1 /*
2 * AES SIV (RFC 5297)
3 * Copyright (c) 2013 Cozybit, Inc.
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10
11 #include "common.h"
12 #include "aes.h"
13 #include "aes_wrap.h"
14 #include "aes_siv.h"
15
16
17 static const u8 zero[AES_BLOCK_SIZE];
18
19
dbl(u8 * pad)20 static void dbl(u8 *pad)
21 {
22 int i, carry;
23
24 carry = pad[0] & 0x80;
25 for (i = 0; i < AES_BLOCK_SIZE - 1; i++)
26 pad[i] = (pad[i] << 1) | (pad[i + 1] >> 7);
27 pad[AES_BLOCK_SIZE - 1] <<= 1;
28 if (carry)
29 pad[AES_BLOCK_SIZE - 1] ^= 0x87;
30 }
31
32
xor(u8 * a,const u8 * b)33 static void xor(u8 *a, const u8 *b)
34 {
35 int i;
36
37 for (i = 0; i < AES_BLOCK_SIZE; i++)
38 *a++ ^= *b++;
39 }
40
41
xorend(u8 * a,int alen,const u8 * b,int blen)42 static void xorend(u8 *a, int alen, const u8 *b, int blen)
43 {
44 int i;
45
46 if (alen < blen)
47 return;
48
49 for (i = 0; i < blen; i++)
50 a[alen - blen + i] ^= b[i];
51 }
52
53
pad_block(u8 * pad,const u8 * addr,size_t len)54 static void pad_block(u8 *pad, const u8 *addr, size_t len)
55 {
56 os_memset(pad, 0, AES_BLOCK_SIZE);
57 os_memcpy(pad, addr, len);
58
59 if (len < AES_BLOCK_SIZE)
60 pad[len] = 0x80;
61 }
62
63
aes_s2v(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],size_t * len,u8 * mac)64 static int aes_s2v(const u8 *key, size_t key_len,
65 size_t num_elem, const u8 *addr[], size_t *len, u8 *mac)
66 {
67 u8 tmp[AES_BLOCK_SIZE], tmp2[AES_BLOCK_SIZE];
68 u8 *buf = NULL;
69 int ret;
70 size_t i;
71 const u8 *data[1];
72 size_t data_len[1];
73
74 if (!num_elem) {
75 os_memcpy(tmp, zero, sizeof(zero));
76 tmp[AES_BLOCK_SIZE - 1] = 1;
77 data[0] = tmp;
78 data_len[0] = sizeof(tmp);
79 return omac1_aes_vector(key, key_len, 1, data, data_len, mac);
80 }
81
82 data[0] = zero;
83 data_len[0] = sizeof(zero);
84 ret = omac1_aes_vector(key, key_len, 1, data, data_len, tmp);
85 if (ret)
86 return ret;
87
88 for (i = 0; i < num_elem - 1; i++) {
89 ret = omac1_aes_vector(key, key_len, 1, &addr[i], &len[i],
90 tmp2);
91 if (ret)
92 return ret;
93
94 dbl(tmp);
95 xor(tmp, tmp2);
96 }
97 if (len[i] >= AES_BLOCK_SIZE) {
98 buf = os_memdup(addr[i], len[i]);
99 if (!buf)
100 return -1;
101
102 xorend(buf, len[i], tmp, AES_BLOCK_SIZE);
103 data[0] = buf;
104 ret = omac1_aes_vector(key, key_len, 1, data, &len[i], mac);
105 bin_clear_free(buf, len[i]);
106 return ret;
107 }
108
109 dbl(tmp);
110 pad_block(tmp2, addr[i], len[i]);
111 xor(tmp, tmp2);
112
113 data[0] = tmp;
114 data_len[0] = sizeof(tmp);
115 return omac1_aes_vector(key, key_len, 1, data, data_len, mac);
116 }
117
118
aes_siv_encrypt(const u8 * key,size_t key_len,const u8 * pw,size_t pwlen,size_t num_elem,const u8 * addr[],const size_t * len,u8 * out)119 int aes_siv_encrypt(const u8 *key, size_t key_len,
120 const u8 *pw, size_t pwlen,
121 size_t num_elem, const u8 *addr[], const size_t *len,
122 u8 *out)
123 {
124 const u8 *_addr[6];
125 size_t _len[6];
126 const u8 *k1, *k2;
127 u8 v[AES_BLOCK_SIZE];
128 size_t i;
129 u8 *iv, *crypt_pw;
130
131 if (num_elem > ARRAY_SIZE(_addr) - 1 ||
132 (key_len != 32 && key_len != 48 && key_len != 64))
133 return -1;
134
135 key_len /= 2;
136 k1 = key;
137 k2 = key + key_len;
138
139 for (i = 0; i < num_elem; i++) {
140 _addr[i] = addr[i];
141 _len[i] = len[i];
142 }
143 _addr[num_elem] = pw;
144 _len[num_elem] = pwlen;
145
146 if (aes_s2v(k1, key_len, num_elem + 1, _addr, _len, v))
147 return -1;
148
149 iv = out;
150 crypt_pw = out + AES_BLOCK_SIZE;
151
152 os_memcpy(iv, v, AES_BLOCK_SIZE);
153 os_memcpy(crypt_pw, pw, pwlen);
154
155 /* zero out 63rd and 31st bits of ctr (from right) */
156 v[8] &= 0x7f;
157 v[12] &= 0x7f;
158 return aes_ctr_encrypt(k2, key_len, v, crypt_pw, pwlen);
159 }
160
161
aes_siv_decrypt(const u8 * key,size_t key_len,const u8 * iv_crypt,size_t iv_c_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * out)162 int aes_siv_decrypt(const u8 *key, size_t key_len,
163 const u8 *iv_crypt, size_t iv_c_len,
164 size_t num_elem, const u8 *addr[], const size_t *len,
165 u8 *out)
166 {
167 const u8 *_addr[6];
168 size_t _len[6];
169 const u8 *k1, *k2;
170 size_t crypt_len;
171 size_t i;
172 int ret;
173 u8 iv[AES_BLOCK_SIZE];
174 u8 check[AES_BLOCK_SIZE];
175
176 if (iv_c_len < AES_BLOCK_SIZE || num_elem > ARRAY_SIZE(_addr) - 1 ||
177 (key_len != 32 && key_len != 48 && key_len != 64))
178 return -1;
179 crypt_len = iv_c_len - AES_BLOCK_SIZE;
180 key_len /= 2;
181 k1 = key;
182 k2 = key + key_len;
183
184 for (i = 0; i < num_elem; i++) {
185 _addr[i] = addr[i];
186 _len[i] = len[i];
187 }
188 _addr[num_elem] = out;
189 _len[num_elem] = crypt_len;
190
191 os_memcpy(iv, iv_crypt, AES_BLOCK_SIZE);
192 os_memcpy(out, iv_crypt + AES_BLOCK_SIZE, crypt_len);
193
194 iv[8] &= 0x7f;
195 iv[12] &= 0x7f;
196
197 ret = aes_ctr_encrypt(k2, key_len, iv, out, crypt_len);
198 if (ret)
199 return ret;
200
201 ret = aes_s2v(k1, key_len, num_elem + 1, _addr, _len, check);
202 if (ret)
203 return ret;
204 if (os_memcmp(check, iv_crypt, AES_BLOCK_SIZE) == 0)
205 return 0;
206
207 return -1;
208 }
209