1 /* --------------------------------------------------------------  */
2 /* (C)Copyright 2001,2008,                                         */
3 /* International Business Machines Corporation,                    */
4 /* Sony Computer Entertainment, Incorporated,                      */
5 /* Toshiba Corporation,                                            */
6 /*                                                                 */
7 /* All Rights Reserved.                                            */
8 /*                                                                 */
9 /* Redistribution and use in source and binary forms, with or      */
10 /* without modification, are permitted provided that the           */
11 /* following conditions are met:                                   */
12 /*                                                                 */
13 /* - Redistributions of source code must retain the above copyright*/
14 /*   notice, this list of conditions and the following disclaimer. */
15 /*                                                                 */
16 /* - Redistributions in binary form must reproduce the above       */
17 /*   copyright notice, this list of conditions and the following   */
18 /*   disclaimer in the documentation and/or other materials        */
19 /*   provided with the distribution.                               */
20 /*                                                                 */
21 /* - Neither the name of IBM Corporation nor the names of its      */
22 /*   contributors may be used to endorse or promote products       */
23 /*   derived from this software without specific prior written     */
24 /*   permission.                                                   */
25 /*                                                                 */
26 /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
27 /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
28 /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
29 /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
30 /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
31 /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
32 /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
33 /* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
34 /* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
35 /* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
36 /* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
37 /* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
38 /* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
39 /* --------------------------------------------------------------  */
40 /* PROLOG END TAG zYx                                              */
41 #ifdef __SPU__
42 #ifndef _EXPD2_H_
43 #define _EXPD2_H_	1
44 
45 #include <spu_intrinsics.h>
46 #include "floord2.h"
47 
48 #define LOG2E 1.4426950408889634073599     // 1/log(2)
49 
50 /*
51  * FUNCTION
52  *	vector double _expd2(vector double x)
53  *
54  * DESCRIPTION
55  *	_expd2 computes e raised to the input x for
56  *	each of the element of the double word vector.
57  *
58  * Calculation is performed by reducing the input argument
59  * to within a managable range, and then computing the power
60  * series to the 11th degree.
61  *
62  * Range reduction is performed using the property:
63  *
64  *	exp(x) = 2^n * exp(r)
65  *
66  * Values for "n" and "r" are determined such that:
67  *
68  *       x = n * ln(2) + r, |r| <= ln(2)/2
69  *
70  *       n = floor(  (x/ln(2)) + 1/2  )
71  *       r = x - (n * ln(2))
72  *
73  * To enhance the precision for "r", computation is performed
74  * using a two part representation of ln(2).
75  *
76  * Once the input is reduced, the power series is computed:
77  *
78  *                    __12_
79  *                    \
80  *       exp(x) = 1 +  \   (x^i)/i!
81  *                     /
82  *                    /____
83  *                     i=2
84  *
85  * The resulting value is scaled by 2^n and returned.
86  *
87  */
88 
_expd2(vector double x)89 static __inline vector double _expd2(vector double x)
90 {
91   //  log(2) in extended machine representable precision
92   vec_double2 ln2_hi = spu_splats(6.9314575195312500E-1);  // 3FE62E4000000000
93   vec_double2 ln2_lo = spu_splats(1.4286068203094172E-6);  // 3EB7F7D1CF79ABCA
94 
95   //  coefficients for the power series
96   // vec_double2 f01 = spu_splats(1.00000000000000000000E0);  // 1/(1!)
97   vec_double2 f02 = spu_splats(5.00000000000000000000E-1); // 1/(2!)
98   vec_double2 f03 = spu_splats(1.66666666666666666667E-1); // 1/(3!)
99   vec_double2 f04 = spu_splats(4.16666666666666666667E-2); // 1/(4!)
100   vec_double2 f05 = spu_splats(8.33333333333333333333E-3); // 1/(5!)
101   vec_double2 f06 = spu_splats(1.38888888888888888889E-3); // 1/(6!)
102   vec_double2 f07 = spu_splats(1.98412698412698412698E-4); // 1/(7!)
103   vec_double2 f08 = spu_splats(2.48015873015873015873E-5); // 1/(8!)
