1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Margo Seltzer.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #define _DEFAULT_SOURCE
34 #include <sys/param.h>
35 #if defined(LIBC_SCCS) && !defined(lint)
36 static char sccsid[] = "@(#)hash_bigkey.c	8.3 (Berkeley) 5/31/94";
37 #endif /* LIBC_SCCS and not lint */
38 
39 /*
40  * PACKAGE: hash
41  * DESCRIPTION:
42  *	Big key/data handling for the hashing package.
43  *
44  * ROUTINES:
45  * External
46  *	__big_keydata
47  *	__big_split
48  *	__big_insert
49  *	__big_return
50  *	__big_delete
51  *	__find_last_page
52  * Internal
53  *	collect_key
54  *	collect_data
55  */
56 
57 #include <sys/param.h>
58 
59 #include <errno.h>
60 #include <stdio.h>
61 #include <stdlib.h>
62 #include <string.h>
63 
64 #ifdef DEBUG
65 #include <assert.h>
66 #endif
67 
68 #include "db_local.h"
69 #include "hash.h"
70 #include "page.h"
71 #include "extern.h"
72 
73 static size_t collect_key(HTAB *, BUFHEAD *, size_t, DBT *, int);
74 static size_t collect_data(HTAB *, BUFHEAD *, size_t, int);
75 
76 /*
77  * Big_insert
78  *
79  * You need to do an insert and the key/data pair is too big
80  *
81  * Returns:
82  * 0 ==> OK
83  *-1 ==> ERROR
84  */
85 extern int
__big_insert(HTAB * hashp,BUFHEAD * bufp,const DBT * key,const DBT * val)86 __big_insert(HTAB *hashp,
87              BUFHEAD *bufp,
88              const DBT *key,
89              const DBT *val)
90 {
91 	__uint16_t *p;
92 	size_t key_size, n;
93         size_t val_size;
94 	__uint16_t space, move_bytes, off;
95 	char *cp, *key_data, *val_data;
96 
97 	cp = bufp->page;		/* Character pointer of p. */
98 	p = (__uint16_t *)cp;
99 
100 	key_data = (char *)key->data;
101 	key_size = key->size;
102 	val_data = (char *)val->data;
103 	val_size = val->size;
104 
105 	/* First move the Key */
106 	for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
107 	    space = FREESPACE(p) - BIGOVERHEAD) {
108 		move_bytes = MIN(space, key_size);
109 		off = OFFSET(p) - move_bytes;
110 		memmove(cp + off, key_data, move_bytes);
111 		key_size -= move_bytes;
112 		key_data += move_bytes;
113 		n = p[0];
114 		p[++n] = off;
115 		p[0] = ++n;
116 		FREESPACE(p) = off - PAGE_META(n);
117 		OFFSET(p) = off;
118 		p[n] = PARTIAL_KEY;
119 		bufp = __add_ovflpage(hashp, bufp);
120 		if (!bufp)
121 			return (-1);
122 		n = p[0];
123 		if (!key_size) {
124 			if (FREESPACE(p)) {
125 				move_bytes = MIN(FREESPACE(p), val_size);
126 				off = OFFSET(p) - move_bytes;
127 				p[n] = off;
128 				memmove(cp + off, val_data, move_bytes);
129 				val_data += move_bytes;
130 				val_size -= move_bytes;
131 				p[n - 2] = FULL_KEY_DATA;
132 				FREESPACE(p) = FREESPACE(p) - move_bytes;
133 				OFFSET(p) = off;
134 			} else
135 				p[n - 2] = FULL_KEY;
136 		}
137 		p = (__uint16_t *)bufp->page;
138 		cp = bufp->page;
139 		bufp->flags |= BUF_MOD;
140 	}
141 
142 	/* Now move the data */
143 	for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
144 	    space = FREESPACE(p) - BIGOVERHEAD) {
145 		move_bytes = MIN(space, val_size);
146 		/*
147 		 * Here's the hack to make sure that if the data ends on the
148 		 * same page as the key ends, FREESPACE is at least one.
