1 /*
2 * SPDX-FileCopyrightText: 2016-2022 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <esp_types.h>
8 #include <stdlib.h>
9 #include <ctype.h>
10 #include <string.h>
11 #include "sdkconfig.h"
12 #include "esp_intr_alloc.h"
13 #include "esp_log.h"
14 #include "esp_pm.h"
15 #include "esp_check.h"
16 #include "sys/lock.h"
17 #include "freertos/FreeRTOS.h"
18 #include "freertos/semphr.h"
19 #include "freertos/timers.h"
20 #include "freertos/ringbuf.h"
21 #include "esp_private/periph_ctrl.h"
22 #include "esp_private/adc_share_hw_ctrl.h"
23 #include "esp_private/sar_periph_ctrl.h"
24 #include "hal/adc_types.h"
25 #include "hal/adc_hal.h"
26 #include "hal/dma_types.h"
27 #include "hal/adc_hal_common.h"
28
29 #include "driver/gpio.h"
30 #include "driver/adc_types_legacy.h"
31
32 //For calibration
33 #if CONFIG_IDF_TARGET_ESP32S2
34 #include "esp_efuse_rtc_table.h"
35 #elif SOC_ADC_CALIBRATION_V1_SUPPORTED
36 #include "esp_efuse_rtc_calib.h"
37 #endif
38 //For DMA
39 #if SOC_GDMA_SUPPORTED
40 #include "esp_private/gdma.h"
41 #elif CONFIG_IDF_TARGET_ESP32S2
42 #include "hal/spi_types.h"
43 #include "esp_private/spi_common_internal.h"
44 #elif CONFIG_IDF_TARGET_ESP32
45 #include "driver/i2s_types.h"
46 #include "soc/i2s_periph.h"
47 #include "esp_private/i2s_platform.h"
48 #endif
49
50 static const char *ADC_TAG = "ADC";
51
52 #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
53
54 extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
55 #define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
56 #define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
57
58 #define INTERNAL_BUF_NUM 5
59
60 /*---------------------------------------------------------------
61 Digital Controller Context
62 ---------------------------------------------------------------*/
63 typedef struct adc_digi_context_t {
64 uint8_t *rx_dma_buf; //dma buffer
65 adc_hal_dma_ctx_t hal; //hal context
66 #if SOC_GDMA_SUPPORTED
67 gdma_channel_handle_t rx_dma_channel; //dma rx channel handle
68 #elif CONFIG_IDF_TARGET_ESP32S2
69 spi_host_device_t spi_host; //ADC uses this SPI DMA
70 intr_handle_t intr_hdl; //Interrupt handler
71 #elif CONFIG_IDF_TARGET_ESP32
72 i2s_port_t i2s_host; //ADC uses this I2S DMA
73 intr_handle_t intr_hdl; //Interrupt handler
74 #endif
75 RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler
76 intptr_t rx_eof_desc_addr; //eof descriptor address of RX channel
77 bool ringbuf_overflow_flag; //1: ringbuffer overflow
78 bool driver_start_flag; //1: driver is started; 0: driver is stoped
79 bool use_adc1; //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
80 bool use_adc2; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
81 adc_atten_t adc1_atten; //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
82 adc_atten_t adc2_atten; //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
83 adc_hal_digi_ctrlr_cfg_t hal_digi_ctrlr_cfg; //Hal digital controller configuration
84 esp_pm_lock_handle_t pm_lock; //For power management
85 } adc_digi_context_t;
86
87 static adc_digi_context_t *s_adc_digi_ctx = NULL;
88 #ifdef CONFIG_PM_ENABLE
89 //Only for deprecated API
90 extern esp_pm_lock_handle_t adc_digi_arbiter_lock;
91 #endif //CONFIG_PM_ENABLE
92
93 /*---------------------------------------------------------------
94 ADC Continuous Read Mode (via DMA)
95 ---------------------------------------------------------------*/
96 //Function to address transaction
97 static bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx);
98
99 #if SOC_GDMA_SUPPORTED
100 static bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
