1 /*
2 * Copyright (c) 2023 Google LLC.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <errno.h>
8
9 #include <zephyr/drivers/sensor.h>
10 #include <zephyr/dsp/types.h>
11 #include <zephyr/logging/log.h>
12
13 LOG_MODULE_REGISTER(sensor_compat, CONFIG_SENSOR_LOG_LEVEL);
14
15 /*
16 * Ensure that the size of the generic header aligns with the sensor channel enum. If it doesn't,
17 * then cores that require aligned memory access will fail to read channel[0].
18 */
19 BUILD_ASSERT((sizeof(struct sensor_data_generic_header) % sizeof(enum sensor_channel)) == 0);
20
21 static void sensor_submit_fallback(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe);
22
sensor_iodev_submit(struct rtio_iodev_sqe * iodev_sqe)23 static void sensor_iodev_submit(struct rtio_iodev_sqe *iodev_sqe)
24 {
25 const struct sensor_read_config *cfg = iodev_sqe->sqe.iodev->data;
26 const struct device *dev = cfg->sensor;
27 const struct sensor_driver_api *api = dev->api;
28
29 if (api->submit != NULL) {
30 api->submit(dev, iodev_sqe);
31 } else {
32 sensor_submit_fallback(dev, iodev_sqe);
33 }
34 }
35
36 const struct rtio_iodev_api __sensor_iodev_api = {
37 .submit = sensor_iodev_submit,
38 };
39
40 /**
41 * @brief Compute the number of samples needed for the given channels
42 *
43 * @param[in] channels Array of channels requested
44 * @param[in] num_channels Number of channels on the @p channels array
45 * @return The number of samples required to read the given channels
46 */
compute_num_samples(const enum sensor_channel * channels,size_t num_channels)47 static inline int compute_num_samples(const enum sensor_channel *channels, size_t num_channels)
48 {
49 int num_samples = 0;
50
51 for (size_t i = 0; i < num_channels; ++i) {
52 num_samples += SENSOR_CHANNEL_3_AXIS(channels[i]) ? 3 : 1;
53 }
54
55 return num_samples;
56 }
57
58 /**
59 * @brief Compute the required header size
60 *
61 * This function takes into account alignment of the q31 values that will follow the header.
62 *
63 * @param[in] num_output_samples The number of samples to represent
64 * @return The number of bytes needed for this sample frame's header
65 */
compute_header_size(int num_output_samples)66 static inline uint32_t compute_header_size(int num_output_samples)
67 {
68 uint32_t size = sizeof(struct sensor_data_generic_header) +
69 (num_output_samples * sizeof(enum sensor_channel));
70 return (size + 3) & ~0x3;
71 }
72
73 /**
74 * @brief Compute the minimum number of bytes needed
75 *
76 * @param[in] num_output_samples The number of samples to represent
77 * @return The number of bytes needed for this sample frame
78 */
compute_min_buf_len(int num_output_samples)79 static inline uint32_t compute_min_buf_len(int num_output_samples)
80 {
81 return compute_header_size(num_output_samples) + (num_output_samples * sizeof(q31_t));
82 }
83
84 /**
85 * @brief Checks if the header already contains a given channel
86 *
87 * @param[in] header The header to scan
88 * @param[in] channel The channel to search for
89 * @param[in] num_channels The number of valid channels in the header so far
90 * @return Index of the @p channel if found or negative if not found
91 */
check_header_contains_channel(const struct sensor_data_generic_header * header,enum sensor_channel channel,int num_channels)92 static inline int check_header_contains_channel(const struct sensor_data_generic_header *header,
93 enum sensor_channel channel, int num_channels)
94 {
95 __ASSERT_NO_MSG(!SENSOR_CHANNEL_3_AXIS(channel));
96
97 for (int i = 0; i < num_channels; ++i) {
98 if (header->channels[i] == channel) {
99 return i;
100 }
101 }
102 return -1;
103 }
104
105 /**
106 * @brief Fallback function for retrofiting old drivers to rtio
107 *
108 * @param[in] dev The sensor device to read
109 * @param[in] iodev_sqe The read submission queue event
110 */
