val = pte_atomic_update(entryp, entry_val,
967 mask, options);
968 if (old_val_ptr != NULL) {
969 *old_val_ptr = old_val;
970 }
971 break;
972 }
973
974 /* We fail an assertion here due to no support for
975 * splitting existing bigpage mappings.
976 * If the PS bit is not supported at some level (like
977 * in a PML4 entry) it is always reserved and must be 0
978 */
979 __ASSERT((*entryp & MMU_PS) == 0U, "large page encountered");
980 table = next_table(*entryp, level);
981 __ASSERT(table != NULL,
982 "missing page table level %d when trying to map %p",
983 level + 1, virt);
984 }
985 if (flush) {
986 tlb_flush_page(virt);
987 }
988 }
989
990 /**
991 * Map a physical region in a specific set of page tables.
992 *
993 * See documentation for page_map_set() for additional notes about masks and
994 * supported options.
995 *
996 * It is vital to remember that all virtual-to-physical mappings must be
997 * the same with respect to supervisor mode regardless of what thread is
998 * scheduled (and therefore, if multiple sets of page tables exist, which one
999 * is active).
1000 *
1001 * It is permitted to set up mappings without the Present bit set.
1002 *
1003 * @param ptables Page tables to modify
1004 * @param virt Base page-aligned virtual memory address to map the region.
1005 * @param phys Base page-aligned physical memory address for the region.
1006 * Ignored if OPTION_RESET or OPTION_CLEAR. Also affected by the mask
1007 * parameter. This address is not directly examined, it will simply be
1008 * programmed into the PTE.
1009 * @param size Size of the physical region to map
1010 * @param entry_flags Non-address bits to set in every PTE. Ignored if
1011 * OPTION_RESET. Also affected by the mask parameter.
1012 * @param mask What bits to update in each PTE. Un-set bits will never be
1013 * modified. Ignored if OPTION_RESET or OPTION_CLEAR.
1014 * @param options Control options, described above
1015 */
1016 __pinned_func
range_map_ptables(pentry_t * ptables,void * virt,uintptr_t phys,size_t size,pentry_t entry_flags,pentry_t mask,uint32_t options)1017 static void range_map_ptables(pentry_t *ptables, void *virt, uintptr_t phys,
1018 size_t size, pentry_t entry_flags, pentry_t mask,
1019 uint32_t options)
1020 {
1021 bool zero_entry = (options & (OPTION_RESET | OPTION_CLEAR)) != 0U;
1022
1023 assert_addr_aligned(phys);
1024 __ASSERT((size & (CONFIG_MMU_PAGE_SIZE - 1)) == 0U,
1025 "unaligned size %zu", size);
1026 __ASSERT((entry_flags & paging_levels[0].mask) == 0U,
1027 "entry_flags " PRI_ENTRY " overlaps address area",
1028 entry_flags);
1029
1030 /* This implementation is stack-efficient but not particularly fast.
1031 * We do a full page table walk for every page we are updating.
1032 * Recursive approaches are possible, but use much more stack space.
1033 */
1034 for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) {
1035 uint8_t *dest_virt = (uint8_t *)virt + offset;
1036 pentry_t entry_val;
1037
1038 if (zero_entry) {
1039 entry_val = 0;
1040 } else {
1041 entry_val = (pentry_t)(phys + offset) | entry_flags;
1042 }
1043
1044 page_map_set(ptables, dest_virt, entry_val, NULL, mask,
1045 options);
1046 }
1047 }
1048
1049 /**
1050 * Establish or update a memory mapping for all page tables
1051 *
1052 * The physical region noted from phys to phys + size will be mapped to
1053 * an equal sized virtual region starting at virt, with the provided flags.
1054 * The mask value denotes what bits in PTEs will actually be modified.
1055 *
1056 * See range_map_ptables() for additional details.
1057 *
1058 * @param virt Page-aligned starting virtual address
1059 * @param phys Page-aligned starting physical address. Ignored if the mask
1060 * parameter does not enable address bits or OPTION_RESET used.
1061 * This region is not directly examined, it will simply be
1062 * programmed into the page tables.
1063 * @param size Size of the physical region to map
1064 * @param entry_flags Desired state of non-address PTE bits covered by mask,
1065 * ignored if OPTION_RESET
1066 * @param mask What bits in the PTE to actually modifiy; unset bits will
1067 * be preserved. Ignored if OPTION_RESET.
1068 * @param options Control options. Do not set OPTION_USER here. OPTION_FLUSH
1069 * will trigger a TLB shootdown after all tables are updated.
1070 */
1071 __pinned_func
range_map(void * virt,uintptr_t phys,size_t size,pentry_t entry_flags,pentry_t mask,uint32_t options)1072 static void range_map(void *virt, uintptr_t phys, size_t size,
1073 pentry_t entry_flags, pentry_t mask, uint32_t options)
1074 {
1075 LOG_DBG("%s: %p -> %p (%zu) flags " PRI_ENTRY " mask "
1076 PRI_ENTRY " opt 0x%x", __func__, (void *)phys, virt, size,
1077 entry_flags, mask, options);
1078
1079 #ifdef CONFIG_X86_64
1080 /* There's a gap in the "64-bit" address space, as 4-level paging
1081 * requires bits 48 to 63 to be copies of bit 47. Test this
1082 * by treating as a signed value and shifting.
1083 */
1084 __ASSERT(((((intptr_t)virt) << 16) >> 16) == (intptr_t)virt,
1085 "non-canonical virtual address mapping %p (size %zu)",
1086 virt, size);
1087 #endif /* CONFIG_X86_64 */
1088
1089 __ASSERT((options & OPTION_USER) == 0U, "invalid option for function");
1090
1091 /* All virtual-to-physical mappings are the same in all page tables.
1092 * What can differ is only access permissions, defined by the memory
1093 * domain associated with the page tables, and the threads that are
1094 * members of that domain.