101 #else
102 static void adc_dma_intr_handler(void *arg);
103 #endif
104
adc_digi_get_io_num(adc_unit_t adc_unit,uint8_t adc_channel)105 static int8_t adc_digi_get_io_num(adc_unit_t adc_unit, uint8_t adc_channel)
106 {
107 assert(adc_unit < SOC_ADC_PERIPH_NUM);
108 uint8_t adc_n = (adc_unit == ADC_UNIT_1) ? 0 : 1;
109 return adc_channel_io_map[adc_n][adc_channel];
110 }
111
adc_digi_gpio_init(adc_unit_t adc_unit,uint16_t channel_mask)112 static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
113 {
114 esp_err_t ret = ESP_OK;
115 uint64_t gpio_mask = 0;
116 uint32_t n = 0;
117 int8_t io = 0;
118
119 while (channel_mask) {
120 if (channel_mask & 0x1) {
121 io = adc_digi_get_io_num(adc_unit, n);
122 if (io < 0) {
123 return ESP_ERR_INVALID_ARG;
124 }
125 gpio_mask |= BIT64(io);
126 }
127 channel_mask = channel_mask >> 1;
128 n++;
129 }
130
131 gpio_config_t cfg = {
132 .pin_bit_mask = gpio_mask,
133 .mode = GPIO_MODE_DISABLE,
134 };
135 ret = gpio_config(&cfg);
136
137 return ret;
138 }
139
adc_digi_deinitialize(void)140 esp_err_t adc_digi_deinitialize(void)
141 {
142 if (!s_adc_digi_ctx) {
143 return ESP_ERR_INVALID_STATE;
144 }
145
146 if (s_adc_digi_ctx->driver_start_flag != 0) {
147 ESP_LOGE(ADC_TAG, "The driver is not stopped");
148 return ESP_ERR_INVALID_STATE;
149 }
150
151 if (s_adc_digi_ctx->ringbuf_hdl) {
152 vRingbufferDelete(s_adc_digi_ctx->ringbuf_hdl);
153 s_adc_digi_ctx->ringbuf_hdl = NULL;
154 }
155
156 #if CONFIG_PM_ENABLE
157 if (s_adc_digi_ctx->pm_lock) {
158 esp_pm_lock_delete(s_adc_digi_ctx->pm_lock);
159 }
160 #endif //CONFIG_PM_ENABLE
161
162 free(s_adc_digi_ctx->rx_dma_buf);
163 free(s_adc_digi_ctx->hal.rx_desc);
164 free(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern);
165 #if SOC_GDMA_SUPPORTED
166 gdma_disconnect(s_adc_digi_ctx->rx_dma_channel);
167 gdma_del_channel(s_adc_digi_ctx->rx_dma_channel);
168 #elif CONFIG_IDF_TARGET_ESP32S2
169 esp_intr_free(s_adc_digi_ctx->intr_hdl);
170 spicommon_dma_chan_free(s_adc_digi_ctx->spi_host);
171 spicommon_periph_free(s_adc_digi_ctx->spi_host);
172 #elif CONFIG_IDF_TARGET_ESP32
173 esp_intr_free(s_adc_digi_ctx->intr_hdl);
174 i2s_platform_release_occupation(s_adc_digi_ctx->i2s_host);
175 #endif
176 free(s_adc_digi_ctx);
177 s_adc_digi_ctx = NULL;
178
179 periph_module_disable(PERIPH_SARADC_MODULE);
180
181 return ESP_OK;
182 }
183
adc_digi_initialize(const adc_digi_init_config_t * init_config)184 esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
185 {
186 esp_err_t ret = ESP_OK;
187 ESP_RETURN_ON_FALSE((init_config->conv_num_each_intr % SOC_ADC_DIGI_DATA_BYTES_PER_CONV == 0), ESP_ERR_INVALID_ARG, ADC_TAG, "conv_frame_size should be in multiples of `SOC_ADC_DIGI_DATA_BYTES_PER_CONV`");
188
189 s_adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t));
190 if (s_adc_digi_ctx == NULL) {
191 ret = ESP_ERR_NO_MEM;
192 goto cleanup;
193 }
194
195 //ringbuffer
196 s_adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF);
197 if (!s_adc_digi_ctx->ringbuf_hdl) {
198 ret = ESP_ERR_NO_MEM;
199 goto cleanup;
200 }
201
202 //malloc internal buffer used by DMA
203 s_adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, init_config->conv_num_each_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
204 if (!s_adc_digi_ctx->rx_dma_buf) {
205 ret = ESP_ERR_NO_MEM;
206 goto cleanup;
207 }
208
209 //malloc dma descriptor
210 uint32_t dma_desc_num_per_frame = (init_config->conv_num_each_intr + DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED - 1) / DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED;