sensor_submit_fallback(const struct device * dev,struct rtio_iodev_sqe * iodev_sqe)111 static void sensor_submit_fallback(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe)
112 {
113 const struct sensor_read_config *cfg = iodev_sqe->sqe.iodev->data;
114 const enum sensor_channel *const channels = cfg->channels;
115 const int num_output_samples = compute_num_samples(channels, cfg->count);
116 uint32_t min_buf_len = compute_min_buf_len(num_output_samples);
117 uint64_t timestamp_ns = k_ticks_to_ns_floor64(k_uptime_ticks());
118 int rc = sensor_sample_fetch(dev);
119 uint8_t *buf;
120 uint32_t buf_len;
121
122 /* Check that the fetch succeeded */
123 if (rc != 0) {
124 LOG_WRN("Failed to fetch samples");
125 rtio_iodev_sqe_err(iodev_sqe, rc);
126 return;
127 }
128
129 /* Get the buffer for the frame, it may be allocated dynamically by the rtio context */
130 rc = rtio_sqe_rx_buf(iodev_sqe, min_buf_len, min_buf_len, &buf, &buf_len);
131 if (rc != 0) {
132 LOG_WRN("Failed to get a read buffer of size %u bytes", min_buf_len);
133 rtio_iodev_sqe_err(iodev_sqe, rc);
134 return;
135 }
136
137 /* Set the timestamp and num_channels */
138 struct sensor_data_generic_header *header = (struct sensor_data_generic_header *)buf;
139
140 header->timestamp_ns = timestamp_ns;
141 header->num_channels = num_output_samples;
142 header->shift = 0;
143
144 q31_t *q = (q31_t *)(buf + compute_header_size(num_output_samples));
145
146 /* Populate values, update shift, and set channels */
147 for (size_t i = 0, sample_idx = 0; i < cfg->count; ++i) {
148 struct sensor_value value[3];
149 const int num_samples = SENSOR_CHANNEL_3_AXIS(channels[i]) ? 3 : 1;
150
151 /* Get the current channel requested by the user */
152 rc = sensor_channel_get(dev, channels[i], value);
153
154 if (num_samples == 3) {
155 header->channels[sample_idx++] =
156 rc == 0 ? channels[i] - 3 : SENSOR_CHAN_MAX;
157 header->channels[sample_idx++] =
158 rc == 0 ? channels[i] - 2 : SENSOR_CHAN_MAX;
159 header->channels[sample_idx++] =
160 rc == 0 ? channels[i] - 1 : SENSOR_CHAN_MAX;
161 } else {
162 header->channels[sample_idx++] = rc == 0 ? channels[i] : SENSOR_CHAN_MAX;
163 }
164
165 if (rc != 0) {
166 LOG_DBG("Failed to get channel %d, skipping", channels[i]);
167 continue;
168 }
169
170 /* Get the largest absolute value reading to set the scale for the channel */
171 uint32_t header_scale = 0;
172
173 for (int sample = 0; sample < num_samples; ++sample) {
174 /*
175 * The scale is the ceil(abs(sample)).
176 * Since we are using fractional values, it's easier to assume that .val2
177 * is non 0 and convert this to abs(sample.val1) + 1 (removing a branch).
178 * Since it's possible that val1 (int32_t) is saturated (INT32_MAX) we need
179 * to upcast it to 64 bit int first, then take the abs() of that 64 bit
180 * int before we '+ 1'. Once that's done, we can safely cast back down
181 * to uint32_t because the min value is 0 and max is INT32_MAX + 1 which
182 * is less than UINT32_MAX.
183 */
184 uint32_t scale = (uint32_t)llabs((int64_t)value[sample].val1) + 1;
185
186 header_scale = MAX(header_scale, scale);
187 }
188
189 int8_t new_shift = ilog2(header_scale - 1) + 1;
190
191 /* Reset sample_idx */
192 sample_idx -= num_samples;
193 if (header->shift < new_shift) {
194 /*
195 * Shift was updated, need to convert all the existing q values. This could
196 * be optimized by calling zdsp_scale_q31() but that would force a
197 * dependency between sensors and the zDSP subsystem.
198 */
199 for (int q_idx = 0; q_idx < sample_idx; ++q_idx) {
200 q[q_idx] = q[q_idx] >> (new_shift - header->shift);
201 }
202 header->shift = new_shift;
203 }
204
205 /*
206 * Spread the q31 values. This is needed because some channels are 3D. If
207 * the user specified one of those then num_samples will be 3; and we need to
208 * produce 3 separate readings.
