1 /******************************************************************************
2 *
3 * Copyright (C) 2014 The Android Open Source Project
4 * Copyright 2003 - 2004 Open Interface North America, Inc. All rights reserved.
5 *
6 * Licensed under the Apache License, Version 2.0 (the "License");
7 * you may not use this file except in compliance with the License.
8 * You may obtain a copy of the License at:
9 *
10 * http://www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an "AS IS" BASIS,
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 *
18 ******************************************************************************/
19
20 /**********************************************************************************
21 $Revision: #1 $
22 ***********************************************************************************/
23
24 /**
25 @file
26
27 The functions in this file relate to the allocation of available bits to
28 subbands within the SBC/eSBC frame, along with support functions for computing
29 frame length and bitrate.
30
31 @ingroup codec_internal
32 */
33
34 /**
35 @addtogroup codec_internal
36 @{
37 */
38
39 #include "common/bt_target.h"
40 #include "oi_utils.h"
41 #include <oi_codec_sbc_private.h>
42
43 #if (defined(SBC_DEC_INCLUDED) && SBC_DEC_INCLUDED == TRUE)
44
OI_SBC_MaxBitpool(OI_CODEC_SBC_FRAME_INFO * frame)45 OI_UINT32 OI_SBC_MaxBitpool(OI_CODEC_SBC_FRAME_INFO *frame)
46 {
47 switch (frame->mode) {
48 case SBC_MONO:
49 case SBC_DUAL_CHANNEL:
50 return 16 * frame->nrof_subbands;
51 case SBC_STEREO:
52 case SBC_JOINT_STEREO:
53 return 32 * frame->nrof_subbands;
54 }
55
56 ERROR(("Invalid frame mode %d", frame->mode));
57 OI_ASSERT(FALSE);
58 return 0; /* Should never be reached */
59 }
60
61
internal_CalculateFramelen(OI_CODEC_SBC_FRAME_INFO * frame)62 PRIVATE OI_UINT16 internal_CalculateFramelen(OI_CODEC_SBC_FRAME_INFO *frame)
63 {
64 OI_UINT16 nbits = frame->nrof_blocks * frame->bitpool;
65 OI_UINT16 nrof_subbands = frame->nrof_subbands;
66 OI_UINT16 result = nbits;
67
68 if (frame->mode == SBC_JOINT_STEREO) {
69 result += nrof_subbands + (8 * nrof_subbands);
70 } else {
71 if (frame->mode == SBC_DUAL_CHANNEL) {
72 result += nbits;
73 }
74 if (frame->mode == SBC_MONO) {
75 result += 4 * nrof_subbands;
76 } else {
77 result += 8 * nrof_subbands;
78 }
79 }
80 return SBC_HEADER_LEN + (result + 7) / 8;
81 }
82
83
internal_CalculateBitrate(OI_CODEC_SBC_FRAME_INFO * frame)84 PRIVATE OI_UINT32 internal_CalculateBitrate(OI_CODEC_SBC_FRAME_INFO *frame)
85 {
86 OI_UINT blocksbands;
87 blocksbands = frame->nrof_subbands * frame->nrof_blocks;
88
89 return DIVIDE(8 * internal_CalculateFramelen(frame) * frame->frequency, blocksbands);
90 }
91
92
OI_SBC_CalculateFrameAndHeaderlen(OI_CODEC_SBC_FRAME_INFO * frame,OI_UINT * headerLen_)93 INLINE OI_UINT16 OI_SBC_CalculateFrameAndHeaderlen(OI_CODEC_SBC_FRAME_INFO *frame, OI_UINT *headerLen_)
94 {
95 OI_UINT headerLen = SBC_HEADER_LEN + frame->nrof_subbands * frame->nrof_channels / 2;
96
97 if (frame->mode == SBC_JOINT_STEREO) {
98 headerLen++;
99 }
100
101 *headerLen_ = headerLen;
102 return internal_CalculateFramelen(frame);
103 }
104
105
106 #define MIN(x, y) ((x) < (y) ? (x) : (y))
107
108
109 /*
110 * Computes the bit need for each sample and as also returns a counts of bit needs that are greater
111 * than one. This count is used in the first phase of bit allocation.
112 *
113 * We also compute a preferred bitpool value that this is the minimum bitpool needed to guarantee
114 * lossless representation of the audio data. The preferred bitpool may be larger than the bits
115 * actually required but the only input we have are the scale factors. For example, it takes 2 bits
116 * to represent values in the range -1 .. +1 but the scale factor is 0. To guarantee lossless
117 * representation we add 2 to each scale factor and sum them to come up with the preferred bitpool.
118 * This is not ideal because 0 requires 0 bits but we currently have no way of knowing this.
