1 /*
2 * SPDX-FileCopyrightText: 2019-2024 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /**
8 * ADC is shared by multiple components, including:
9 * - esp_phy
10 * - esp_wifi
11 * - driver
12 *
13 * However, usages of above components are different.
14 * Therefore, we put the common used parts into `esp_hw_support`, including:
15 * - adc power maintainance
16 * - adc hw calibration settings
17 * - adc locks, to prevent concurrently using adc hw
18 */
19
20 #include <zephyr/kernel.h>
21 #include <zephyr/logging/log.h>
22
23 #include <esp_types.h>
24 #include "sdkconfig.h"
25 #include "sys/lock.h"
26 #include "esp_log.h"
27 #include "esp_check.h"
28 #include "hal/adc_types.h"
29 #include "hal/adc_hal.h"
30 #include "hal/adc_hal_common.h"
31 #include "esp_private/adc_share_hw_ctrl.h"
32 #include "esp_private/sar_periph_ctrl.h"
33 #include "esp_private/periph_ctrl.h"
34 #include "soc/periph_defs.h"
35 //For calibration
36 #if CONFIG_IDF_TARGET_ESP32S2
37 #include "esp_efuse_rtc_table.h"
38 #elif SOC_ADC_CALIBRATION_V1_SUPPORTED
39 #include "esp_efuse_rtc_calib.h"
40 #endif
41
42
43 static const char *TAG = "adc_share_hw_ctrl";
44
45 extern int rtc_spinlock;
46
47 #define RTC_ENTER_CRITICAL() do { rtc_spinlock = irq_lock(); } while(0)
48 #define RTC_EXIT_CRITICAL() irq_unlock(rtc_spinlock);
49
50 #if SOC_ADC_CALIBRATION_V1_SUPPORTED
51 /*---------------------------------------------------------------
52 ADC Hardware Calibration
53 ---------------------------------------------------------------*/
54 #if CONFIG_IDF_TARGET_ESP32S2
55 #define esp_efuse_rtc_calib_get_ver() esp_efuse_rtc_table_read_calib_version()
56
esp_efuse_rtc_calib_get_init_code(int version,uint32_t adc_unit,int atten)57 static inline uint32_t esp_efuse_rtc_calib_get_init_code(int version, uint32_t adc_unit, int atten)
58 {
59 int tag = esp_efuse_rtc_table_get_tag(version, adc_unit, atten, RTCCALIB_V2_PARAM_VINIT);
60 return esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
61 }
62 #endif
63
64 static uint32_t s_adc_cali_param[SOC_ADC_PERIPH_NUM][SOC_ADC_ATTEN_NUM] = {};
65
adc_calc_hw_calibration_code(adc_unit_t adc_n,adc_atten_t atten)66 void adc_calc_hw_calibration_code(adc_unit_t adc_n, adc_atten_t atten)
67 {
68 if (s_adc_cali_param[adc_n][atten]) {
69 ESP_EARLY_LOGV(TAG, "Use calibrated val ADC%d atten=%d: %04X", adc_n + 1, atten, s_adc_cali_param[adc_n][atten]);
70 return ;
71 }
72
73 // check if we can fetch the values from eFuse.
74 int version = esp_efuse_rtc_calib_get_ver();
75
76 uint32_t init_code = 0;
77
78 if ((version >= ESP_EFUSE_ADC_CALIB_VER_MIN) &&
79 (version <= ESP_EFUSE_ADC_CALIB_VER_MAX)) {
80 // Guarantee the calibration version before calling efuse function
81 init_code = esp_efuse_rtc_calib_get_init_code(version, adc_n, atten);
82 }
83 #if SOC_ADC_SELF_HW_CALI_SUPPORTED
84 else {
85 ESP_EARLY_LOGD(TAG, "Calibration eFuse is not configured, use self-calibration for ICode");
86 sar_periph_ctrl_adc_oneshot_power_acquire();
87 RTC_ENTER_CRITICAL();
88 adc_ll_pwdet_set_cct(ADC_LL_PWDET_CCT_DEFAULT);
89 const bool internal_gnd = true;
90 init_code = adc_hal_self_calibration(adc_n, atten, internal_gnd);
91 RTC_EXIT_CRITICAL();
92 sar_periph_ctrl_adc_oneshot_power_release();
93 }
94 #else
95 else {
96 ESP_EARLY_LOGD(TAG, "ICode self-calibration isn't supported");
97 }
98 #endif //SOC_ADC_SELF_HW_CALI_SUPPORTED
99
100 s_adc_cali_param[adc_n][atten] = init_code;
101 ESP_EARLY_LOGV(TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n + 1, atten, init_code);
102 }
103
adc_set_hw_calibration_code(adc_unit_t adc_n,adc_atten_t atten)104 void IRAM_ATTR adc_set_hw_calibration_code(adc_unit_t adc_n, adc_atten_t atten)
105 {
106 adc_hal_set_calibration_param(adc_n, s_adc_cali_param[adc_n][atten]);
107 }
108
109 #if SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED
110 static int s_adc_cali_chan_compens[SOC_ADC_MAX_CHANNEL_NUM][SOC_ADC_ATTEN_NUM] = {};
adc_load_hw_calibration_chan_compens(adc_unit_t adc_n,adc_channel_t chan,adc_atten_t atten)111 void adc_load_hw_calibration_chan_compens(adc_unit_t adc_n, adc_channel_t chan, adc_atten_t atten)