209 */
210 for (int sample = 0; sample < num_samples; ++sample) {
211 /* Check if the channel is already in the buffer */
212 int prev_computed_value_idx = check_header_contains_channel(
213 header, header->channels[sample_idx + sample], sample_idx + sample);
214
215 if (prev_computed_value_idx >= 0 &&
216 prev_computed_value_idx != sample_idx + sample) {
217 LOG_DBG("value[%d] previously computed at q[%d]@%p", sample,
218 prev_computed_value_idx,
219 (void *)&q[prev_computed_value_idx]);
220 q[sample_idx + sample] = q[prev_computed_value_idx];
221 continue;
222 }
223
224 /* Convert the value to micro-units */
225 int64_t value_u = sensor_value_to_micro(&value[sample]);
226
227 /* Convert to q31 using the shift */
228 q[sample_idx + sample] =
229 ((value_u * ((INT64_C(1) << 31) - 1)) / 1000000) >> header->shift;
230
231 LOG_DBG("value[%d]=%s%d.%06d, q[%d]@%p=%d", sample, value_u < 0 ? "-" : "",
232 abs((int)value[sample].val1), abs((int)value[sample].val2),
233 (int)(sample_idx + sample), (void *)&q[sample_idx + sample],
234 q[sample_idx + sample]);
235 }
236 sample_idx += num_samples;
237 }
238 LOG_DBG("Total channels in header: %u", header->num_channels);
239 rtio_iodev_sqe_ok(iodev_sqe, 0);
240 }
241
sensor_processing_with_callback(struct rtio * ctx,sensor_processing_callback_t cb)242 void sensor_processing_with_callback(struct rtio *ctx, sensor_processing_callback_t cb)
243 {
244 void *userdata = NULL;
245 uint8_t *buf = NULL;
246 uint32_t buf_len = 0;
247 int rc;
248
249 /* Wait for a CQE */
250 struct rtio_cqe *cqe = rtio_cqe_consume_block(ctx);
251
252 /* Cache the data from the CQE */
253 rc = cqe->result;
254 userdata = cqe->userdata;
255 rtio_cqe_get_mempool_buffer(ctx, cqe, &buf, &buf_len);
256
257 /* Release the CQE */
258 rtio_cqe_release(ctx, cqe);
259
260 /* Call the callback */
261 cb(rc, buf, buf_len, userdata);
262
263 /* Release the memory */
264 rtio_release_buffer(ctx, buf, buf_len);
265 }
266
267 /**
268 * @brief Default decoder get frame count
269 *
270 * Default reader can only ever service a single frame at a time.
271 *
272 * @param[in] buffer The data buffer to parse
273 * @param[in] channel The channel to get the count for
274 * @param[in] channel_idx The index of the channel
275 * @param[out] frame_count The number of frames in the buffer (always 1)
276 * @return 0 in all cases
277 */
get_frame_count(const uint8_t * buffer,enum sensor_channel channel,size_t channel_idx,uint16_t * frame_count)278 static int get_frame_count(const uint8_t *buffer, enum sensor_channel channel, size_t channel_idx,
279 uint16_t *frame_count)
280 {
281 struct sensor_data_generic_header *header = (struct sensor_data_generic_header *)buffer;
282 size_t count = 0;
283
284 switch (channel) {
285 case SENSOR_CHAN_ACCEL_XYZ:
286 channel = SENSOR_CHAN_ACCEL_X;
287 break;
288 case SENSOR_CHAN_GYRO_XYZ:
289 channel = SENSOR_CHAN_GYRO_X;
290 break;
291 case SENSOR_CHAN_MAGN_XYZ:
292 channel = SENSOR_CHAN_MAGN_X;
293 break;
294 default:
295 break;
296 }
297 for (size_t i = 0; i < header->num_channels; ++i) {
298 if (header->channels[i] == channel) {
299 if (channel_idx == count) {
300 *frame_count = 1;
301 return 0;
302 }