149 		 */
150 		if (space == val_size && val_size == val->size)
151 			move_bytes--;
152 		off = OFFSET(p) - move_bytes;
153 		memmove(cp + off, val_data, move_bytes);
154 		val_size -= move_bytes;
155 		val_data += move_bytes;
156 		n = p[0];
157 		p[++n] = off;
158 		p[0] = ++n;
159 		FREESPACE(p) = off - PAGE_META(n);
160 		OFFSET(p) = off;
161 		if (val_size) {
162 			p[n] = FULL_KEY;
163 			bufp = __add_ovflpage(hashp, bufp);
164 			if (!bufp)
165 				return (-1);
166 			cp = bufp->page;
167 			p = (__uint16_t *)cp;
168 		} else
169 			p[n] = FULL_KEY_DATA;
170 		bufp->flags |= BUF_MOD;
171 	}
172 	return (0);
173 }
174 
175 /*
176  * Called when bufp's page  contains a partial key (index should be 1)
177  *
178  * All pages in the big key/data pair except bufp are freed.  We cannot
179  * free bufp because the page pointing to it is lost and we can't get rid
180  * of its pointer.
181  *
182  * Returns:
183  * 0 => OK
184  *-1 => ERROR
185  */
186 extern int
__big_delete(HTAB * hashp,BUFHEAD * bufp)187 __big_delete(HTAB *hashp,
188              BUFHEAD *bufp)
189 {
190 	BUFHEAD *last_bfp, *rbufp;
191 	__uint16_t *bp, pageno;
192 	int key_done, n;
193 
194 	rbufp = bufp;
195 	last_bfp = NULL;
196 	bp = (__uint16_t *)bufp->page;
197 	pageno = 0;
198 	key_done = 0;
199 
200 	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
201 		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
202 			key_done = 1;
203 
204 		/*
205 		 * If there is freespace left on a FULL_KEY_DATA page, then
206 		 * the data is short and fits entirely on this page, and this
207 		 * is the last page.
208 		 */
209 		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
210 			break;
211 		pageno = bp[bp[0] - 1];
212 		rbufp->flags |= BUF_MOD;
213 		rbufp = __get_buf(hashp, pageno, rbufp, 0);
214 		if (last_bfp)
215 			__free_ovflpage(hashp, last_bfp);
216 		last_bfp = rbufp;
217 		if (!rbufp)
218 			return (-1);		/* Error. */
219 		bp = (__uint16_t *)rbufp->page;
220 	}
221 
222 	/*
223 	 * If we get here then rbufp points to the last page of the big
224 	 * key/data pair.  Bufp points to the first one -- it should now be
225 	 * empty pointing to the next page after this pair.  Can't free it
226 	 * because we don't have the page pointing to it.
227 	 */
228 
229 	/* This is information from the last page of the pair. */
230 	n = bp[0];
231 	pageno = bp[n - 1];
232 
233 	/* Now, bp is the first page of the pair. */
234 	bp = (__uint16_t *)bufp->page;
235 	if (n > 2) {
236 		/* There is an overflow page. */
237 		bp[1] = pageno;
238 		bp[2] = OVFLPAGE;
239 		bufp->ovfl = rbufp->ovfl;
240 	} else
241 		/* This is the last page. */
242 		bufp->ovfl = NULL;
243 	n -= 2;
244 	bp[0] = n;
245 	FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
246 	OFFSET(bp) = hashp->BSIZE - 1;
247 
248 	bufp->flags |= BUF_MOD;
249 	if (rbufp)
250 		__free_ovflpage(hashp, rbufp);
251 	if (last_bfp != rbufp)
252 		__free_ovflpage(hashp, last_bfp);
253 
254 	hashp->NKEYS--;
255 	return (0);
256 }
257 /*
258  * Returns:
259  *  0 = key not found
260  * -1 = get next overflow page
261  * -2 means key not found and this is big key/data
262  * -3 error
263  */
264 extern int
__find_bigpair(HTAB * hashp,BUFHEAD * bufp,int ndx,char * key,int size)265 __find_bigpair(HTAB *hashp,
266                BUFHEAD *bufp,
267                int ndx,
268                char *key,
269                int size)
270 {
271 	__uint16_t *bp;
272 	char *p;
273 	int ksize;
274 	__uint16_t bytes;
275 	char *kkey;
276 
277 	bp = (__uint16_t *)bufp->page;
278 	p = bufp->page;
279 	ksize = size;
280 	kkey = key;
281 
282 	for (bytes = hashp->BSIZE - bp[ndx];
283              (int) bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
284 	    bytes = hashp->BSIZE - bp[ndx]) {
285 		if (memcmp(p + bp[ndx], kkey, bytes))
286 			return (-2);
287 		kkey += bytes;
288 		ksize -= bytes;
289 		bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0);
290 		if (!bufp)
291 			return (-3);
292 		p = bufp->page;
293 		bp = (__uint16_t *)p;
294 		ndx = 1;
295 	}
296 
297 	if ((int) bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) {
298 #ifdef HASH_STATISTICS
299 		++hash_collisions;
300 #endif
301 		return (-2);
302 	} else
303 		return (ndx);
304 }
305 
306 /*
307  * Given the buffer pointer of the first overflow page of a big pair,
308  * find the end of the big pair
309  *
310  * This will set bpp to the buffer header of the last page of the big pair.
