1 /*
2 * Copyright 2014 Google Inc. All rights reserved.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef FLATBUFFERS_H_
18 #define FLATBUFFERS_H_
19
20 /**
21 * @file
22 * A customized version of the FlatBuffers implementation header file targeted
23 * for use within CHRE. This file differs from the mainline FlatBuffers release
24 * via the introduction of the feature flag FLATBUFFERS_CHRE. When defined,
25 * standard library features not used in CHRE are removed. This includes
26 * removing most support for strings and std::vector, removal of std::function,
27 * etc.
28 *
29 * Any user of this header, including CHRE, must make use of a custom Allocator
30 * class when using the FlatBufferBuilder. This ensures that alloc / free
31 * functions specific to the platform are used as new / delete are not
32 * supported, but are used by the DefaultAllocator. Additionally,
33 * FLATBUFFERS_ASSERT must be defined to be the assert function that flatbuffers
34 * should use and FLATBUFFERS_ASSERT_INCLUDE must be the include path to the
35 * file that defines that assert function.
36 */
37
38 #include "flatbuffers/base.h"
39
40 #if defined(FLATBUFFERS_NAN_DEFAULTS)
41 # include <cmath>
42 #endif
43
44 namespace flatbuffers {
45 // Generic 'operator==' with conditional specialisations.
46 // T e - new value of a scalar field.
47 // T def - default of scalar (is known at compile-time).
IsTheSameAs(T e,T def)48 template<typename T> inline bool IsTheSameAs(T e, T def) { return e == def; }
49
50 #if defined(FLATBUFFERS_NAN_DEFAULTS) && \
51 defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
52 // Like `operator==(e, def)` with weak NaN if T=(float|double).
IsFloatTheSameAs(T e,T def)53 template<typename T> inline bool IsFloatTheSameAs(T e, T def) {
54 return (e == def) || ((def != def) && (e != e));
55 }
56 template<> inline bool IsTheSameAs<float>(float e, float def) {
57 return IsFloatTheSameAs(e, def);
58 }
59 template<> inline bool IsTheSameAs<double>(double e, double def) {
60 return IsFloatTheSameAs(e, def);
61 }
62 #endif
63
64 // Check 'v' is out of closed range [low; high].
65 // Workaround for GCC warning [-Werror=type-limits]:
66 // comparison is always true due to limited range of data type.
67 template<typename T>
IsOutRange(const T & v,const T & low,const T & high)68 inline bool IsOutRange(const T &v, const T &low, const T &high) {
69 return (v < low) || (high < v);
70 }
71
72 // Check 'v' is in closed range [low; high].
73 template<typename T>
IsInRange(const T & v,const T & low,const T & high)74 inline bool IsInRange(const T &v, const T &low, const T &high) {
75 return !IsOutRange(v, low, high);
76 }
77
78 // Wrapper for uoffset_t to allow safe template specialization.
79 // Value is allowed to be 0 to indicate a null object (see e.g. AddOffset).
80 template<typename T> struct Offset {
81 uoffset_t o;
OffsetOffset82 Offset() : o(0) {}
OffsetOffset83 Offset(uoffset_t _o) : o(_o) {} // NOLINT(google-explicit-constructor)
UnionOffset84 Offset<void> Union() const { return Offset<void>(o); }
IsNullOffset85 bool IsNull() const { return !o; }
86 };
87
EndianCheck()88 inline void EndianCheck() {
89 int endiantest = 1;
90 // If this fails, see FLATBUFFERS_LITTLEENDIAN above.
91 FLATBUFFERS_ASSERT(*reinterpret_cast<char *>(&endiantest) ==
92 FLATBUFFERS_LITTLEENDIAN);
93 (void)endiantest;
94 }
95
AlignOf()96 template<typename T> FLATBUFFERS_CONSTEXPR size_t AlignOf() {
97 // clang-format off
98 #ifdef _MSC_VER
99 return __alignof(T);
100 #else
101 #ifndef alignof
102 return __alignof__(T);
103 #else
104 return alignof(T);
105 #endif
106 #endif
107 // clang-format on
108 }
109
110 // When we read serialized data from memory, in the case of most scalars,
111 // we want to just read T, but in the case of Offset, we want to actually
112 // perform the indirection and return a pointer.