303 ++count;
304 }
305 }
306
307 return -ENOTSUP;
308 }
309
sensor_natively_supported_channel_size_info(enum sensor_channel channel,size_t * base_size,size_t * frame_size)310 int sensor_natively_supported_channel_size_info(enum sensor_channel channel, size_t *base_size,
311 size_t *frame_size)
312 {
313 __ASSERT_NO_MSG(base_size != NULL);
314 __ASSERT_NO_MSG(frame_size != NULL);
315
316 switch (channel) {
317 case SENSOR_CHAN_ACCEL_X:
318 case SENSOR_CHAN_ACCEL_Y:
319 case SENSOR_CHAN_ACCEL_Z:
320 case SENSOR_CHAN_ACCEL_XYZ:
321 case SENSOR_CHAN_GYRO_X:
322 case SENSOR_CHAN_GYRO_Y:
323 case SENSOR_CHAN_GYRO_Z:
324 case SENSOR_CHAN_GYRO_XYZ:
325 case SENSOR_CHAN_MAGN_X:
326 case SENSOR_CHAN_MAGN_Y:
327 case SENSOR_CHAN_MAGN_Z:
328 case SENSOR_CHAN_MAGN_XYZ:
329 case SENSOR_CHAN_POS_DX:
330 case SENSOR_CHAN_POS_DY:
331 case SENSOR_CHAN_POS_DZ:
332 *base_size = sizeof(struct sensor_three_axis_data);
333 *frame_size = sizeof(struct sensor_three_axis_sample_data);
334 return 0;
335 case SENSOR_CHAN_DIE_TEMP:
336 case SENSOR_CHAN_AMBIENT_TEMP:
337 case SENSOR_CHAN_PRESS:
338 case SENSOR_CHAN_HUMIDITY:
339 case SENSOR_CHAN_LIGHT:
340 case SENSOR_CHAN_IR:
341 case SENSOR_CHAN_RED:
342 case SENSOR_CHAN_GREEN:
343 case SENSOR_CHAN_BLUE:
344 case SENSOR_CHAN_ALTITUDE:
345 case SENSOR_CHAN_PM_1_0:
346 case SENSOR_CHAN_PM_2_5:
347 case SENSOR_CHAN_PM_10:
348 case SENSOR_CHAN_DISTANCE:
349 case SENSOR_CHAN_CO2:
350 case SENSOR_CHAN_VOC:
351 case SENSOR_CHAN_GAS_RES:
352 case SENSOR_CHAN_VOLTAGE:
353 case SENSOR_CHAN_CURRENT:
354 case SENSOR_CHAN_POWER:
355 case SENSOR_CHAN_RESISTANCE:
356 case SENSOR_CHAN_ROTATION:
357 case SENSOR_CHAN_RPM:
358 case SENSOR_CHAN_GAUGE_VOLTAGE:
359 case SENSOR_CHAN_GAUGE_AVG_CURRENT:
360 case SENSOR_CHAN_GAUGE_STDBY_CURRENT:
361 case SENSOR_CHAN_GAUGE_MAX_LOAD_CURRENT:
362 case SENSOR_CHAN_GAUGE_TEMP:
363 case SENSOR_CHAN_GAUGE_STATE_OF_CHARGE:
364 case SENSOR_CHAN_GAUGE_FULL_CHARGE_CAPACITY:
365 case SENSOR_CHAN_GAUGE_REMAINING_CHARGE_CAPACITY:
366 case SENSOR_CHAN_GAUGE_NOM_AVAIL_CAPACITY:
367 case SENSOR_CHAN_GAUGE_FULL_AVAIL_CAPACITY:
368 case SENSOR_CHAN_GAUGE_AVG_POWER:
369 case SENSOR_CHAN_GAUGE_STATE_OF_HEALTH:
370 case SENSOR_CHAN_GAUGE_TIME_TO_EMPTY:
371 case SENSOR_CHAN_GAUGE_TIME_TO_FULL:
372 case SENSOR_CHAN_GAUGE_DESIGN_VOLTAGE:
373 case SENSOR_CHAN_GAUGE_DESIRED_VOLTAGE:
374 case SENSOR_CHAN_GAUGE_DESIRED_CHARGING_CURRENT:
375 *base_size = sizeof(struct sensor_q31_data);
376 *frame_size = sizeof(struct sensor_q31_sample_data);
377 return 0;
378 case SENSOR_CHAN_PROX:
379 *base_size = sizeof(struct sensor_byte_data);
380 *frame_size = sizeof(struct sensor_byte_sample_data);
381 return 0;
382 case SENSOR_CHAN_GAUGE_CYCLE_COUNT:
383 *base_size = sizeof(struct sensor_uint64_data);
384 *frame_size = sizeof(struct sensor_uint64_sample_data);
385 return 0;
386 default:
387 return -ENOTSUP;
388 }
389 }
390
get_q31_value(const struct sensor_data_generic_header * header,const q31_t * values,enum sensor_channel channel,size_t channel_idx,q31_t * out)391 static int get_q31_value(const struct sensor_data_generic_header *header, const q31_t *values,
392 enum sensor_channel channel, size_t channel_idx, q31_t *out)