1095 *
1096 * Any new mappings need to be applied to all page tables.
1097 */
1098 #if defined(CONFIG_USERSPACE) && !defined(CONFIG_X86_COMMON_PAGE_TABLE)
1099 sys_snode_t *node;
1100
1101 SYS_SLIST_FOR_EACH_NODE(&x86_domain_list, node) {
1102 struct arch_mem_domain *domain =
1103 CONTAINER_OF(node, struct arch_mem_domain, node);
1104
1105 range_map_ptables(domain->ptables, virt, phys, size,
1106 entry_flags, mask, options | OPTION_USER);
1107 }
1108 #endif /* CONFIG_USERSPACE */
1109 range_map_ptables(z_x86_kernel_ptables, virt, phys, size, entry_flags,
1110 mask, options);
1111
1112 #ifdef CONFIG_SMP
1113 if ((options & OPTION_FLUSH) != 0U) {
1114 tlb_shootdown();
1115 }
1116 #endif /* CONFIG_SMP */
1117 }
1118
1119 __pinned_func
range_map_unlocked(void * virt,uintptr_t phys,size_t size,pentry_t entry_flags,pentry_t mask,uint32_t options)1120 static inline void range_map_unlocked(void *virt, uintptr_t phys, size_t size,
1121 pentry_t entry_flags, pentry_t mask,
1122 uint32_t options)
1123 {
1124 k_spinlock_key_t key;
1125
1126 key = k_spin_lock(&x86_mmu_lock);
1127 range_map(virt, phys, size, entry_flags, mask, options);
1128 k_spin_unlock(&x86_mmu_lock, key);
1129 }
1130
1131 __pinned_func
flags_to_entry(uint32_t flags)1132 static pentry_t flags_to_entry(uint32_t flags)
1133 {
1134 pentry_t entry_flags = MMU_P;
1135
1136 /* Translate flags argument into HW-recognized entry flags.
1137 *
1138 * Support for PAT is not implemented yet. Many systems may have
1139 * BIOS-populated MTRR values such that these cache settings are
1140 * redundant.
1141 */
1142 switch (flags & K_MEM_CACHE_MASK) {
1143 case K_MEM_CACHE_NONE:
1144 entry_flags |= MMU_PCD;
1145 break;
1146 case K_MEM_CACHE_WT:
1147 entry_flags |= MMU_PWT;
1148 break;
1149 case K_MEM_CACHE_WB:
1150 break;
1151 default:
1152 __ASSERT(false, "bad memory mapping flags 0x%x", flags);
1153 }
1154
1155 if ((flags & K_MEM_PERM_RW) != 0U) {
1156 entry_flags |= ENTRY_RW;
1157 }
1158
1159 if ((flags & K_MEM_PERM_USER) != 0U) {
1160 entry_flags |= ENTRY_US;
1161 }
1162
1163 if ((flags & K_MEM_PERM_EXEC) == 0U) {
1164 entry_flags |= ENTRY_XD;
1165 }
1166
1167 return entry_flags;
1168 }
1169
1170 /* map new region virt..virt+size to phys with provided arch-neutral flags */
1171 __pinned_func
arch_mem_map(void * virt,uintptr_t phys,size_t size,uint32_t flags)1172 void arch_mem_map(void *virt, uintptr_t phys, size_t size, uint32_t flags)
1173 {
1174 range_map_unlocked(virt, phys, size, flags_to_entry(flags),
1175 MASK_ALL, 0);
1176 }
1177
1178 /* unmap region addr..addr+size, reset entries and flush TLB */
arch_mem_unmap(void * addr,size_t size)1179 void arch_mem_unmap(void *addr, size_t size)
1180 {
1181 range_map_unlocked((void *)addr, 0, size, 0, 0,
1182 OPTION_FLUSH | OPTION_CLEAR);
1183 }
1184
1185 #ifdef Z_VM_KERNEL
1186 __boot_func
identity_map_remove(uint32_t level)1187 static void identity_map_remove(uint32_t level)
1188 {
1189 size_t size, scope = get_entry_scope(level);
1190 pentry_t *table;
1191 uint32_t cur_level;
1192 uint8_t *pos;
1193 pentry_t entry;
1194 pentry_t *entry_ptr;
1195
1196 k_mem_region_align((uintptr_t *)&pos, &size,
1197 (uintptr_t)CONFIG_SRAM_BASE_ADDRESS,
1198 (size_t)CONFIG_SRAM_SIZE * 1024U, scope);
1199
1200 while (size != 0U) {
1201 /* Need to get to the correct table */
1202 table = z_x86_kernel_ptables;
1203 for (cur_level = 0; cur_level < level; cur_level++) {
1204 entry = get_entry(table, pos, cur_level);
1205 table = next_table(entry, level);
1206 }
1207
1208 entry_ptr = get_entry_ptr(table, pos, level);
1209
1210 /* set_pte */
1211 *entry_ptr = 0;
1212 pos += scope;
1213 size -= scope;
1214 }
1215 }
1216 #endif
1217
1218 /* Invoked to remove the identity mappings in the page tables,
1219 * they were only needed to tranisition the instruction pointer at early boot
1220 */
1221 __boot_func
z_x86_mmu_init(void)1222 void z_x86_mmu_init(void)
1223 {
1224 #ifdef Z_VM_KERNEL
1225 /* We booted with physical address space being identity mapped.
1226 * As we are now executing in virtual address space,
1227 * the identity map is no longer needed. So remove them.
1228 *
1229 * Without PAE, only need to remove the entries at the PD level.
1230 * With PAE, need to also remove the entry at PDP level.
1231 */
1232 identity_map_remove(PDE_LEVEL);
1233
1234 #ifdef CONFIG_X86_PAE
1235 identity_map_remove(0);
1236 #endif
1237 #endif
1238 }
1239
1240 #if CONFIG_X86_STACK_PROTECTION
1241 __pinned_func
z_x86_set_stack_guard(k_thread_stack_t * stack)1242 void z_x86_set_stack_guard(k_thread_stack_t *stack)
1243 {
1244 /* Applied to all page tables as this affects supervisor mode.
