1 /* --------------------------------------------------------------  */
2 /* (C)Copyright 2007,2008,                                         */
3 /* International Business Machines Corporation                     */
4 /* All Rights Reserved.                                            */
5 /*                                                                 */
6 /* Redistribution and use in source and binary forms, with or      */
7 /* without modification, are permitted provided that the           */
8 /* following conditions are met:                                   */
9 /*                                                                 */
10 /* - Redistributions of source code must retain the above copyright*/
11 /*   notice, this list of conditions and the following disclaimer. */
12 /*                                                                 */
13 /* - Redistributions in binary form must reproduce the above       */
14 /*   copyright notice, this list of conditions and the following   */
15 /*   disclaimer in the documentation and/or other materials        */
16 /*   provided with the distribution.                               */
17 /*                                                                 */
18 /* - Neither the name of IBM Corporation nor the names of its      */
19 /*   contributors may be used to endorse or promote products       */
20 /*   derived from this software without specific prior written     */
21 /*   permission.                                                   */
22 /*                                                                 */
23 /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
24 /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
25 /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
26 /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
27 /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
28 /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
29 /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
30 /* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
31 /* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
32 /* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
33 /* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
34 /* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
35 /* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
36 /* --------------------------------------------------------------  */
37 /* PROLOG END TAG zYx                                              */
38 #ifdef __SPU__
39 
40 #ifndef _LGAMMAD2_H_
41 #define _LGAMMAD2_H_	1
42 
43 #include <spu_intrinsics.h>
44 #include "divd2.h"
45 #include "recipd2.h"
46 #include "logd2.h"
47 #include "sind2.h"
48 #include "truncd2.h"
49 
50 
51 /*
52  * FUNCTION
53  *	vector double _lgammad2(vector double x) - Natural Log of Gamma Function
54  *
55  * DESCRIPTION
56  *	_lgammad2 calculates the natural logarithm of the absolute value of the gamma
57  *	function for the corresponding elements of the input vector.
58  *
59  * C99 Special Cases:
60  *	lgamma(0) returns +infinite
61  *	lgamma(1) returns +0
62  *	lgamma(2) returns +0
63  *	lgamma(negative integer) returns +infinite
64  *	lgamma(+infinite) returns +infinite
65  *	lgamma(-infinite) returns +infinite
66  *
67  * Other Cases:
68  *  lgamma(Nan) returns Nan
69  *  lgamma(Denorm) treated as lgamma(0) and returns +infinite
70  *
71  */
72 
73 #define PI                  3.1415926535897932384626433832795028841971693993751058209749445923078164
74 #define HALFLOG2PI          9.1893853320467274178032973640561763986139747363778341281715154048276570E-1
75 
76 #define EULER_MASCHERONI    0.5772156649015328606065
77 
78 /*
79  * Zeta constants for Maclaurin approx. near zero
80  */
81 #define ZETA_02_DIV_02       8.2246703342411321823620758332301E-1
82 #define ZETA_03_DIV_03      -4.0068563438653142846657938717048E-1
83 #define ZETA_04_DIV_04       2.7058080842778454787900092413529E-1
84 #define ZETA_05_DIV_05      -2.0738555102867398526627309729141E-1
85 #define ZETA_06_DIV_06       1.6955717699740818995241965496515E-1
86 
87 /*
88  *  More Maclaurin coefficients
89  */
90 /*
91 #define ZETA_07_DIV_07      -1.4404989676884611811997107854997E-1
92 #define ZETA_08_DIV_08       1.2550966952474304242233565481358E-1
93 #define ZETA_09_DIV_09      -1.1133426586956469049087252991471E-1
94 #define ZETA_10_DIV_10       1.0009945751278180853371459589003E-1