104   vec_double2 f09 = spu_splats(2.75573192239858906526E-6); // 1/(9!)
105   vec_double2 f10 = spu_splats(2.75573192239858906526E-7); // 1/(10!)
106   vec_double2 f11 = spu_splats(2.50521083854417187751E-8); // 1/(11!)
107   vec_double2 f12 = spu_splats(2.08767569878680989792E-9); // 1/(12!)
108 
109   //  rx = floor(1/2 + x/log(2))
110   vec_double2 rx = _floord2(spu_madd(x,spu_splats(LOG2E),spu_splats(0.5)));
111 
112   // extract the exponent of reduction
113   vec_int4 exp = spu_convts(spu_roundtf(rx),0);
114 
115   // reduce the input to within [ -ln(2)/2 ... ln(2)/2 ]
116   vec_double2 r;
117   r = spu_nmsub(rx,ln2_hi,x);
118   r = spu_nmsub(rx,ln2_lo,r);
119 
120   vec_double2 result;
121   vec_double2 r2 = spu_mul(r,r);
122 
123   //  Use Horner's method on the power series
124   /*  result = ((((c12*x + c11)*x + c10)*x + c9)*x + c8)*x + c7)*x + c6)*x^6 +
125               ((((((c5*x + c4)*x + c3)*x + c2)*x + c1)*x + c0
126   */
127 
128 #ifdef __SPU_EDP__
129   vec_double2 p1, p2, r4, r6;
130 
131   p1 = spu_madd(f12, r, f11);
132   p2 = spu_madd(f05, r, f04);
133   r4 = spu_mul(r2, r2);
134   p1 = spu_madd(p1, r, f10);
135   p2 = spu_madd(p2, r, f03);
136   p1 = spu_madd(p1, r, f09);
137   p2 = spu_madd(p2, r, f02);
138   p1 = spu_madd(p1, r, f08);
139   r6 = spu_mul(r2, r4);
140   p1 = spu_madd(p1, r, f07);
141   p2 = spu_madd(p2, r2, r);
142   p1 = spu_madd(p1, r, f06);
143 
144   result = spu_madd(r6, p1, p2);
145   result = spu_add(result, spu_splats(1.0));
146 
147 #else
148 
149   result = spu_madd(r,f12,f11);
150   result = spu_madd(result,r,f10);
151   result = spu_madd(result,r,f09);
152   result = spu_madd(result,r,f08);
153   result = spu_madd(result,r,f07);
154   result = spu_madd(result,r,f06);
155   result = spu_madd(result,r,f05);
156   result = spu_madd(result,r,f04);
157   result = spu_madd(result,r,f03);
158   result = spu_madd(result,r,f02);
159   result = spu_madd(result,r2,r);
160   result = spu_add(result,spu_splats(1.0));
161 
162 #endif  /* __SPU_EDP__ */
163 
164 
165   //  Scale the result - basically a call to ldexpd2()
166   vec_int4 e1, e2;
167   vec_int4 min = spu_splats(-2044);
168   vec_int4 max = spu_splats(2046);
169   vec_uint4 cmp_min, cmp_max;
170   vec_uint4 shift = (vec_uint4) { 20, 32, 20, 32 };
171   vec_double2 f1, f2;
172 
173   /* Clamp the specified exponent to the range -2044 to 2046.
174    */
175   cmp_min = spu_cmpgt(exp, min);
176   cmp_max = spu_cmpgt(exp, max);
177   exp = spu_sel(min, exp, cmp_min);
178   exp = spu_sel(exp, max, cmp_max);
179 
180   /* Generate the factors f1 = 2^e1 and f2 = 2^e2
181    */
182   e1 = spu_rlmaska(exp, -1);
183   e2 = spu_sub(exp, e1);
184 
185   f1 = (vec_double2)spu_sl(spu_add(e1, 1023), shift);
186   f2 = (vec_double2)spu_sl(spu_add(e2, 1023), shift);
187 
188   /* Compute the product x * 2^e1 * 2^e2
189    */
190   result = spu_mul(spu_mul(result, f1), f2);
191 
192   return result;
193 }
194 
195 #endif /* _EXPD2_H_ */
196 #endif /* __SPU__ */
197