211 uint32_t dma_desc_max_num = dma_desc_num_per_frame * INTERNAL_BUF_NUM;
212 s_adc_digi_ctx->hal.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * dma_desc_max_num, MALLOC_CAP_DMA);
213 if (!s_adc_digi_ctx->hal.rx_desc) {
214 ret = ESP_ERR_NO_MEM;
215 goto cleanup;
216 }
217
218 //malloc pattern table
219 s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_config_t));
220 if (!s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern) {
221 ret = ESP_ERR_NO_MEM;
222 goto cleanup;
223 }
224
225 #if CONFIG_PM_ENABLE
226 ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &s_adc_digi_ctx->pm_lock);
227 if (ret != ESP_OK) {
228 goto cleanup;
229 }
230 #endif //CONFIG_PM_ENABLE
231
232 //init gpio pins
233 if (init_config->adc1_chan_mask) {
234 ret = adc_digi_gpio_init(ADC_UNIT_1, init_config->adc1_chan_mask);
235 if (ret != ESP_OK) {
236 goto cleanup;
237 }
238 }
239 if (init_config->adc2_chan_mask) {
240 ret = adc_digi_gpio_init(ADC_UNIT_2, init_config->adc2_chan_mask);
241 if (ret != ESP_OK) {
242 goto cleanup;
243 }
244 }
245
246 #if SOC_GDMA_SUPPORTED
247 //alloc rx gdma channel
248 gdma_channel_alloc_config_t rx_alloc_config = {
249 .direction = GDMA_CHANNEL_DIRECTION_RX,
250 };
251 ret = gdma_new_channel(&rx_alloc_config, &s_adc_digi_ctx->rx_dma_channel);
252 if (ret != ESP_OK) {
253 goto cleanup;
254 }
255 gdma_connect(s_adc_digi_ctx->rx_dma_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_ADC, 0));
256
257 gdma_strategy_config_t strategy_config = {
258 .auto_update_desc = true,
259 .owner_check = true
260 };
261 gdma_apply_strategy(s_adc_digi_ctx->rx_dma_channel, &strategy_config);
262
263 gdma_rx_event_callbacks_t cbs = {
264 .on_recv_eof = adc_dma_in_suc_eof_callback
265 };
266 gdma_register_rx_event_callbacks(s_adc_digi_ctx->rx_dma_channel, &cbs, s_adc_digi_ctx);
267
268 int dma_chan;
269 gdma_get_channel_id(s_adc_digi_ctx->rx_dma_channel, &dma_chan);
270
271 #elif CONFIG_IDF_TARGET_ESP32S2
272 //ADC utilises SPI3 DMA on ESP32S2
273 bool spi_success = false;
274 uint32_t dma_chan = 0;
275
276 spi_success = spicommon_periph_claim(SPI3_HOST, "adc");
277 ret = spicommon_dma_chan_alloc(SPI3_HOST, SPI_DMA_CH_AUTO, &dma_chan, &dma_chan);
278 if (ret == ESP_OK) {
279 s_adc_digi_ctx->spi_host = SPI3_HOST;
280 }
281 if (!spi_success || (s_adc_digi_ctx->spi_host != SPI3_HOST)) {
282 goto cleanup;
283 }
284
285 ret = esp_intr_alloc(spicommon_irqdma_source_for_host(s_adc_digi_ctx->spi_host), 0, adc_dma_intr_handler,
286 (void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
287 if (ret != ESP_OK) {
288 goto cleanup;
289 }
290
291 #elif CONFIG_IDF_TARGET_ESP32
292 //ADC utilises I2S0 DMA on ESP32
293 uint32_t dma_chan = 0;
294 ret = i2s_platform_acquire_occupation(I2S_NUM_0, "adc");
295 if (ret != ESP_OK) {
296 goto cleanup;
297 }
298
299 s_adc_digi_ctx->i2s_host = I2S_NUM_0;
300 ret = esp_intr_alloc(i2s_periph_signal[s_adc_digi_ctx->i2s_host].irq, 0, adc_dma_intr_handler,
301 (void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
302 if (ret != ESP_OK) {
303 goto cleanup;
304 }
305 #endif
306
307 adc_hal_dma_config_t config = {
308 #if SOC_GDMA_SUPPORTED
309 .dev = (void *)GDMA_LL_GET_HW(0),
310 #elif CONFIG_IDF_TARGET_ESP32S2
311 .dev = (void *)SPI_LL_GET_HW(s_adc_digi_ctx->spi_host),
312 #elif CONFIG_IDF_TARGET_ESP32
313 .dev = (void *)I2S_LL_GET_HW(s_adc_digi_ctx->i2s_host),
314 #endif
315 .eof_desc_num = INTERNAL_BUF_NUM,
316 .eof_step = dma_desc_num_per_frame,
317 .dma_chan = dma_chan,
318 .eof_num = init_config->conv_num_each_intr / SOC_ADC_DIGI_DATA_BYTES_PER_CONV
319 };
320 adc_hal_dma_ctx_config(&s_adc_digi_ctx->hal, &config);