393 {
394 size_t count = 0;
395
396 for (size_t i = 0; i < header->num_channels; ++i) {
397 if (channel != header->channels[i]) {
398 continue;
399 }
400 if (count == channel_idx) {
401 *out = values[i];
402 return 0;
403 }
404 ++count;
405 }
406 return -EINVAL;
407 }
408
decode_three_axis(const struct sensor_data_generic_header * header,const q31_t * values,struct sensor_three_axis_data * data_out,enum sensor_channel x,enum sensor_channel y,enum sensor_channel z,size_t channel_idx)409 static int decode_three_axis(const struct sensor_data_generic_header *header, const q31_t *values,
410 struct sensor_three_axis_data *data_out, enum sensor_channel x,
411 enum sensor_channel y, enum sensor_channel z, size_t channel_idx)
412 {
413 int rc;
414
415 data_out->header.base_timestamp_ns = header->timestamp_ns;
416 data_out->header.reading_count = 1;
417 data_out->shift = header->shift;
418 data_out->readings[0].timestamp_delta = 0;
419
420 rc = get_q31_value(header, values, x, channel_idx, &data_out->readings[0].values[0]);
421 if (rc < 0) {
422 return rc;
423 }
424 rc = get_q31_value(header, values, y, channel_idx, &data_out->readings[0].values[1]);
425 if (rc < 0) {
426 return rc;
427 }
428 rc = get_q31_value(header, values, z, channel_idx, &data_out->readings[0].values[2]);
429 if (rc < 0) {
430 return rc;
431 }
432 return 1;
433 }
434
decode_q31(const struct sensor_data_generic_header * header,const q31_t * values,struct sensor_q31_data * data_out,enum sensor_channel channel,size_t channel_idx)435 static int decode_q31(const struct sensor_data_generic_header *header, const q31_t *values,
436 struct sensor_q31_data *data_out, enum sensor_channel channel,
437 size_t channel_idx)
438 {
439 int rc;
440
441 data_out->header.base_timestamp_ns = header->timestamp_ns;
442 data_out->header.reading_count = 1;
443 data_out->shift = header->shift;
444 data_out->readings[0].timestamp_delta = 0;
445
446 rc = get_q31_value(header, values, channel, channel_idx, &data_out->readings[0].value);
447 if (rc < 0) {
448 return rc;
449 }
450 return 1;
451 }
452
453 /**
454 * @brief Decode up to N samples from the buffer
455 *
456 * This function will never wrap frames. If 1 channel is available in the current frame and
457 * @p max_count is 2, only 1 channel will be decoded and the frame iterator will be modified
458 * so that the next call to decode will begin at the next frame.
459 *
460 * @param[in] buffer The buffer provided on the :c:struct:`rtio` context
461 * @param[in] channel The channel to decode
462 * @param[in] channel_idx The index of the channel
463 * @param[in,out] fit The current frame iterator
464 * @param[in] max_count The maximum number of channels to decode.
465 * @param[out] data_out The decoded data
466 * @return 0 no more samples to decode
467 * @return >0 the number of decoded frames
468 * @return <0 on error
469 */
decode(const uint8_t * buffer,enum sensor_channel channel,size_t channel_idx,uint32_t * fit,uint16_t max_count,void * data_out)470 static int decode(const uint8_t *buffer, enum sensor_channel channel, size_t channel_idx,
471 uint32_t *fit, uint16_t max_count, void *data_out)
472 {
473 const struct sensor_data_generic_header *header =