311  * It will return the pageno of the overflow page following the last page
312  * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
313  * bucket)
314  */
315 extern __uint16_t
__find_last_page(HTAB * hashp,BUFHEAD ** bpp)316 __find_last_page(HTAB *hashp,
317                  BUFHEAD **bpp)
318 {
319 	BUFHEAD *bufp;
320 	__uint16_t *bp, pageno;
321 	int n;
322 
323 	bufp = *bpp;
324 	bp = (__uint16_t *)bufp->page;
325 	for (;;) {
326 		n = bp[0];
327 
328 		/*
329 		 * This is the last page if: the tag is FULL_KEY_DATA and
330 		 * either only 2 entries OVFLPAGE marker is explicit there
331 		 * is freespace on the page.
332 		 */
333 		if (bp[2] == FULL_KEY_DATA &&
334 		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
335 			break;
336 
337 		pageno = bp[n - 1];
338 		bufp = __get_buf(hashp, pageno, bufp, 0);
339 		if (!bufp)
340 			return (0);	/* Need to indicate an error! */
341 		bp = (__uint16_t *)bufp->page;
342 	}
343 
344 	*bpp = bufp;
345 	if (bp[0] > 2)
346 		return (bp[3]);
347 	else
348 		return (0);
349 }
350 
351 /*
352  * Return the data for the key/data pair that begins on this page at this
353  * index (index should always be 1).
354  */
355 extern int
__big_return(HTAB * hashp,BUFHEAD * bufp,int ndx,DBT * val,int set_current)356 __big_return(HTAB *hashp,
357              BUFHEAD *bufp,
358              int ndx,
359              DBT *val,
360              int set_current)
361 {
362 	BUFHEAD *save_p;
363 	__uint16_t *bp, len, off, save_addr;
364 	char *tp;
365 
366 	bp = (__uint16_t *)bufp->page;
367 	while (bp[ndx + 1] == PARTIAL_KEY) {
368 		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
369 		if (!bufp)
370 			return (-1);
371 		bp = (__uint16_t *)bufp->page;
372 		ndx = 1;
373 	}
374 
375 	if (bp[ndx + 1] == FULL_KEY) {
376 		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
377 		if (!bufp)
378 			return (-1);
379 		bp = (__uint16_t *)bufp->page;
380 		save_p = bufp;
381 		save_addr = save_p->addr;
382 		off = bp[1];
383 		len = 0;
384 	} else
385 		if (!FREESPACE(bp)) {
386 			/*
387 			 * This is a hack.  We can't distinguish between
388 			 * FULL_KEY_DATA that contains complete data or
389 			 * incomplete data, so we require that if the data
390 			 * is complete, there is at least 1 byte of free
391 			 * space left.