95 #define ZETA_11_DIV_11      -9.0954017145829042232609298411497E-2
96 #define ZETA_12_DIV_12       8.3353840546109004024886499837312E-2
97 #define ZETA_13_DIV_13      -7.6932516411352191472827064348181E-2
98 #define ZETA_14_DIV_14       7.1432946295361336059232753221795E-2
99 #define ZETA_15_DIV_15      -6.6668705882420468032903448567376E-2
100 #define ZETA_16_DIV_16       6.2500955141213040741983285717977E-2
101 #define ZETA_17_DIV_17      -5.8823978658684582338957270605504E-2
102 #define ZETA_18_DIV_18       5.5555767627403611102214247869146E-2
103 #define ZETA_19_DIV_19      -5.2631679379616660733627666155673E-2
104 #define ZETA_20_DIV_20       5.0000047698101693639805657601934E-2
105  */
106 
107 /*
108  * Coefficients for Stirling's Series for Lgamma()
109  */
110 #define STIRLING_01    8.3333333333333333333333333333333333333333333333333333333333333333333333E-2
111 #define STIRLING_02   -2.7777777777777777777777777777777777777777777777777777777777777777777778E-3
112 #define STIRLING_03    7.9365079365079365079365079365079365079365079365079365079365079365079365E-4
113 #define STIRLING_04   -5.9523809523809523809523809523809523809523809523809523809523809523809524E-4
114 #define STIRLING_05    8.4175084175084175084175084175084175084175084175084175084175084175084175E-4
115 #define STIRLING_06   -1.9175269175269175269175269175269175269175269175269175269175269175269175E-3
116 #define STIRLING_07    6.4102564102564102564102564102564102564102564102564102564102564102564103E-3
117 #define STIRLING_08   -2.9550653594771241830065359477124183006535947712418300653594771241830065E-2
118 #define STIRLING_09    1.7964437236883057316493849001588939669435025472177174963552672531000704E-1
119 #define STIRLING_10   -1.3924322169059011164274322169059011164274322169059011164274322169059011E0
120 #define STIRLING_11    1.3402864044168391994478951000690131124913733609385783298826777087646653E1
121 #define STIRLING_12   -1.5684828462600201730636513245208897382810426288687158252375643679991506E2
122 #define STIRLING_13    2.1931033333333333333333333333333333333333333333333333333333333333333333E3
123 #define STIRLING_14   -3.6108771253724989357173265219242230736483610046828437633035334184759472E4
124 #define STIRLING_15    6.9147226885131306710839525077567346755333407168779805042318946657100161E5
125 /*
126  *  More Stirling's coefficients
127  */
128 /*
129 #define STIRLING_16   -1.5238221539407416192283364958886780518659076533839342188488298545224541E7
130 #define STIRLING_17    3.8290075139141414141414141414141414141414141414141414141414141414141414E8
131 #define STIRLING_18   -1.0882266035784391089015149165525105374729434879810819660443720594096534E10
132 #define STIRLING_19    3.4732028376500225225225225225225225225225225225225225225225225225225225E11
133 #define STIRLING_20   -1.2369602142269274454251710349271324881080978641954251710349271324881081E13
134 #define STIRLING_21    4.8878806479307933507581516251802290210847053890567382180703629532735764E14
135 */
136 
137 
_lgammad2(vector double x)138 static __inline vector double _lgammad2(vector double x)
139 {
140   vec_uchar16 dup_even  = ((vec_uchar16) { 0,1,2,3, 0,1,2,3,  8, 9,10,11,  8, 9,10,11 });
141   vec_uchar16 dup_odd   = ((vec_uchar16) { 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 });
142   vec_uchar16 swap_word = ((vec_uchar16) { 4,5,6,7, 0,1,2,3, 12,13,14,15,  8, 9,10,11  });
143   vec_double2 infinited = (vec_double2)spu_splats(0x7FF0000000000000ull);
144   vec_double2 zerod     = spu_splats(0.0);
145   vec_double2 oned      = spu_splats(1.0);
146   vec_double2 twod      = spu_splats(2.0);
147   vec_double2 pi        = spu_splats(PI);
148   vec_double2 sign_maskd = spu_splats(-0.0);
149 
150   /* This is where we switch from near zero approx. */
151   vec_float4 zero_switch = spu_splats(0.001f);
152   vec_float4 shift_switch = spu_splats(6.0f);
153 
154   vec_float4 xf;
155   vec_double2 inv_x, inv_xsqu;
156   vec_double2 xtrunc, xstirling;
157   vec_double2 sum, xabs;
158   vec_uint4 xhigh, xlow, xthigh, xtlow;
159   vec_uint4 x1, isnaninf, isnposint, iszero, isint, isneg, isshifted, is1, is2;
160   vec_double2 result, stresult, shresult, mresult, nresult;
161 
162 
163   /* Force Denorms to 0 */
164   x = spu_add(x, zerod);
165 
166   xabs = spu_andc(x, sign_maskd);
167   xf = spu_roundtf(xabs);
168   xf = spu_shuffle(xf, xf, dup_even);
169 
170 
171   /*
172    * For 0 < x <= 0.001.