321
322 //enable ADC digital part
323 periph_module_enable(PERIPH_SARADC_MODULE);
324 //reset ADC digital part
325 periph_module_reset(PERIPH_SARADC_MODULE);
326
327 #if SOC_ADC_CALIBRATION_V1_SUPPORTED
328 adc_hal_calibration_init(ADC_UNIT_1);
329 adc_hal_calibration_init(ADC_UNIT_2);
330 #endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
331
332 return ret;
333
334 cleanup:
335 adc_digi_deinitialize();
336 return ret;
337 }
338
339 #if SOC_GDMA_SUPPORTED
adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan,gdma_event_data_t * event_data,void * user_data)340 static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
341 {
342 assert(event_data);
343 s_adc_digi_ctx->rx_eof_desc_addr = event_data->rx_eof_desc_addr;
344 return s_adc_dma_intr(user_data);
345 }
346 #else
adc_dma_intr_handler(void * arg)347 static IRAM_ATTR void adc_dma_intr_handler(void *arg)
348 {
349 adc_digi_context_t *ctx = (adc_digi_context_t *)arg;
350 bool need_yield = false;
351
352 bool conversion_finish = adc_hal_check_event(&ctx->hal, ADC_HAL_DMA_INTR_MASK);
353 if (conversion_finish) {
354 adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
355
356 intptr_t desc_addr = adc_hal_get_desc_addr(&ctx->hal);
357
358 ctx->rx_eof_desc_addr = desc_addr;
359 need_yield = s_adc_dma_intr(ctx);
360 }
361
362 if (need_yield) {
363 portYIELD_FROM_ISR();
364 }
365 }
366 #endif
367
s_adc_dma_intr(adc_digi_context_t * adc_digi_ctx)368 static IRAM_ATTR bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx)
369 {
370 portBASE_TYPE taskAwoken = 0;
371 BaseType_t ret;
372 adc_hal_dma_desc_status_t status = false;
373 uint8_t *finished_buffer = NULL;
374 uint32_t finished_size = 0;
375
376 while (1) {
377 status = adc_hal_get_reading_result(&adc_digi_ctx->hal, adc_digi_ctx->rx_eof_desc_addr, &finished_buffer, &finished_size);
378 if (status != ADC_HAL_DMA_DESC_VALID) {
379 break;
380 }
381
382 ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, finished_buffer, finished_size, &taskAwoken);
383 if (ret == pdFALSE) {
384 //ringbuffer overflow
385 adc_digi_ctx->ringbuf_overflow_flag = 1;
386 }
387 }
388
389 return (taskAwoken == pdTRUE);
390 }
391
adc_digi_start(void)392 esp_err_t adc_digi_start(void)
393 {
394
395 if (s_adc_digi_ctx->driver_start_flag != 0) {
396 ESP_LOGE(ADC_TAG, "The driver is already started");
397 return ESP_ERR_INVALID_STATE;
398 }
399 sar_periph_ctrl_adc_continuous_power_acquire();
400 //reset flags
401 s_adc_digi_ctx->ringbuf_overflow_flag = 0;
402 s_adc_digi_ctx->driver_start_flag = 1;
403 if (s_adc_digi_ctx->use_adc1) {
404 adc_lock_acquire(ADC_UNIT_1);
405 }
406 if (s_adc_digi_ctx->use_adc2) {
407 adc_lock_acquire(ADC_UNIT_2);
408 }
409
410 #if CONFIG_PM_ENABLE
411 // Lock APB frequency while ADC driver is in use
412 esp_pm_lock_acquire(s_adc_digi_ctx->pm_lock);
413 #endif
414
415 #if SOC_ADC_CALIBRATION_V1_SUPPORTED
416 if (s_adc_digi_ctx->use_adc1) {
417 adc_set_hw_calibration_code(ADC_UNIT_1, s_adc_digi_ctx->adc1_atten);
418 }
419 if (s_adc_digi_ctx->use_adc2) {
420 adc_set_hw_calibration_code(ADC_UNIT_2, s_adc_digi_ctx->adc2_atten);
421 }
422 #endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
423
424 #if SOC_ADC_ARBITER_SUPPORTED
425 adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
426 adc_hal_arbiter_config(&config);
427 #endif //#if SOC_ADC_ARBITER_SUPPORTED
428
429 adc_hal_set_controller(ADC_UNIT_1, ADC_HAL_CONTINUOUS_READ_MODE);
430 adc_hal_set_controller(ADC_UNIT_2, ADC_HAL_CONTINUOUS_READ_MODE);
431
432 adc_hal_digi_init(&s_adc_digi_ctx->hal);