1245 * XXX: This never gets reset when the thread exits, which can
1246 * cause problems if the memory is later used for something else.
1247 * See #29499
1248 *
1249 * Guard page is always the first page of the stack object for both
1250 * kernel and thread stacks.
1251 */
1252 range_map_unlocked(stack, 0, CONFIG_MMU_PAGE_SIZE,
1253 MMU_P | ENTRY_XD, MASK_PERM, OPTION_FLUSH);
1254 }
1255 #endif /* CONFIG_X86_STACK_PROTECTION */
1256
1257 #ifdef CONFIG_USERSPACE
1258 __pinned_func
page_validate(pentry_t * ptables,uint8_t * addr,bool write)1259 static bool page_validate(pentry_t *ptables, uint8_t *addr, bool write)
1260 {
1261 pentry_t *table = (pentry_t *)ptables;
1262
1263 for (int level = 0; level < NUM_LEVELS; level++) {
1264 pentry_t entry = get_entry(table, addr, level);
1265
1266 if (is_leaf(level, entry)) {
1267 #ifdef CONFIG_X86_KPTI
1268 if (is_flipped_pte(entry)) {
1269 /* We flipped this to prevent user access
1270 * since just clearing US isn't sufficient
1271 */
1272 return false;
1273 }
1274 #endif
1275 /* US and RW bits still carry meaning if non-present.
1276 * If the data page is paged out, access bits are
1277 * preserved. If un-mapped, the whole entry is 0.
1278 */
1279 if (((entry & MMU_US) == 0U) ||
1280 (write && ((entry & MMU_RW) == 0U))) {
1281 return false;
1282 }
1283 } else {
1284 if ((entry & MMU_P) == 0U) {
1285 /* Missing intermediate table, address is
1286 * un-mapped
1287 */
1288 return false;
1289 }
1290 table = next_table(entry, level);
1291 }
1292 }
1293
1294 return true;
1295 }
1296
1297 __pinned_func
bcb_fence(void)1298 static inline void bcb_fence(void)
1299 {
1300 #ifdef CONFIG_X86_BOUNDS_CHECK_BYPASS_MITIGATION
1301 __asm__ volatile ("lfence" : : : "memory");
1302 #endif
1303 }
1304
1305 __pinned_func
arch_buffer_validate(void * addr,size_t size,int write)1306 int arch_buffer_validate(void *addr, size_t size, int write)
1307 {
1308 pentry_t *ptables = z_x86_thread_page_tables_get(_current);
1309 uint8_t *virt;
1310 size_t aligned_size;
1311 int ret = 0;
1312
1313 /* addr/size arbitrary, fix this up into an aligned region */
1314 k_mem_region_align((uintptr_t *)&virt, &aligned_size,
1315 (uintptr_t)addr, size, CONFIG_MMU_PAGE_SIZE);
1316
1317 for (size_t offset = 0; offset < aligned_size;
1318 offset += CONFIG_MMU_PAGE_SIZE) {
1319 if (!page_validate(ptables, virt + offset, write)) {
1320 ret = -1;
1321 break;
1322 }
1323 }
1324
1325 bcb_fence();
1326
1327 return ret;
1328 }
1329 #ifdef CONFIG_X86_COMMON_PAGE_TABLE
1330 /* Very low memory configuration. A single set of page tables is used for
1331 * all threads. This relies on some assumptions:
1332 *
1333 * - No KPTI. If that were supported, we would need both a kernel and user
1334 * set of page tables.
1335 * - No SMP. If that were supported, we would need per-core page tables.
1336 * - Memory domains don't affect supervisor mode.
1337 * - All threads have the same virtual-to-physical mappings.
1338 * - Memory domain APIs can't be called by user mode.
1339 *
1340 * Because there is no SMP, only one set of page tables, and user threads can't
1341 * modify their own memory domains, we don't have to do much when
1342 * arch_mem_domain_* APIs are called. We do use a caching scheme to avoid
1343 * updating page tables if the last user thread scheduled was in the same
1344 * domain.
1345 *
1346 * We don't set CONFIG_ARCH_MEM_DOMAIN_DATA, since we aren't setting
1347 * up any arch-specific memory domain data (per domain page tables.)
1348 *
1349 * This is all nice and simple and saves a lot of memory. The cost is that
1350 * context switching is not trivial CR3 update. We have to reset all partitions
1351 * for the current domain configuration and then apply all the partitions for
1352 * the incoming thread's domain if they are not the same. We also need to
1353 * update permissions similarly on the thread stack region.
1354 */
1355
1356 __pinned_func
reset_region(uintptr_t start,size_t size)1357 static inline void reset_region(uintptr_t start, size_t size)
1358 {
1359 range_map_unlocked((void *)start, 0, size, 0, 0,
1360 OPTION_FLUSH | OPTION_RESET);
1361 }
1362
1363 __pinned_func
apply_region(uintptr_t start,size_t size,pentry_t attr)1364 static inline void apply_region(uintptr_t start, size_t size, pentry_t attr)
1365 {
1366 range_map_unlocked((void *)start, 0, size, attr, MASK_PERM,
1367 OPTION_FLUSH);
1368 }
1369
1370 /* Cache of the current memory domain applied to the common page tables and
1371 * the stack buffer region that had User access granted.
1372 */
1373 static __pinned_bss struct k_mem_domain *current_domain;
1374 static __pinned_bss uintptr_t current_stack_start;
1375 static __pinned_bss size_t current_stack_size;
1376
1377 __pinned_func
z_x86_swap_update_common_page_table(struct k_thread * incoming)1378 void z_x86_swap_update_common_page_table(struct k_thread *incoming)
1379 {
1380 k_spinlock_key_t key;
1381
1382 if ((incoming->base.user_options & K_USER) == 0) {
1383 /* Incoming thread is not a user thread. Memory domains don't
1384 * affect supervisor threads and we don't need to enable User
1385 * bits for its stack buffer; do nothing.