392 			 */
393 			off = bp[bp[0]];
394 			len = bp[1] - off;
395 			save_p = bufp;
396 			save_addr = bufp->addr;
397 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
398 			if (!bufp)
399 				return (-1);
400 			bp = (__uint16_t *)bufp->page;
401 		} else {
402 			/* The data is all on one page. */
403 			tp = (char *)bp;
404 			off = bp[bp[0]];
405 			val->data = (u_char *)tp + off;
406 			val->size = bp[1] - off;
407 			if (set_current) {
408 				if (bp[0] == 2) {	/* No more buckets in
409 							 * chain */
410 					hashp->cpage = NULL;
411 					hashp->cbucket++;
412 					hashp->cndx = 1;
413 				} else {
414 					hashp->cpage = __get_buf(hashp,
415 					    bp[bp[0] - 1], bufp, 0);
416 					if (!hashp->cpage)
417 						return (-1);
418 					hashp->cndx = 1;
419 					if (!((__uint16_t *)
420 					    hashp->cpage->page)[0]) {
421 						hashp->cbucket++;
422 						hashp->cpage = NULL;
423 					}
424 				}
425 			}
426 			return (0);
427 		}
428 
429 	val->size = collect_data(hashp, bufp, len, set_current);
430 	if (val->size == (size_t) -1)
431 		return (-1);
432 	if (save_p->addr != save_addr) {
433 		/* We are pretty short on buffers. */
434 		errno = EINVAL;			/* OUT OF BUFFERS */
435 		return (-1);
436 	}
437 	memmove(hashp->tmp_buf, (save_p->page) + off, len);
438 	val->data = (u_char *)hashp->tmp_buf;
439 	return (0);
440 }
441 /*
442  * Count how big the total datasize is by recursing through the pages.  Then
443  * allocate a buffer and copy the data as you recurse up.
444  */
445 static size_t
collect_data(HTAB * hashp,BUFHEAD * bufp,size_t len,int set)446 collect_data(HTAB *hashp,
447              BUFHEAD *bufp,
448              size_t len,
449              int set)
450 {
451 	__uint16_t *bp;
452 	char *p;
453 	BUFHEAD *xbp;
454 	__uint16_t save_addr;
455 	size_t mylen, totlen;
456 
457 	p = bufp->page;
458 	bp = (__uint16_t *)p;
459 	mylen = hashp->BSIZE - bp[1];
460 	save_addr = bufp->addr;
461 
462 	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
463 		totlen = len + mylen;
464 		if (hashp->tmp_buf)
465 			free(hashp->tmp_buf);
466 		if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL)
467 			return (-1);
468 		if (set) {
469 			hashp->cndx = 1;
470 			if (bp[0] == 2) {	/* No more buckets in chain */
471 				hashp->cpage = NULL;
472 				hashp->cbucket++;
473 			} else {
474 				hashp->cpage =
475 				    __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
476 				if (!hashp->cpage)
477 					return (-1);
478 				else if (!((__uint16_t *)hashp->cpage->page)[0]) {
479 					hashp->cbucket++;
480 					hashp->cpage = NULL;
481 				}
482 			}
483 		}
484 	} else {
485 		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
486                 if (!xbp)
487                         return (-1);
488                 totlen = collect_data(hashp, xbp, len + mylen, set);
489 		if (totlen < 1 || totlen == (size_t) -1)
490                         return (-1);
491 	}
492 	if (bufp->addr != save_addr) {
493 		errno = EINVAL;			/* Out of buffers. */
494 		return (-1);
495 	}
496 	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen);
497 	return (totlen);
498 }
499 
500 /*
501  * Fill in the key and data for this big pair.
502  */
503 extern int
__big_keydata(HTAB * hashp,BUFHEAD * bufp,DBT * key,DBT * val,int set)504 __big_keydata(HTAB *hashp,
505               BUFHEAD *bufp,
506               DBT *key,
507               DBT *val,
508               int set)
509 {
510 	key->size = collect_key(hashp, bufp, 0, val, set);
511 	if (key->size == (size_t) -1)
512 		return (-1);
513 	key->data = (u_char *)hashp->tmp_key;
514 	return (0);
515 }
516 
517 /*
518  * Count how big the total key size is by recursing through the pages.  Then
519  * collect the data, allocate a buffer and copy the key as you recurse up.