119 *
120 * @param bitneed Array to return bitneeds for each subband
121 *
122 * @param ch Channel 0 or 1
123 *
124 * @param preferredBitpool Returns the number of reserved bits
125 *
126 * @return The SBC bit need
127 *
128 */
computeBitneed(OI_CODEC_SBC_COMMON_CONTEXT * common,OI_UINT8 * bitneeds,OI_UINT ch,OI_UINT * preferredBitpool)129 OI_UINT computeBitneed(OI_CODEC_SBC_COMMON_CONTEXT *common,
130 OI_UINT8 *bitneeds,
131 OI_UINT ch,
132 OI_UINT *preferredBitpool)
133 {
134 static const OI_INT8 offset4[4][4] = {
135 { -1, 0, 0, 0 },
136 { -2, 0, 0, 1 },
137 { -2, 0, 0, 1 },
138 { -2, 0, 0, 1 }
139 };
140
141 static const OI_INT8 offset8[4][8] = {
142 { -2, 0, 0, 0, 0, 0, 0, 1 },
143 { -3, 0, 0, 0, 0, 0, 1, 2 },
144 { -4, 0, 0, 0, 0, 0, 1, 2 },
145 { -4, 0, 0, 0, 0, 0, 1, 2 }
146 };
147
148 const OI_UINT nrof_subbands = common->frameInfo.nrof_subbands;
149 OI_UINT sb;
150 OI_INT8 *scale_factor = &common->scale_factor[ch ? nrof_subbands : 0];
151 OI_UINT bitcount = 0;
152 OI_UINT8 maxBits = 0;
153 OI_UINT8 prefBits = 0;
154
155 if (common->frameInfo.alloc == SBC_SNR) {
156 for (sb = 0; sb < nrof_subbands; sb++) {
157 OI_INT bits = scale_factor[sb];
158 if (bits > maxBits) {
159 maxBits = bits;
160 }
161 if ((bitneeds[sb] = bits) > 1) {
162 bitcount += bits;
163 }
164 prefBits += 2 + bits;
165 }
166 } else {
167 const OI_INT8 *offset;
168 if (nrof_subbands == 4) {
169 offset = offset4[common->frameInfo.freqIndex];
170 } else {
171 offset = offset8[common->frameInfo.freqIndex];
172 }
173 for (sb = 0; sb < nrof_subbands; sb++) {
174 OI_INT bits = scale_factor[sb];
175 if (bits > maxBits) {
176 maxBits = bits;
177 }
178 prefBits += 2 + bits;
179 if (bits) {
180 bits -= offset[sb];
181 if (bits > 0) {
182 bits /= 2;
183 }
184 bits += 5;
185 }
186 if ((bitneeds[sb] = bits) > 1) {
187 bitcount += bits;
188 }
189 }
190 }
191 common->maxBitneed = OI_MAX(maxBits, common->maxBitneed);
192 *preferredBitpool += prefBits;
193 return bitcount;
194 }
195
196
197 /*
198 * Explanation of the adjustToFitBitpool inner loop.
199 *
200 * The inner loop computes the effect of adjusting the bit allocation up or
201 * down. Allocations must be 0 or in the range 2..16. This is accomplished by
202 * the following code:
203 *
204 * for (s = bands - 1; s >= 0; --s) {
205 * OI_INT bits = bitadjust + bitneeds[s];
206 * bits = bits < 2 ? 0 : bits;
207 * bits = bits > 16 ? 16 : bits;
208 * count += bits;
209 * }
210 *
211 * This loop can be optimized to perform 4 operations at a time as follows:
212 *
213 * Adjustment is computed as a 7 bit signed value and added to the bitneed.
214 *
215 * Negative allocations are zeroed by masking. (n & 0x40) >> 6 puts the
216 * sign bit into bit 0, adding this to 0x7F give us a mask of 0x80
217 * for -ve values and 0x7F for +ve values.
218 *
219 * n &= 0x7F + (n & 0x40) >> 6)
220 *
221 * Allocations greater than 16 are truncated to 16. Adjusted allocations are in
222 * the range 0..31 so we know that bit 4 indicates values >= 16. We use this bit
223 * to create a mask that zeroes bits 0 .. 3 if bit 4 is set.
224 *
225 * n &= (15 + (n >> 4))
226 *
227 * Allocations of 1 are disallowed. Add and shift creates a mask that
228 * eliminates the illegal value
229 *
230 * n &= ((n + 14) >> 4) | 0x1E
231 *
232 * These operations can be performed in 8 bits without overflowing so we can
233 * operate on 4 values at once.
234 */
235
236
237 /*
238 * Encoder/Decoder
239 *
240 * Computes adjustment +/- of bitneeds to fill bitpool and returns overall
241 * adjustment and excess bits.
242 *
243 * @param bitpool The bitpool we have to work within
244 *
245 * @param bitneeds An array of bit needs (more acturately allocation prioritities) for each
246 * subband across all blocks in the SBC frame
247 *
248 * @param subbands The number of subbands over which the adkustment is calculated. For mono and
249 * dual mode this is 4 or 8, for stereo or joint stereo this is 8 or 16.
250 *
251 * @param bitcount A starting point for the adjustment
252 *
253 * @param excess Returns the excess bits after the adjustment
254 *
255 * @return The adjustment.