1386 */
1387 return;
1388 }
1389
1390 /* Step 1: Make sure the thread stack is set up correctly for the
1391 * for the incoming thread
1392 */
1393 if (incoming->stack_info.start != current_stack_start ||
1394 incoming->stack_info.size != current_stack_size) {
1395 if (current_stack_size != 0U) {
1396 reset_region(current_stack_start, current_stack_size);
1397 }
1398
1399 /* The incoming thread's stack region needs User permissions */
1400 apply_region(incoming->stack_info.start,
1401 incoming->stack_info.size,
1402 K_MEM_PARTITION_P_RW_U_RW);
1403
1404 /* Update cache */
1405 current_stack_start = incoming->stack_info.start;
1406 current_stack_size = incoming->stack_info.size;
1407 }
1408
1409 /* Step 2: The page tables always have some memory domain applied to
1410 * them. If the incoming thread's memory domain is different,
1411 * update the page tables
1412 */
1413 key = k_spin_lock(&z_mem_domain_lock);
1414 if (incoming->mem_domain_info.mem_domain == current_domain) {
1415 /* The incoming thread's domain is already applied */
1416 goto out_unlock;
1417 }
1418
1419 /* Reset the current memory domain regions... */
1420 if (current_domain != NULL) {
1421 for (int i = 0; i < CONFIG_MAX_DOMAIN_PARTITIONS; i++) {
1422 struct k_mem_partition *ptn =
1423 ¤t_domain->partitions[i];
1424
1425 if (ptn->size == 0) {
1426 continue;
1427 }
1428 reset_region(ptn->start, ptn->size);
1429 }
1430 }
1431
1432 /* ...and apply all the incoming domain's regions */
1433 for (int i = 0; i < CONFIG_MAX_DOMAIN_PARTITIONS; i++) {
1434 struct k_mem_partition *ptn =
1435 &incoming->mem_domain_info.mem_domain->partitions[i];
1436
1437 if (ptn->size == 0) {
1438 continue;
1439 }
1440 apply_region(ptn->start, ptn->size, ptn->attr);
1441 }
1442 current_domain = incoming->mem_domain_info.mem_domain;
1443 out_unlock:
1444 k_spin_unlock(&z_mem_domain_lock, key);
1445 }
1446
1447 /* If a partition was added or removed in the cached domain, update the
1448 * page tables.
1449 */
1450 __pinned_func
arch_mem_domain_partition_remove(struct k_mem_domain * domain,uint32_t partition_id)1451 void arch_mem_domain_partition_remove(struct k_mem_domain *domain,
1452 uint32_t partition_id)
1453 {
1454 struct k_mem_partition *ptn;
1455
1456 if (domain != current_domain) {
1457 return;
1458 }
1459
1460 ptn = &domain->partitions[partition_id];
1461 reset_region(ptn->start, ptn->size);
1462 }
1463
1464 __pinned_func
arch_mem_domain_partition_add(struct k_mem_domain * domain,uint32_t partition_id)1465 void arch_mem_domain_partition_add(struct k_mem_domain *domain,
1466 uint32_t partition_id)
1467 {
1468 struct k_mem_partition *ptn;
1469
1470 if (domain != current_domain) {
1471 return;
1472 }
1473
1474 ptn = &domain->partitions[partition_id];
1475 apply_region(ptn->start, ptn->size, ptn->attr);
1476 }
1477
1478 /* Rest of the APIs don't need to do anything */
1479 __pinned_func
arch_mem_domain_thread_add(struct k_thread * thread)1480 void arch_mem_domain_thread_add(struct k_thread *thread)
1481 {
1482
1483 }
1484
1485 __pinned_func
arch_mem_domain_thread_remove(struct k_thread * thread)1486 void arch_mem_domain_thread_remove(struct k_thread *thread)
1487 {
1488
1489 }
1490 #else
1491 /* Memory domains each have a set of page tables assigned to them */
1492
1493 /*
1494 * Pool of free memory pages for copying page tables, as needed.
1495 */
1496 #define PTABLE_COPY_SIZE (INITIAL_PTABLE_PAGES * CONFIG_MMU_PAGE_SIZE)
1497
1498 static uint8_t __pinned_noinit
1499 page_pool[PTABLE_COPY_SIZE * CONFIG_X86_MAX_ADDITIONAL_MEM_DOMAINS]
1500 __aligned(CONFIG_MMU_PAGE_SIZE);
1501
1502 __pinned_data
1503 static uint8_t *page_pos = page_pool + sizeof(page_pool);
1504
1505 /* Return a zeroed and suitably aligned memory page for page table data
1506 * from the global page pool
1507 */
1508 __pinned_func
page_pool_get(void)1509 static void *page_pool_get(void)
1510 {
1511 void *ret;
1512
1513 if (page_pos == page_pool) {
1514 ret = NULL;
1515 } else {
1516 page_pos -= CONFIG_MMU_PAGE_SIZE;
1517 ret = page_pos;
1518 }
1519
1520 if (ret != NULL) {
1521 memset(ret, 0, CONFIG_MMU_PAGE_SIZE);
1522 }
1523
1524 return ret;
1525 }
1526
1527 /* Debugging function to show how many pages are free in the pool */
1528 __pinned_func
pages_free(void)1529 static inline unsigned int pages_free(void)
1530 {
1531 return (page_pos - page_pool) / CONFIG_MMU_PAGE_SIZE;
1532 }
1533
1534 /**
1535 * Duplicate an entire set of page tables
1536 *
1537 * Uses recursion, but depth at any given moment is limited by the number of
1538 * paging levels.