474 (const struct sensor_data_generic_header *)buffer;
475 const q31_t *q =
476 (const q31_t *)(buffer + sizeof(struct sensor_data_generic_header) +
477 header->num_channels * sizeof(enum sensor_channel));
478 int count = 0;
479
480 if (*fit != 0 || max_count < 1) {
481 return -EINVAL;
482 }
483
484 /* Check for 3d channel mappings */
485 switch (channel) {
486 case SENSOR_CHAN_ACCEL_X:
487 case SENSOR_CHAN_ACCEL_Y:
488 case SENSOR_CHAN_ACCEL_Z:
489 case SENSOR_CHAN_ACCEL_XYZ:
490 count = decode_three_axis(header, q, data_out, SENSOR_CHAN_ACCEL_X,
491 SENSOR_CHAN_ACCEL_Y, SENSOR_CHAN_ACCEL_Z, channel_idx);
492 break;
493 case SENSOR_CHAN_GYRO_X:
494 case SENSOR_CHAN_GYRO_Y:
495 case SENSOR_CHAN_GYRO_Z:
496 case SENSOR_CHAN_GYRO_XYZ:
497 count = decode_three_axis(header, q, data_out, SENSOR_CHAN_GYRO_X,
498 SENSOR_CHAN_GYRO_Y, SENSOR_CHAN_GYRO_Z, channel_idx);
499 break;
500 case SENSOR_CHAN_MAGN_X:
501 case SENSOR_CHAN_MAGN_Y:
502 case SENSOR_CHAN_MAGN_Z:
503 case SENSOR_CHAN_MAGN_XYZ:
504 count = decode_three_axis(header, q, data_out, SENSOR_CHAN_MAGN_X,
505 SENSOR_CHAN_MAGN_Y, SENSOR_CHAN_MAGN_Z, channel_idx);
506 break;
507 case SENSOR_CHAN_POS_DX:
508 case SENSOR_CHAN_POS_DY:
509 case SENSOR_CHAN_POS_DZ:
510 count = decode_three_axis(header, q, data_out, SENSOR_CHAN_POS_DX,
511 SENSOR_CHAN_POS_DY, SENSOR_CHAN_POS_DZ, channel_idx);
512 break;
513 case SENSOR_CHAN_DIE_TEMP:
514 case SENSOR_CHAN_AMBIENT_TEMP:
515 case SENSOR_CHAN_PRESS:
516 case SENSOR_CHAN_HUMIDITY:
517 case SENSOR_CHAN_LIGHT:
518 case SENSOR_CHAN_IR:
519 case SENSOR_CHAN_RED:
520 case SENSOR_CHAN_GREEN:
521 case SENSOR_CHAN_BLUE:
522 case SENSOR_CHAN_ALTITUDE:
523 case SENSOR_CHAN_PM_1_0:
524 case SENSOR_CHAN_PM_2_5:
525 case SENSOR_CHAN_PM_10:
526 case SENSOR_CHAN_DISTANCE:
527 case SENSOR_CHAN_CO2:
528 case SENSOR_CHAN_VOC:
529 case SENSOR_CHAN_GAS_RES:
530 case SENSOR_CHAN_VOLTAGE:
531 case SENSOR_CHAN_CURRENT:
532 case SENSOR_CHAN_POWER:
533 case SENSOR_CHAN_RESISTANCE:
534 case SENSOR_CHAN_ROTATION:
535 case SENSOR_CHAN_RPM:
536 case SENSOR_CHAN_GAUGE_VOLTAGE:
537 case SENSOR_CHAN_GAUGE_AVG_CURRENT:
538 case SENSOR_CHAN_GAUGE_STDBY_CURRENT:
539 case SENSOR_CHAN_GAUGE_MAX_LOAD_CURRENT:
540 case SENSOR_CHAN_GAUGE_TEMP:
541 case SENSOR_CHAN_GAUGE_STATE_OF_CHARGE:
542 case SENSOR_CHAN_GAUGE_FULL_CHARGE_CAPACITY:
543 case SENSOR_CHAN_GAUGE_REMAINING_CHARGE_CAPACITY:
544 case SENSOR_CHAN_GAUGE_NOM_AVAIL_CAPACITY:
545 case SENSOR_CHAN_GAUGE_FULL_AVAIL_CAPACITY:
546 case SENSOR_CHAN_GAUGE_AVG_POWER:
547 case SENSOR_CHAN_GAUGE_STATE_OF_HEALTH:
548 case SENSOR_CHAN_GAUGE_TIME_TO_EMPTY:
549 case SENSOR_CHAN_GAUGE_TIME_TO_FULL:
550 case SENSOR_CHAN_GAUGE_DESIGN_VOLTAGE:
551 case SENSOR_CHAN_GAUGE_DESIRED_VOLTAGE:
552 case SENSOR_CHAN_GAUGE_DESIRED_CHARGING_CURRENT:
553 count = decode_q31(header, q, data_out, channel, channel_idx);
554 break;
555 default:
556 break;
557 }
558 if (count > 0) {
559 *fit = 1;
560 }
561 return count;
562 }
563
564 const struct sensor_decoder_api __sensor_default_decoder = {
565 .get_frame_count = get_frame_count,
566 .get_size_info = sensor_natively_supported_channel_size_info,
567 .decode = decode,
568 };
569