433 adc_hal_digi_controller_config(&s_adc_digi_ctx->hal, &s_adc_digi_ctx->hal_digi_ctrlr_cfg);
434
435 //start conversion
436 adc_hal_digi_start(&s_adc_digi_ctx->hal, s_adc_digi_ctx->rx_dma_buf);
437
438 return ESP_OK;
439 }
440
adc_digi_stop(void)441 esp_err_t adc_digi_stop(void)
442 {
443 if (s_adc_digi_ctx->driver_start_flag != 1) {
444 ESP_LOGE(ADC_TAG, "The driver is already stopped");
445 return ESP_ERR_INVALID_STATE;
446 }
447 s_adc_digi_ctx->driver_start_flag = 0;
448
449 //disable the in suc eof intrrupt
450 adc_hal_digi_dis_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
451 //clear the in suc eof interrupt
452 adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
453 //stop ADC
454 adc_hal_digi_stop(&s_adc_digi_ctx->hal);
455
456 adc_hal_digi_deinit(&s_adc_digi_ctx->hal);
457 #if CONFIG_PM_ENABLE
458 if (s_adc_digi_ctx->pm_lock) {
459 esp_pm_lock_release(s_adc_digi_ctx->pm_lock);
460 }
461 #endif //CONFIG_PM_ENABLE
462
463 if (s_adc_digi_ctx->use_adc2) {
464 adc_lock_release(ADC_UNIT_2);
465 }
466 if (s_adc_digi_ctx->use_adc1) {
467 adc_lock_release(ADC_UNIT_1);
468 }
469 sar_periph_ctrl_adc_continuous_power_release();
470
471 return ESP_OK;
472 }
473
adc_digi_read_bytes(uint8_t * buf,uint32_t length_max,uint32_t * out_length,uint32_t timeout_ms)474 esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms)
475 {
476 TickType_t ticks_to_wait;
477 esp_err_t ret = ESP_OK;
478 uint8_t *data = NULL;
479 size_t size = 0;
480
481 ticks_to_wait = timeout_ms / portTICK_PERIOD_MS;
482 if (timeout_ms == ADC_MAX_DELAY) {
483 ticks_to_wait = portMAX_DELAY;
484 }
485
486 data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max);
487 if (!data) {
488 ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr");
489 ret = ESP_ERR_TIMEOUT;
490 *out_length = 0;
491 return ret;
492 }
493
494 memcpy(buf, data, size);
495 vRingbufferReturnItem(s_adc_digi_ctx->ringbuf_hdl, data);
496 assert((size % 4) == 0);
497 *out_length = size;
498
499 if (s_adc_digi_ctx->ringbuf_overflow_flag) {
500 ret = ESP_ERR_INVALID_STATE;
501 }
502
503 return ret;
504 }
505
506 /*---------------------------------------------------------------
507 Digital controller setting
508 ---------------------------------------------------------------*/
adc_digi_controller_configure(const adc_digi_configuration_t * config)509 esp_err_t adc_digi_controller_configure(const adc_digi_configuration_t *config)
510 {
511 if (!s_adc_digi_ctx) {
512 return ESP_ERR_INVALID_STATE;
513 }
514
515 //Pattern related check
516 ESP_RETURN_ON_FALSE(config->pattern_num <= SOC_ADC_PATT_LEN_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "Max pattern num is %d", SOC_ADC_PATT_LEN_MAX);
517 #if CONFIG_IDF_TARGET_ESP32
518 for (int i = 0; i < config->pattern_num; i++) {
519 ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width >= SOC_ADC_DIGI_MIN_BITWIDTH && config->adc_pattern->bit_width <= SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
520 ESP_RETURN_ON_FALSE(config->adc_pattern[i].unit == 0, ESP_ERR_INVALID_ARG, ADC_TAG, "Only support using ADC1 DMA mode");
521 }
522 #else
523 for (int i = 0; i < config->pattern_num; i++) {
524 ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width == SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
525 }
526 #endif
527 ESP_RETURN_ON_FALSE(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC sampling frequency out of range");
528
529 #if CONFIG_IDF_TARGET_ESP32
530 ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
531 #elif CONFIG_IDF_TARGET_ESP32S2
532 if (config->conv_mode == ADC_CONV_BOTH_UNIT || config->conv_mode == ADC_CONV_ALTER_UNIT) {