520  */
521 static size_t
collect_key(HTAB * hashp,BUFHEAD * bufp,size_t len,DBT * val,int set)522 collect_key(HTAB *hashp,
523             BUFHEAD *bufp,
524             size_t len,
525             DBT *val,
526             int set)
527 {
528 	BUFHEAD *xbp;
529 	char *p;
530 	size_t mylen, totlen;
531 	__uint16_t *bp, save_addr;
532 
533 	p = bufp->page;
534 	bp = (__uint16_t *)p;
535 	mylen = hashp->BSIZE - bp[1];
536 
537 	save_addr = bufp->addr;
538 	totlen = len + mylen;
539 	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
540 		if (hashp->tmp_key != NULL)
541 			free(hashp->tmp_key);
542 		if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL)
543 			return (-1);
544 		if (__big_return(hashp, bufp, 1, val, set))
545 			return (-1);
546 	} else {
547 		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
548 		if (!xbp || ((totlen =
549 		    collect_key(hashp, xbp, totlen, val, set)) < 1))
550 			return (-1);
551 	}
552 	if (bufp->addr != save_addr) {
553 		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
554 		return (-1);
555 	}
556 	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen);
557 	return (totlen);
558 }
559 
560 /*
561  * Returns:
562  *  0 => OK
563  * -1 => error
564  */
565 extern int
__big_split(HTAB * hashp,BUFHEAD * op,BUFHEAD * np,BUFHEAD * big_keyp,int addr,__uint32_t obucket,SPLIT_RETURN * ret)566 __big_split(
567     HTAB *hashp,
568     BUFHEAD *op,	/* Pointer to where to put keys that go in old bucket */
569     BUFHEAD *np,	/* Pointer to new bucket page */
570     BUFHEAD *big_keyp,  /* Pointer to first page containing the big key/data */
571     int addr,	        /* Address of big_keyp */
572     __uint32_t obucket, /* Old Bucket */
573     SPLIT_RETURN *ret)
574 {
575 	BUFHEAD *tmpp;
576 	__uint16_t *tp;
577 	BUFHEAD *bp;
578 	DBT key, val;
579 	__uint32_t change;
580 	__uint16_t free_space, n, off;
581 
582 	bp = big_keyp;
583 
584 	/* Now figure out where the big key/data goes */
585 	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
586 		return (-1);
587 	change = (__call_hash(hashp, key.data, key.size) != obucket);
588 
589 	if ( (ret->next_addr = __find_last_page(hashp, &big_keyp)) ) {
590 		if (!(ret->nextp =
591 		    __get_buf(hashp, ret->next_addr, big_keyp, 0)))
592 			return (-1);;
593 	} else
594 		ret->nextp = NULL;
595 
596 	/* Now make one of np/op point to the big key/data pair */
597 #ifdef DEBUG
598 	assert(np->ovfl == NULL);
599 #endif
600 	if (change)
601 		tmpp = np;
602 	else
603 		tmpp = op;
604 
605 	tmpp->flags |= BUF_MOD;
606 #ifdef DEBUG1
607 	(void)fprintf(stderr,
608 	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
609 	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
610 #endif
611 	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
612 	tp = (__uint16_t *)tmpp->page;
613 #ifdef DEBUG
614 	assert(FREESPACE(tp) >= OVFLSIZE);
615 #endif
616 	n = tp[0];
617 	off = OFFSET(tp);
618 	free_space = FREESPACE(tp);
619 	tp[++n] = (__uint16_t)addr;
620 	tp[++n] = OVFLPAGE;
621 	tp[0] = n;
622 	OFFSET(tp) = off;
623 	FREESPACE(tp) = free_space - OVFLSIZE;
624 
625 	/*
626 	 * Finally, set the new and old return values. BIG_KEYP contains a
627 	 * pointer to the last page of the big key_data pair. Make sure that
628 	 * big_keyp has no following page (2 elements) or create an empty
629 	 * following page.
630 	 */
631 
632 	ret->newp = np;
633 	ret->oldp = op;
634 
635 	tp = (__uint16_t *)big_keyp->page;
636 	big_keyp->flags |= BUF_MOD;
637 	if (tp[0] > 2) {
638 		/*
639 		 * There may be either one or two offsets on this page.  If
640 		 * there is one, then the overflow page is linked on normally
641 		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
642 		 * the second offset and needs to get stuffed in after the
643 		 * next overflow page is added.
644 		 */
645 		n = tp[4];
646 		free_space = FREESPACE(tp);
647 		off = OFFSET(tp);
648 		tp[0] -= 2;
649 		FREESPACE(tp) = free_space + OVFLSIZE;
650 		OFFSET(tp) = off;
651 		tmpp = __add_ovflpage(hashp, big_keyp);
652 		if (!tmpp)
653 			return (-1);
654 		tp[4] = n;
655 	} else
656 		tmpp = big_keyp;
657 
658 	if (change)
659 		ret->newp = tmpp;
660 	else
661 		ret->oldp = tmpp;
662 	return (0);
663 }
664