256 */
adjustToFitBitpool(const OI_UINT bitpool,OI_UINT32 * bitneeds,const OI_UINT subbands,OI_UINT bitcount,OI_UINT * excess)257 OI_INT adjustToFitBitpool(const OI_UINT bitpool,
258 OI_UINT32 *bitneeds,
259 const OI_UINT subbands,
260 OI_UINT bitcount,
261 OI_UINT *excess)
262 {
263 OI_INT maxBitadjust = 0;
264 OI_INT bitadjust = (bitcount > bitpool) ? -8 : 8;
265 OI_INT chop = 8;
266
267 /*
268 * This is essentially a binary search for the optimal adjustment value.
269 */
270 while ((bitcount != bitpool) && chop) {
271 OI_UINT32 total = 0;
272 OI_UINT count;
273 OI_UINT32 adjust4;
274 OI_INT i;
275
276 adjust4 = bitadjust & 0x7F;
277 adjust4 |= (adjust4 << 8);
278 adjust4 |= (adjust4 << 16);
279
280 for (i = (subbands / 4 - 1); i >= 0; --i) {
281 OI_UINT32 mask;
282 OI_UINT32 n = bitneeds[i] + adjust4;
283 mask = 0x7F7F7F7F + ((n & 0x40404040) >> 6);
284 n &= mask;
285 mask = 0x0F0F0F0F + ((n & 0x10101010) >> 4);
286 n &= mask;
287 mask = (((n + 0x0E0E0E0E) >> 4) | 0x1E1E1E1E);
288 n &= mask;
289 total += n;
290 }
291
292 count = (total & 0xFFFF) + (total >> 16);
293 count = (count & 0xFF) + (count >> 8);
294
295 chop >>= 1;
296 if (count > bitpool) {
297 bitadjust -= chop;
298 } else {
299 maxBitadjust = bitadjust;
300 bitcount = count;
301 bitadjust += chop;
302 }
303 }
304
305 *excess = bitpool - bitcount;
306
307 return maxBitadjust;
308 }
309
310
311 /*
312 * The bit allocator trys to avoid single bit allocations except as a last resort. So in the case
313 * where a bitneed of 1 was passed over during the adsjustment phase 2 bits are now allocated.
314 */
allocAdjustedBits(OI_UINT8 * dest,OI_INT bits,OI_INT excess)315 INLINE OI_INT allocAdjustedBits(OI_UINT8 *dest,
316 OI_INT bits,
317 OI_INT excess)
318 {
319 if (bits < 16) {
320 if (bits > 1) {
321 if (excess) {
322 ++bits;
323 --excess;
324 }
325 } else if ((bits == 1) && (excess > 1)) {
326 bits = 2;
327 excess -= 2;
328 } else {
329 bits = 0;
330 }
331 } else {
332 bits = 16;
333 }
334 *dest = (OI_UINT8)bits;
335 return excess;
336 }
337
338
339 /*
340 * Excess bits not allocated by allocaAdjustedBits are allocated round-robin.
341 */
allocExcessBits(OI_UINT8 * dest,OI_INT excess)342 INLINE OI_INT allocExcessBits(OI_UINT8 *dest,
343 OI_INT excess)
344 {
345 if (*dest < 16) {
346 *dest += 1;
347 return excess - 1;
348 } else {
349 return excess;
350 }
351 }
352
oneChannelBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT * common,BITNEED_UNION1 * bitneeds,OI_UINT ch,OI_UINT bitcount)353 void oneChannelBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT *common,
354 BITNEED_UNION1 *bitneeds,
355 OI_UINT ch,
356 OI_UINT bitcount)
357 {
358 const OI_UINT8 nrof_subbands = common->frameInfo.nrof_subbands;
359 OI_UINT excess;
360 OI_UINT sb;
361 OI_INT bitadjust;
362 OI_UINT8 RESTRICT *allocBits;
363
364
365 {
366 OI_UINT ex;
367 bitadjust = adjustToFitBitpool(common->frameInfo.bitpool, bitneeds->uint32, nrof_subbands, bitcount, &ex);
368 /* We want the compiler to put excess into a register */
369 excess = ex;
370 }
371
372 /*
373 * Allocate adjusted bits
374 */
375 allocBits = &common->bits.uint8[ch ? nrof_subbands : 0];
376
377 sb = 0;
378 while (sb < nrof_subbands) {
379 excess = allocAdjustedBits(&allocBits[sb], bitneeds->uint8[sb] + bitadjust, excess);
380 ++sb;
381 }
382 sb = 0;
383 while (excess) {
384 excess = allocExcessBits(&allocBits[sb], excess);
385 ++sb;
386 }
387 }
388
389
monoBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT * common)390 void monoBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT *common)
391 {
392 BITNEED_UNION1 bitneeds;
393 OI_UINT bitcount;
394 OI_UINT bitpoolPreference = 0;
395
396 bitcount = computeBitneed(common, bitneeds.uint8, 0, &bitpoolPreference);
397
398 oneChannelBitAllocation(common, &bitneeds, 0, bitcount);
399 }
400
401 /**
402 @}
403 */
404
405 #endif /* #if (defined(SBC_DEC_INCLUDED) && SBC_DEC_INCLUDED == TRUE) */
406