533 ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
534 } else if (config->conv_mode == ADC_CONV_SINGLE_UNIT_1 || config->conv_mode == ADC_CONV_SINGLE_UNIT_2) {
535 ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
536 }
537 #else
538 ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
539 #endif
540
541 s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern_len = config->pattern_num;
542 s_adc_digi_ctx->hal_digi_ctrlr_cfg.sample_freq_hz = config->sample_freq_hz;
543 s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_mode = config->conv_mode;
544 memcpy(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern, config->adc_pattern, config->pattern_num * sizeof(adc_digi_pattern_config_t));
545
546 const int atten_uninitialized = 999;
547 s_adc_digi_ctx->adc1_atten = atten_uninitialized;
548 s_adc_digi_ctx->adc2_atten = atten_uninitialized;
549 s_adc_digi_ctx->use_adc1 = 0;
550 s_adc_digi_ctx->use_adc2 = 0;
551 for (int i = 0; i < config->pattern_num; i++) {
552 const adc_digi_pattern_config_t *pat = &config->adc_pattern[i];
553 if (pat->unit == ADC_UNIT_1) {
554 s_adc_digi_ctx->use_adc1 = 1;
555
556 if (s_adc_digi_ctx->adc1_atten == atten_uninitialized) {
557 s_adc_digi_ctx->adc1_atten = pat->atten;
558 } else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
559 return ESP_ERR_INVALID_ARG;
560 }
561 } else if (pat->unit == ADC_UNIT_2) {
562 //See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
563 s_adc_digi_ctx->use_adc2 = 1;
564
565 if (s_adc_digi_ctx->adc2_atten == atten_uninitialized) {
566 s_adc_digi_ctx->adc2_atten = pat->atten;
567 } else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
568 return ESP_ERR_INVALID_ARG;
569 }
570 }
571 }
572
573 return ESP_OK;
574 }
575
576 /**
577 * @brief This function will be called during start up, to check that adc_continuous driver is not running along with the legacy adc_continuous driver
578 */
check_adc_continuous_driver_conflict(void)579 static void check_adc_continuous_driver_conflict(void)
580 {
581 // This function was declared as weak here. adc_continuous driver has one implementation.
582 // So if adc_continuous driver is not linked in, then `adc_continuous_new_handle` should be NULL at runtime.
583 extern __attribute__((weak)) esp_err_t adc_continuous_new_handle(const void *init_config, void **ret_handle);
584 if ((void *)adc_continuous_new_handle != NULL) {
585 ESP_EARLY_LOGE(ADC_TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver");
586 abort();
587 }
588 ESP_EARLY_LOGW(ADC_TAG, "legacy driver is deprecated, please migrate to `esp_adc/adc_continuous.h`");
589 }
590
591 #if SOC_ADC_CALIBRATION_V1_SUPPORTED
592 /*---------------------------------------------------------------
593 ADC Hardware Calibration
594 ---------------------------------------------------------------*/
adc_hw_calibration(void)595 static void adc_hw_calibration(void)
596 {
597 //Calculate all ICode
598 for (int i = 0; i < SOC_ADC_PERIPH_NUM; i++) {
599 adc_hal_calibration_init(i);
600 for (int j = 0; j < SOC_ADC_ATTEN_NUM; j++) {
601 /**
602 * This may get wrong when attenuations are NOT consecutive on some chips,
603 * update this when bringing up the calibration on that chip
604 */
605 adc_calc_hw_calibration_code(i, j);
606 #if SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED
607 /* Load the channel compensation from efuse */
608 for (int k = 0; k < SOC_ADC_CHANNEL_NUM(i); k++) {
609 adc_load_hw_calibration_chan_compens(i, k, j);
610 }
611 #endif
612 }
613 }
614 }
615 #endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
616