1539 *
1540 * x86_mmu_lock must be held.
1541 *
1542 * @param dst a zeroed out chunk of memory of sufficient size for the indicated
1543 * paging level.
1544 * @param src some paging structure from within the source page tables to copy
1545 * at the indicated paging level
1546 * @param level Current paging level
1547 * @retval 0 Success
1548 * @retval -ENOMEM Insufficient page pool memory
1549 */
1550 __pinned_func
copy_page_table(pentry_t * dst,pentry_t * src,int level)1551 static int copy_page_table(pentry_t *dst, pentry_t *src, int level)
1552 {
1553 if (level == PTE_LEVEL) {
1554 /* Base case: leaf page table */
1555 for (int i = 0; i < get_num_entries(level); i++) {
1556 dst[i] = pte_finalize_value(reset_pte(src[i]), true,
1557 PTE_LEVEL);
1558 }
1559 } else {
1560 /* Recursive case: allocate sub-structures as needed and
1561 * make recursive calls on them
1562 */
1563 for (int i = 0; i < get_num_entries(level); i++) {
1564 pentry_t *child_dst;
1565 int ret;
1566
1567 if ((src[i] & MMU_P) == 0) {
1568 /* Non-present, skip */
1569 continue;
1570 }
1571
1572 if ((level == PDE_LEVEL) && ((src[i] & MMU_PS) != 0)) {
1573 /* large page: no lower level table */
1574 dst[i] = pte_finalize_value(src[i], true,
1575 PDE_LEVEL);
1576 continue;
1577 }
1578
1579 __ASSERT((src[i] & MMU_PS) == 0,
1580 "large page encountered");
1581
1582 child_dst = page_pool_get();
1583 if (child_dst == NULL) {
1584 return -ENOMEM;
1585 }
1586
1587 /* Page table links are by physical address. RAM
1588 * for page tables is identity-mapped, but double-
1589 * cast needed for PAE case where sizeof(void *) and
1590 * sizeof(pentry_t) are not the same.
1591 */
1592 dst[i] = ((pentry_t)z_mem_phys_addr(child_dst) |
1593 INT_FLAGS);
1594
1595 ret = copy_page_table(child_dst,
1596 next_table(src[i], level),
1597 level + 1);
1598 if (ret != 0) {
1599 return ret;
1600 }
1601 }
1602 }
1603
1604 return 0;
1605 }
1606
1607 __pinned_func
region_map_update(pentry_t * ptables,void * start,size_t size,pentry_t flags,bool reset)1608 static void region_map_update(pentry_t *ptables, void *start,
1609 size_t size, pentry_t flags, bool reset)
1610 {
1611 uint32_t options = OPTION_USER;
1612 k_spinlock_key_t key;
1613
1614 if (reset) {
1615 options |= OPTION_RESET;
1616 }
1617 if (ptables == z_x86_page_tables_get()) {
1618 options |= OPTION_FLUSH;
1619 }
1620
1621 key = k_spin_lock(&x86_mmu_lock);
1622 (void)range_map_ptables(ptables, start, 0, size, flags, MASK_PERM,
1623 options);
1624 k_spin_unlock(&x86_mmu_lock, key);
1625
1626 #ifdef CONFIG_SMP
1627 tlb_shootdown();
1628 #endif
1629 }
1630
1631 __pinned_func
reset_region(pentry_t * ptables,void * start,size_t size)1632 static inline void reset_region(pentry_t *ptables, void *start, size_t size)
1633 {
1634 LOG_DBG("%s(%p, %p, %zu)", __func__, ptables, start, size);
1635 region_map_update(ptables, start, size, 0, true);
1636 }
1637
1638 __pinned_func
apply_region(pentry_t * ptables,void * start,size_t size,pentry_t attr)1639 static inline void apply_region(pentry_t *ptables, void *start,
1640 size_t size, pentry_t attr)
1641 {
1642 LOG_DBG("%s(%p, %p, %zu, " PRI_ENTRY ")", __func__, ptables, start,
1643 size, attr);
1644 region_map_update(ptables, start, size, attr, false);
1645 }
1646
1647 __pinned_func
set_stack_perms(struct k_thread * thread,pentry_t * ptables)1648 static void set_stack_perms(struct k_thread *thread, pentry_t *ptables)
1649 {
1650 LOG_DBG("update stack for thread %p's ptables at %p: %p (size %zu)",
1651 thread, ptables, (void *)thread->stack_info.start,
1652 thread->stack_info.size);
1653 apply_region(ptables, (void *)thread->stack_info.start,
1654 thread->stack_info.size,
1655 MMU_P | MMU_XD | MMU_RW | MMU_US);
1656 }
1657
1658 /*
1659 * Arch interface implementations for memory domains and userspace
1660 */
1661
1662 __boot_func
arch_mem_domain_init(struct k_mem_domain * domain)1663 int arch_mem_domain_init(struct k_mem_domain *domain)
1664 {
1665 int ret;
1666 k_spinlock_key_t key = k_spin_lock(&x86_mmu_lock);
1667
1668 LOG_DBG("%s(%p)", __func__, domain);
1669 #if __ASSERT_ON
1670 sys_snode_t *node;
1671
1672 /* Assert that we have not already initialized this domain */
1673 SYS_SLIST_FOR_EACH_NODE(&x86_domain_list, node) {
1674 struct arch_mem_domain *list_domain =
1675 CONTAINER_OF(node, struct arch_mem_domain, node);
1676
1677 __ASSERT(list_domain != &domain->arch,
1678 "%s(%p) called multiple times", __func__, domain);
1679 }
1680 #endif /* __ASSERT_ON */
1681 #ifndef CONFIG_X86_KPTI
1682 /* If we're not using KPTI then we can use the build time page tables
1683 * (which are mutable) as the set of page tables for the default
1684 * memory domain, saving us some memory.