173    * Approximation Near Zero
174    *
175    * Use Maclaurin Expansion of lgamma()
176    *
177    * lgamma(z) = -ln(z) - z * EulerMascheroni + Sum[(-1)^n * z^n * Zeta(n)/n]
178    */
179   mresult = spu_madd(xabs, spu_splats(ZETA_06_DIV_06), spu_splats(ZETA_05_DIV_05));
180   mresult = spu_madd(xabs, mresult, spu_splats(ZETA_04_DIV_04));
181   mresult = spu_madd(xabs, mresult, spu_splats(ZETA_03_DIV_03));
182   mresult = spu_madd(xabs, mresult, spu_splats(ZETA_02_DIV_02));
183   mresult = spu_mul(xabs, spu_mul(xabs, mresult));
184   mresult = spu_sub(mresult, spu_add(_logd2(xabs), spu_mul(xabs, spu_splats(EULER_MASCHERONI))));
185 
186 
187   /*
188    * For 0.001 < x <= 6.0, we are going to push value
189    * out to an area where Stirling's approximation is
190    * accurate. Let's use a constant of 6.
191    *
192    * Use the recurrence relation:
193    *    lgamma(x + 1) = ln(x) + lgamma(x)
194    *
195    * Note that we shift x here, before Stirling's calculation,
196    * then after Stirling's, we adjust the result.
197    *
198    */
199 
200   isshifted = spu_cmpgt(shift_switch, xf);
201   xstirling = spu_sel(xabs, spu_add(xabs, spu_splats(6.0)), (vec_ullong2)isshifted);
202   inv_x    = _recipd2(xstirling);
203   inv_xsqu = spu_mul(inv_x, inv_x);
204 
205   /*
206    * For 6.0 < x < infinite
207    *
208    * Use Stirling's Series.
209    *
210    *              1                    1                1      1        1
211    * lgamma(x) = --- ln (2*pi) + (z - ---) ln(x) - x + --- - ----- + ------ ...
212    *              2                    2               12x   360x^3  1260x^5
213    *
214    * Taking 10 terms of the sum gives good results for x > 6.0
215    *
216    */
217   sum = spu_madd(inv_xsqu, spu_splats(STIRLING_15), spu_splats(STIRLING_14));
218   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_13));
219   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_12));
220   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_11));
221   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_10));
222   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_09));
223   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_08));
224   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_07));
225   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_06));
226   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_05));
227   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_04));
228   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_03));
229   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_02));
230   sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_01));
231   sum = spu_mul(sum, inv_x);
232 
233   stresult = spu_madd(spu_sub(xstirling, spu_splats(0.5)), _logd2(xstirling), spu_splats(HALFLOG2PI));
234   stresult = spu_sub(stresult, xstirling);
235   stresult = spu_add(stresult, sum);
236 
237   /*
238    * Adjust result if we shifted x into Stirling range.
