1 /*
2   (C) Copyright 2001,2006,
3   International Business Machines Corporation,
4   Sony Computer Entertainment, Incorporated,
5   Toshiba Corporation,
6 
7   All rights reserved.
8 
9   Redistribution and use in source and binary forms, with or without
10   modification, are permitted provided that the following conditions are met:
11 
12     * Redistributions of source code must retain the above copyright notice,
13   this list of conditions and the following disclaimer.
14     * Redistributions in binary form must reproduce the above copyright
15   notice, this list of conditions and the following disclaimer in the
16   documentation and/or other materials provided with the distribution.
17     * Neither the names of the copyright holders nor the names of their
18   contributors may be used to endorse or promote products derived from this
19   software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
22   IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23   TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
24   PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
25   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
28   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
29   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 
34 #ifndef _CBRT_H_
35 #define _CBRT_H_	1
36 
37 #include <spu_intrinsics.h>
38 #include "headers/vec_literal.h"
39 
40 static double cbrt_factors[5] = {
41   0.629960524947436484311,      /* 2^(-2/3)  */
42   0.793700525984099680699,      /* 2^(-1/3)  */
43   1.0,                          /* 2^(0)     */
44   1.259921049894873164666,      /* 2^(1/3)   */
45   1.587401051968199583441       /* 2^(2/3)   */
46 };
47 
48 /* Compute the cube root of x to double precision.
49  */
50 
_cbrt(double x)51 static __inline double _cbrt(double x)
52 {
53   vec_int4 exp, bias;
54   vec_uint4 e_div_3, e_mod_3;
55   vec_float4 bf, inv_bf;
56   vec_float4 onef = VEC_SPLAT_F32(1.0f);
57   vec_ullong2 mask;
58   vec_ullong2 mant_mask = VEC_SPLAT_U64(0xFFFFFFFFFFFFFULL);
59   vec_double2 one = VEC_SPLAT_F64(1.0);
60   vec_double2 two = VEC_SPLAT_F64(2.0);
61   vec_double2 half = VEC_SPLAT_F64(0.5);
62   /* Polynomial coefficients */
63   vec_double2 c0 = VEC_SPLAT_F64(0.354895765043919860);
64   vec_double2 c1 = VEC_SPLAT_F64(1.50819193781584896);
65   vec_double2 c2 = VEC_SPLAT_F64(-2.11499494167371287);
66   vec_double2 c3 = VEC_SPLAT_F64(2.44693122563534430);
67   vec_double2 c4 = VEC_SPLAT_F64(-1.83469277483613086);
68   vec_double2 c5 = VEC_SPLAT_F64(0.784932344976639262);
69   vec_double2 c6 = VEC_SPLAT_F64(0.145263899385486377);
70   vec_double2 in, out, mant, u, u3, ym, a, b, factor, inv_b;
71 
72   in = spu_promote(x, 0);
73 
74   /* Normalize the mantissa (fraction part) into the range [0.5, 1.0) and
75    * extract the exponent.
76    */
77   mant = spu_sel(half, in, mant_mask);
78   exp = spu_and(spu_rlmask((vec_int4)in, -20), 0x7FF);
79 
80   /* Generate mask used to zero result if the exponent is zero (ie, <in> is
81    * either zero or a denorm
82    */
83   mask = (vec_ullong2)spu_cmpeq(exp, 0);
84   mask = spu_shuffle(mask, mask, VEC_LITERAL(vec_uchar16, 0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11));
85   exp = spu_add(exp, -1022);
86 
87   u = spu_madd(mant, spu_madd(mant, spu_madd(mant, spu_madd(mant, spu_madd(mant, spu_nmsub(mant, c6, c5), c4), c3), c2), c1), c0);
88   u3 = spu_mul(spu_mul(u, u), u);
89 
90   /* Compute: e_div_3 = exp/3
91    *
92    * Fetch:   factor = factor[2+exp%3]
93    *
94    * The factors array contains 5 values: 2^(-2/3), 2^(-1/3), 2^0, 2^(1/3),
95    *                                      2^(2/3),  2^1.
96    * The fetch is done using shuffle bytes so that is can easily be extended
97    * to support SIMD compution.
98    */
99   bias = spu_rlmask(spu_rlmaska(exp, -15), -16);
100   e_div_3 = (vec_uint4)spu_rlmaska(spu_madd((vec_short8)exp, VEC_SPLAT_S16(0x5556), bias), -16);
101 
102   e_mod_3 = (vec_uint4)spu_sub((vec_int4)(exp), spu_mulo((vec_short8)e_div_3, VEC_SPLAT_S16(3)));
103 
104   factor = spu_promote(cbrt_factors[2+spu_extract(e_mod_3, 0)], 0);
105 
106   /* Compute the estimated mantissa cube root (ym) equals:
107    *       ym = (u * factor * (2.0 * mant + u3)) / (2.0 * u3 + mant);
108    */
109   a = spu_mul(spu_mul(factor, u), spu_madd(two, mant, u3));
110   b = spu_madd(two, u3, mant);
111 
112   bf = spu_roundtf(b);
113   inv_bf = spu_re(bf);
114   inv_bf = spu_madd(spu_nmsub(bf, inv_bf, onef), inv_bf, inv_bf);
115 
116   inv_b = spu_extend(inv_bf);
117   inv_b = spu_madd(spu_nmsub(b, inv_b, one), inv_b, inv_b);
118 
119   ym = spu_mul(a, inv_b);
120   ym = spu_madd(spu_nmsub(b, ym, a), inv_b, ym);
121 
122   /* Merge sign, computed exponent, and computed mantissa.
123    */
124   exp = spu_rl(spu_add((vec_int4)e_div_3, 1023), 20);
125   exp = spu_andc(exp, (vec_int4)mant_mask);
126   out = spu_sel((vec_double2)exp, in, VEC_SPLAT_U64(0x8000000000000000ULL));
127   out = spu_mul(out, ym);
128 
129   out = spu_andc(out, (vec_double2)mask);
130 
131   return (spu_extract(out, 0));
132 }
133 
134 #endif /* _CBRT_H_ */
135