1685 *
1686 * We skip adding this domain to x86_domain_list since we already
1687 * update z_x86_kernel_ptables directly in range_map().
1688 */
1689 if (domain == &k_mem_domain_default) {
1690 domain->arch.ptables = z_x86_kernel_ptables;
1691 k_spin_unlock(&x86_mmu_lock, key);
1692 return 0;
1693 }
1694 #endif /* CONFIG_X86_KPTI */
1695 #ifdef CONFIG_X86_PAE
1696 /* PDPT is stored within the memory domain itself since it is
1697 * much smaller than a full page
1698 */
1699 (void)memset(domain->arch.pdpt, 0, sizeof(domain->arch.pdpt));
1700 domain->arch.ptables = domain->arch.pdpt;
1701 #else
1702 /* Allocate a page-sized top-level structure, either a PD or PML4 */
1703 domain->arch.ptables = page_pool_get();
1704 if (domain->arch.ptables == NULL) {
1705 k_spin_unlock(&x86_mmu_lock, key);
1706 return -ENOMEM;
1707 }
1708 #endif /* CONFIG_X86_PAE */
1709
1710 LOG_DBG("copy_page_table(%p, %p, 0)", domain->arch.ptables,
1711 z_x86_kernel_ptables);
1712
1713 /* Make a copy of the boot page tables created by gen_mmu.py */
1714 ret = copy_page_table(domain->arch.ptables, z_x86_kernel_ptables, 0);
1715 if (ret == 0) {
1716 sys_slist_append(&x86_domain_list, &domain->arch.node);
1717 }
1718 k_spin_unlock(&x86_mmu_lock, key);
1719
1720 return ret;
1721 }
1722
arch_mem_domain_partition_remove(struct k_mem_domain * domain,uint32_t partition_id)1723 void arch_mem_domain_partition_remove(struct k_mem_domain *domain,
1724 uint32_t partition_id)
1725 {
1726 struct k_mem_partition *partition = &domain->partitions[partition_id];
1727
1728 /* Reset the partition's region back to defaults */
1729 reset_region(domain->arch.ptables, (void *)partition->start,
1730 partition->size);
1731 }
1732
1733 /* Called on thread exit or when moving it to a different memory domain */
arch_mem_domain_thread_remove(struct k_thread * thread)1734 void arch_mem_domain_thread_remove(struct k_thread *thread)
1735 {
1736 struct k_mem_domain *domain = thread->mem_domain_info.mem_domain;
1737
1738 if ((thread->base.user_options & K_USER) == 0) {
1739 return;
1740 }
1741
1742 if ((thread->base.thread_state & _THREAD_DEAD) == 0) {
1743 /* Thread is migrating to another memory domain and not
1744 * exiting for good; we weren't called from
1745 * z_thread_abort(). Resetting the stack region will
1746 * take place in the forthcoming thread_add() call.
1747 */
1748 return;
1749 }
1750
1751 /* Restore permissions on the thread's stack area since it is no
1752 * longer a member of the domain.
1753 */
1754 reset_region(domain->arch.ptables, (void *)thread->stack_info.start,
1755 thread->stack_info.size);
1756 }
1757
1758 __pinned_func
arch_mem_domain_partition_add(struct k_mem_domain * domain,uint32_t partition_id)1759 void arch_mem_domain_partition_add(struct k_mem_domain *domain,
1760 uint32_t partition_id)
1761 {
1762 struct k_mem_partition *partition = &domain->partitions[partition_id];
1763
1764 /* Update the page tables with the partition info */
1765 apply_region(domain->arch.ptables, (void *)partition->start,
1766 partition->size, partition->attr | MMU_P);
1767 }
1768
1769 /* Invoked from memory domain API calls, as well as during thread creation */
1770 __pinned_func
arch_mem_domain_thread_add(struct k_thread * thread)1771 void arch_mem_domain_thread_add(struct k_thread *thread)
1772 {
1773 /* New memory domain we are being added to */
1774 struct k_mem_domain *domain = thread->mem_domain_info.mem_domain;
1775 /* This is only set for threads that were migrating from some other
1776 * memory domain; new threads this is NULL.
1777 *
1778 * Note that NULL check on old_ptables must be done before any
1779 * address translation or else (NULL + offset) != NULL.
1780 */
1781 pentry_t *old_ptables = UINT_TO_POINTER(thread->arch.ptables);
1782 bool is_user = (thread->base.user_options & K_USER) != 0;
1783 bool is_migration = (old_ptables != NULL) && is_user;
1784
1785 /* Allow US access to the thread's stack in its new domain if
1786 * we are migrating. If we are not migrating this is done in
1787 * z_x86_current_stack_perms()
1788 */
1789 if (is_migration) {
1790 old_ptables = z_mem_virt_addr(thread->arch.ptables);
1791 set_stack_perms(thread, domain->arch.ptables);
1792 }
1793
1794 thread->arch.ptables = z_mem_phys_addr(domain->arch.ptables);
1795 LOG_DBG("set thread %p page tables to %p", thread,
1796 (void *)thread->arch.ptables);
1797
1798 /* Check if we're doing a migration from a different memory domain
1799 * and have to remove permissions from its old domain.
1800 *
1801 * XXX: The checks we have to do here and in
1802 * arch_mem_domain_thread_remove() are clumsy, it may be worth looking
1803 * into adding a specific arch_mem_domain_thread_migrate() API.
1804 * See #29601
1805 */
1806 if (is_migration) {
1807 reset_region(old_ptables, (void *)thread->stack_info.start,
1808 thread->stack_info.size);
1809 }
1810
1811 #if !defined(CONFIG_X86_KPTI) && !defined(CONFIG_X86_COMMON_PAGE_TABLE)
1812 /* Need to switch to using these new page tables, in case we drop
1813 * to user mode before we are ever context switched out.
1814 * IPI takes care of this if the thread is currently running on some
1815 * other CPU.