239    *
240    * lgamma(x) = lgamma(x + n) - ln(x(x+1)(x+2)...(x+n-1)
241    *
242    */
243   shresult = spu_mul(xabs, spu_add(xabs, spu_splats(1.0)));
244   shresult = spu_mul(shresult, spu_add(xabs, spu_splats(2.0)));
245   shresult = spu_mul(shresult, spu_add(xabs, spu_splats(3.0)));
246   shresult = spu_mul(shresult, spu_add(xabs, spu_splats(4.0)));
247   shresult = spu_mul(shresult, spu_add(xabs, spu_splats(5.0)));
248   shresult = _logd2(shresult);
249   shresult = spu_sub(stresult, shresult);
250   stresult = spu_sel(stresult, shresult, (vec_ullong2)isshifted);
251 
252 
253   /*
254    * Select either Maclaurin or Stirling result before Negative X calc.
255    */
256   xf = spu_shuffle(xf, xf, dup_even);
257   vec_uint4 useStirlings = spu_cmpgt(xf, zero_switch);
258   result = spu_sel(mresult, stresult, (vec_ullong2)useStirlings);
259 
260 
261   /*
262    * Approximation for Negative X
263    *
264    * Use reflection relation
265    *
266    * gamma(x) * gamma(-x) = -pi/(x sin(pi x))
267    *
268    * lgamma(x) = log(pi/(-x sin(pi x))) - lgamma(-x)
269    *
270    */
271   nresult = spu_mul(x, _sind2(spu_mul(x, pi)));
272   nresult = spu_andc(nresult, sign_maskd);
273   nresult = _logd2(_divd2(pi, nresult));
274   nresult = spu_sub(nresult, result);
275 
276 
277   /*
278    * Select between the negative or positive x approximations.
279    */
280   isneg = (vec_uint4)spu_shuffle(x, x, dup_even);
281   isneg = spu_rlmaska(isneg, -32);
282   result = spu_sel(result, nresult, (vec_ullong2)isneg);
283 
284 
285   /*
286    * Finally, special cases/errors.
287    */
288   xhigh = (vec_uint4)spu_shuffle(xabs, xabs, dup_even);
289   xlow  = (vec_uint4)spu_shuffle(xabs, xabs, dup_odd);
290 
291   /* x = zero, return infinite */
292   x1 = spu_or(xhigh, xlow);
293   iszero = spu_cmpeq(x1, 0);
294 
295   /* x = negative integer, return infinite */
296   xtrunc = _truncd2(xabs);
297   xthigh = (vec_uint4)spu_shuffle(xtrunc, xtrunc, dup_even);
298   xtlow  = (vec_uint4)spu_shuffle(xtrunc, xtrunc, dup_odd);
299   isint = spu_and(spu_cmpeq(xthigh, xhigh), spu_cmpeq(xtlow, xlow));
300   isnposint = spu_or(spu_and(isint, isneg), iszero);
301   result = spu_sel(result, infinited, (vec_ullong2)isnposint);
302 
303   /* x = 1.0 or 2.0, return 0.0 */
304   is1 = spu_cmpeq((vec_uint4)x, (vec_uint4)oned);
305   is1 = spu_and(is1, spu_shuffle(is1, is1, swap_word));
306   is2 = spu_cmpeq((vec_uint4)x, (vec_uint4)twod);
307   is2 = spu_and(is2, spu_shuffle(is2, is2, swap_word));
308   result = spu_sel(result, zerod, (vec_ullong2)spu_or(is1,is2));
309 
310   /* x = +/- infinite or nan, return |x| */
311   isnaninf = spu_cmpgt(xhigh, 0x7FEFFFFF);
312   result = spu_sel(result, xabs, (vec_ullong2)isnaninf);
313 
314   return result;
315 }
316 
317 #endif /* _LGAMMAD2_H_ */
318 #endif /* __SPU__ */
319