112 {
113 int version = esp_efuse_rtc_calib_get_ver();
114 if ((version >= ESP_EFUSE_ADC_CALIB_VER_MIN) &&
115 (version <= ESP_EFUSE_ADC_CALIB_VER_MAX)) {
116 // Guarantee the calibration version before calling efuse function
117 s_adc_cali_chan_compens[chan][atten] = esp_efuse_rtc_calib_get_chan_compens(version, adc_n, chan, atten);
118 }
119 // No warning when version doesn't match because should has warned in adc_calc_hw_calibration_code
120 }
121
adc_get_hw_calibration_chan_compens(adc_unit_t adc_n,adc_channel_t chan,adc_atten_t atten)122 int IRAM_ATTR adc_get_hw_calibration_chan_compens(adc_unit_t adc_n, adc_channel_t chan, adc_atten_t atten)
123 {
124 return s_adc_cali_chan_compens[chan][atten];
125 }
126 #endif // SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED
127 #endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
128
129 /*---------------------------------------------------------------
130 ADC Hardware Locks
131 ---------------------------------------------------------------*/
132 K_MUTEX_DEFINE(adc1_lock);
133 K_MUTEX_DEFINE(adc2_lock);
134
135 #define ADC_LOCK_ACQUIRE(lock) do { k_mutex_lock(lock, K_FOREVER); } while(0)
136 #define ADC_LOCK_RELEASE(lock) do { k_mutex_unlock(lock); } while(0)
137 #define ADC_LOCK_TRY_ACQUIRE(lock) k_mutex_lock(lock, K_NO_WAIT)
138
adc_lock_acquire(adc_unit_t adc_unit)139 esp_err_t adc_lock_acquire(adc_unit_t adc_unit)
140 {
141 if (adc_unit == ADC_UNIT_1) {
142 ADC_LOCK_ACQUIRE(&adc1_lock);
143 }
144
145 if (adc_unit == ADC_UNIT_2) {
146 ADC_LOCK_ACQUIRE(&adc2_lock);
147 }
148
149 return ESP_OK;
150 }
151
adc_lock_release(adc_unit_t adc_unit)152 esp_err_t adc_lock_release(adc_unit_t adc_unit)
153 {
154 if (adc_unit == ADC_UNIT_2) {
155 ESP_RETURN_ON_FALSE((adc2_lock.lock_count != 0), ESP_ERR_INVALID_STATE, TAG, "adc2 lock release without acquiring");
156 ADC_LOCK_RELEASE(&adc2_lock);
157 }
158
159 if (adc_unit == ADC_UNIT_1) {
160 ESP_RETURN_ON_FALSE((adc1_lock.lock_count != 0), ESP_ERR_INVALID_STATE, TAG, "adc2 lock release without acquiring");
161 ADC_LOCK_RELEASE(&adc1_lock);
162 }
163
164 return ESP_OK;
165 }
166
adc_lock_try_acquire(adc_unit_t adc_unit)167 esp_err_t adc_lock_try_acquire(adc_unit_t adc_unit)
168 {
169 if (adc_unit == ADC_UNIT_1) {
170 if (ADC_LOCK_TRY_ACQUIRE(&adc1_lock) == -1) {
171 return ESP_ERR_TIMEOUT;
172 }
173 }
174
175 if (adc_unit == ADC_UNIT_2) {
176 if (ADC_LOCK_TRY_ACQUIRE(&adc2_lock) == -1) {
177 return ESP_ERR_TIMEOUT;
178 }
179 }
180
181 return ESP_OK;
182 }
183
adc2_wifi_acquire(void)184 esp_err_t adc2_wifi_acquire(void)
185 {
186 #if CONFIG_IDF_TARGET_ESP32
187 /* Wi-Fi module will use adc2. Use locks to avoid conflicts. */
188 adc_lock_acquire(ADC_UNIT_2);
189 ESP_LOGD(TAG, "Wi-Fi takes adc2 lock.");
190 #endif
191
192 return ESP_OK;
193 }
194
adc2_wifi_release(void)195 esp_err_t adc2_wifi_release(void)
196 {
197 #if CONFIG_IDF_TARGET_ESP32
198 return adc_lock_release(ADC_UNIT_2);
199 #endif
200
201 return ESP_OK;
202 }
203
204 static unsigned int s_spinlock = 0;
205
206 /*------------------------------------------------------------------------------
207 * For those who use APB_SARADC periph
208 *----------------------------------------------------------------------------*/
209 static int s_adc_digi_ctrlr_cnt;
210
adc_apb_periph_claim(void)211 void adc_apb_periph_claim(void)
212 {
213 s_spinlock = irq_lock();
214 s_adc_digi_ctrlr_cnt++;
215 if (s_adc_digi_ctrlr_cnt == 1) {
216 //enable ADC digital part
217 periph_module_enable(PERIPH_SARADC_MODULE);
218 //reset ADC digital part
219 periph_module_reset(PERIPH_SARADC_MODULE);
220 }
221
222 irq_unlock(s_spinlock);
223 }
224
adc_apb_periph_free(void)225 void adc_apb_periph_free(void)
226 {
227 s_spinlock = irq_lock();
228 s_adc_digi_ctrlr_cnt--;
229 if (s_adc_digi_ctrlr_cnt == 0) {
230 periph_module_disable(PERIPH_SARADC_MODULE);
231 } else if (s_adc_digi_ctrlr_cnt < 0) {
232 irq_unlock(s_spinlock);
233 ESP_LOGE(TAG, "%s called, but `s_adc_digi_ctrlr_cnt == 0`", __func__);
234 abort();
235 }
236
237 irq_unlock(s_spinlock);
238 }
239