1816 */
1817 if (thread == _current && thread->arch.ptables != z_x86_cr3_get()) {
1818 z_x86_cr3_set(thread->arch.ptables);
1819 }
1820 #endif /* CONFIG_X86_KPTI */
1821 }
1822 #endif /* !CONFIG_X86_COMMON_PAGE_TABLE */
1823
1824 __pinned_func
arch_mem_domain_max_partitions_get(void)1825 int arch_mem_domain_max_partitions_get(void)
1826 {
1827 return CONFIG_MAX_DOMAIN_PARTITIONS;
1828 }
1829
1830 /* Invoked from z_x86_userspace_enter */
1831 __pinned_func
z_x86_current_stack_perms(void)1832 void z_x86_current_stack_perms(void)
1833 {
1834 /* Clear any previous context in the stack buffer to prevent
1835 * unintentional data leakage.
1836 */
1837 (void)memset((void *)_current->stack_info.start, 0xAA,
1838 _current->stack_info.size - _current->stack_info.delta);
1839
1840 /* Only now is it safe to grant access to the stack buffer since any
1841 * previous context has been erased.
1842 */
1843 #ifdef CONFIG_X86_COMMON_PAGE_TABLE
1844 /* Re run swap page table update logic since we're entering User mode.
1845 * This will grant stack and memory domain access if it wasn't set
1846 * already (in which case this returns very quickly).
1847 */
1848 z_x86_swap_update_common_page_table(_current);
1849 #else
1850 /* Memory domain access is already programmed into the page tables.
1851 * Need to enable access to this new user thread's stack buffer in
1852 * its domain-specific page tables.
1853 */
1854 set_stack_perms(_current, z_x86_thread_page_tables_get(_current));
1855 #endif
1856 }
1857 #endif /* CONFIG_USERSPACE */
1858
1859 #ifdef CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES
1860 __boot_func
mark_addr_page_reserved(uintptr_t addr,size_t len)1861 static void mark_addr_page_reserved(uintptr_t addr, size_t len)
1862 {
1863 uintptr_t pos = ROUND_DOWN(addr, CONFIG_MMU_PAGE_SIZE);
1864 uintptr_t end = ROUND_UP(addr + len, CONFIG_MMU_PAGE_SIZE);
1865
1866 for (; pos < end; pos += CONFIG_MMU_PAGE_SIZE) {
1867 if (!z_is_page_frame(pos)) {
1868 continue;
1869 }
1870
1871 struct z_page_frame *pf = z_phys_to_page_frame(pos);
1872
1873 pf->flags |= Z_PAGE_FRAME_RESERVED;
1874 }
1875 }
1876
1877 __boot_func
arch_reserved_pages_update(void)1878 void arch_reserved_pages_update(void)
1879 {
1880 #ifdef CONFIG_X86_PC_COMPATIBLE
1881 /*
1882 * Best is to do some E820 or similar enumeration to specifically
1883 * identify all page frames which are reserved by the hardware or
1884 * firmware. Or use x86_memmap[] with Multiboot if available.
1885 *
1886 * But still, reserve everything in the first megabyte of physical
1887 * memory on PC-compatible platforms.
1888 */
1889 mark_addr_page_reserved(0, MB(1));
1890 #endif /* CONFIG_X86_PC_COMPATIBLE */
1891
1892 #ifdef CONFIG_X86_MEMMAP
1893 for (int i = 0; i < CONFIG_X86_MEMMAP_ENTRIES; i++) {
1894 struct x86_memmap_entry *entry = &x86_memmap[i];
1895
1896 switch (entry->type) {
1897 case X86_MEMMAP_ENTRY_UNUSED:
1898 __fallthrough;
1899 case X86_MEMMAP_ENTRY_RAM:
1900 continue;
1901
1902 case X86_MEMMAP_ENTRY_ACPI:
1903 __fallthrough;
1904 case X86_MEMMAP_ENTRY_NVS:
1905 __fallthrough;
1906 case X86_MEMMAP_ENTRY_DEFECTIVE:
1907 __fallthrough;
1908 default:
1909 /* If any of three above cases satisfied, exit switch
1910 * and mark page reserved
1911 */
1912 break;
1913 }
1914
1915 mark_addr_page_reserved(entry->base, entry->length);
1916 }
1917 #endif /* CONFIG_X86_MEMMAP */
1918 }
1919 #endif /* CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES */
1920
arch_page_phys_get(void * virt,uintptr_t * phys)1921 int arch_page_phys_get(void *virt, uintptr_t *phys)
1922 {
1923 pentry_t pte = 0;
1924 int level, ret;
1925
1926 __ASSERT(POINTER_TO_UINT(virt) % CONFIG_MMU_PAGE_SIZE == 0U,
1927 "unaligned address %p to %s", virt, __func__);
1928
1929 pentry_get(&level, &pte, z_x86_page_tables_get(), virt);
1930
1931 if ((pte & MMU_P) != 0) {
1932 if (phys != NULL) {
1933 *phys = (uintptr_t)get_entry_phys(pte, PTE_LEVEL);
1934 }
1935 ret = 0;
1936 } else {
1937 /* Not mapped */
1938 ret = -EFAULT;
1939 }
1940
1941 return ret;
1942 }
1943
1944 #ifdef CONFIG_DEMAND_PAGING
1945 #define PTE_MASK (paging_levels[PTE_LEVEL].mask)
1946
1947 __pinned_func
arch_mem_page_out(void * addr,uintptr_t location)1948 void arch_mem_page_out(void *addr, uintptr_t location)
1949 {
1950 pentry_t mask = PTE_MASK | MMU_P | MMU_A;
1951
1952 /* Accessed bit set to guarantee the entry is not completely 0 in
1953 * case of location value 0. A totally 0 PTE is un-mapped.
1954 */
1955 range_map(addr, location, CONFIG_MMU_PAGE_SIZE, MMU_A, mask,
1956 OPTION_FLUSH);
1957 }
1958
1959 __pinned_func
arch_mem_page_in(void * addr,uintptr_t phys)1960 void arch_mem_page_in(void *addr, uintptr_t phys)
1961 {
1962 pentry_t mask = PTE_MASK | MMU_P | MMU_D | MMU_A;
1963
1964 range_map(addr, phys, CONFIG_MMU_PAGE_SIZE, MMU_P, mask,
1965 OPTION_FLUSH);
1966 }
1967
1968 __pinned_func
arch_mem_scratch(uintptr_t phys)1969 void arch_mem_scratch(uintptr_t phys)
1970 {
1971 page_map_set(z_x86_page_tables_get(), Z_SCRATCH_PAGE,
1972 phys | MMU_P | MMU_RW | MMU_XD, NULL, MASK_ALL,
1973 OPTION_FLUSH);
1974 }
1975
1976 __pinned_func
arch_page_info_get(void * addr,uintptr_t * phys,bool clear_accessed)1977 uintptr_t arch_page_info_get(void *addr, uintptr_t *phys, bool clear_accessed)
1978 {
1979 pentry_t all_pte, mask;
1980 uint32_t options;
1981
1982 /* What to change, if anything, in the page_map_set() calls */
1983 if (clear_accessed) {
1984 mask = MMU_A;
1985 options = OPTION_FLUSH;
1986 } else {
1987 /* In this configuration page_map_set() just queries the
1988 * page table and makes no changes
1989 */
1990 mask = 0;
1991 options = 0U;
1992 }
1993
1994 page_map_set(z_x86_kernel_ptables, addr, 0, &all_pte, mask, options);
1995
1996 /* Un-mapped PTEs are completely zeroed. No need to report anything
1997 * else in this case.
1998 */
1999 if (all_pte == 0) {
2000 return ARCH_DATA_PAGE_NOT_MAPPED;
2001 }
2002
2003 #if defined(CONFIG_USERSPACE) && !defined(CONFIG_X86_COMMON_PAGE_TABLE)
2004 /* Don't bother looking at other page tables if non-present as we
2005 * are not required to report accurate accessed/dirty in this case
2006 * and all mappings are otherwise the same.
2007 */
2008 if ((all_pte & MMU_P) != 0) {
2009 sys_snode_t *node;
2010
2011 /* IRQs are locked, safe to do this */
2012 SYS_SLIST_FOR_EACH_NODE(&x86_domain_list, node) {
2013 pentry_t cur_pte;
2014 struct arch_mem_domain *domain =
2015 CONTAINER_OF(node, struct arch_mem_domain,
2016 node);
2017
2018 page_map_set(domain->ptables, addr, 0, &cur_pte,
2019 mask, options | OPTION_USER);
2020
2021 /* Logical OR of relevant PTE in all page tables.
2022 * addr/location and present state should be identical
2023 * among them.
2024 */
2025 all_pte |= cur_pte;
2026 }
2027 }
2028 #endif /* USERSPACE && ~X86_COMMON_PAGE_TABLE */
2029
2030 /* NOTE: We are truncating the PTE on PAE systems, whose pentry_t
2031 * are larger than a uintptr_t.
2032 *
2033 * We currently aren't required to report back XD state (bit 63), and
2034 * Zephyr just doesn't support large physical memory on 32-bit
2035 * systems, PAE was only implemented for XD support.
2036 */
2037 if (phys != NULL) {
2038 *phys = (uintptr_t)get_entry_phys(all_pte, PTE_LEVEL);
2039 }
2040
2041 /* We don't filter out any other bits in the PTE and the kernel
2042 * ignores them. For the case of ARCH_DATA_PAGE_NOT_MAPPED,
2043 * we use a bit which is never set in a real PTE (the PAT bit) in the
2044 * current system.
2045 *
2046 * The other ARCH_DATA_PAGE_* macros are defined to their corresponding
2047 * bits in the PTE.
2048 */
2049 return (uintptr_t)all_pte;
2050 }
2051
2052 __pinned_func
arch_page_location_get(void * addr,uintptr_t * location)2053 enum arch_page_location arch_page_location_get(void *addr, uintptr_t *location)
2054 {
2055 pentry_t pte;
2056 int level;
2057
2058 /* TODO: since we only have to query the current set of page tables,
2059 * could optimize this with recursive page table mapping
2060 */
2061 pentry_get(&level, &pte, z_x86_page_tables_get(), addr);
2062
2063 if (pte == 0) {
2064 /* Not mapped */
2065 return ARCH_PAGE_LOCATION_BAD;
2066 }
2067
2068 __ASSERT(level == PTE_LEVEL, "bigpage found at %p", addr);
2069 *location = (uintptr_t)get_entry_phys(pte, PTE_LEVEL);
2070
2071 if ((pte & MMU_P) != 0) {
2072 return ARCH_PAGE_LOCATION_PAGED_IN;
2073 } else {
2074 return ARCH_PAGE_LOCATION_PAGED_OUT;
2075 }
2076 }
2077
2078 #ifdef CONFIG_X86_KPTI
2079 __pinned_func
z_x86_kpti_is_access_ok(void * addr,pentry_t * ptables)2080 bool z_x86_kpti_is_access_ok(void *addr, pentry_t *ptables)
2081 {
2082 pentry_t pte;
2083 int level;
2084
2085 pentry_get(&level, &pte, ptables, addr);
2086
2087 /* Might as well also check if it's un-mapped, normally we don't
2088 * fetch the PTE from the page tables until we are inside
2089 * z_page_fault() and call arch_page_fault_status_get()
2090 */
2091 if (level != PTE_LEVEL || pte == 0 || is_flipped_pte(pte)) {
2092 return false;
2093 }
2094
2095 return true;
2096 }
2097 #endif /* CONFIG_X86_KPTI */
2098 #endif /* CONFIG_DEMAND_PAGING */
2099