113 // The template specialization below does just that.
114 // It is wrapped in a struct since function templates can't overload on the
115 // return type like this.
116 // The typedef is for the convenience of callers of this function
117 // (avoiding the need for a trailing return decltype)
118 template<typename T> struct IndirectHelper {
119 typedef T return_type;
120 typedef T mutable_return_type;
121 static const size_t element_stride = sizeof(T);
ReadIndirectHelper122 static return_type Read(const uint8_t *p, uoffset_t i) {
123 return EndianScalar((reinterpret_cast<const T *>(p))[i]);
124 }
125 };
126 template<typename T> struct IndirectHelper<Offset<T>> {
127 typedef const T *return_type;
128 typedef T *mutable_return_type;
129 static const size_t element_stride = sizeof(uoffset_t);
130 static return_type Read(const uint8_t *p, uoffset_t i) {
131 p += i * sizeof(uoffset_t);
132 return reinterpret_cast<return_type>(p + ReadScalar<uoffset_t>(p));
133 }
134 };
135 template<typename T> struct IndirectHelper<const T *> {
136 typedef const T *return_type;
137 typedef T *mutable_return_type;
138 static const size_t element_stride = sizeof(T);
139 static return_type Read(const uint8_t *p, uoffset_t i) {
140 return reinterpret_cast<const T *>(p + i * sizeof(T));
141 }
142 };
143
144 // An STL compatible iterator implementation for Vector below, effectively
145 // calling Get() for every element.
146 template<typename T, typename IT> struct VectorIterator {
147 typedef std::random_access_iterator_tag iterator_category;
148 typedef IT value_type;
149 typedef ptrdiff_t difference_type;
150 typedef IT *pointer;
151 typedef IT &reference;
152
153 VectorIterator(const uint8_t *data, uoffset_t i)
154 : data_(data + IndirectHelper<T>::element_stride * i) {}
155 VectorIterator(const VectorIterator &other) : data_(other.data_) {}
156 VectorIterator() : data_(nullptr) {}
157
158 VectorIterator &operator=(const VectorIterator &other) {
159 data_ = other.data_;
160 return *this;
161 }
162
163 // clang-format off
164 #if !defined(FLATBUFFERS_CPP98_STL)
165 VectorIterator &operator=(VectorIterator &&other) {
166 data_ = other.data_;
167 return *this;
168 }
169 #endif // !defined(FLATBUFFERS_CPP98_STL)
170 // clang-format on
171
172 bool operator==(const VectorIterator &other) const {
173 return data_ == other.data_;
174 }
175
176 bool operator<(const VectorIterator &other) const {
177 return data_ < other.data_;
178 }
179
180 bool operator!=(const VectorIterator &other) const {
181 return data_ != other.data_;
182 }
183
184 difference_type operator-(const VectorIterator &other) const {
185 return (data_ - other.data_) / IndirectHelper<T>::element_stride;
186 }
187
188 IT operator*() const { return IndirectHelper<T>::Read(data_, 0); }
189
190 IT operator->() const { return IndirectHelper<T>::Read(data_, 0); }
191
192 VectorIterator &operator++() {
193 data_ += IndirectHelper<T>::element_stride;
194 return *this;
195 }
196
197 VectorIterator operator++(int) {
198 VectorIterator temp(data_, 0);
199 data_ += IndirectHelper<T>::element_stride;
200 return temp;
201 }
202
203 VectorIterator operator+(const uoffset_t &offset) const {
204 return VectorIterator(data_ + offset * IndirectHelper<T>::element_stride,
205 0);
206 }
207
208 VectorIterator &operator+=(const uoffset_t &offset) {
209 data_ += offset * IndirectHelper<T>::element_stride;
210 return *this;
211 }
212
213 VectorIterator &operator--() {
214 data_ -= IndirectHelper<T>::element_stride;
215 return *this;
216 }
217
218 VectorIterator operator--(int) {
219 VectorIterator temp(data_, 0);
220 data_ -= IndirectHelper<T>::element_stride;
221 return temp;
222 }
223
224 VectorIterator operator-(const uoffset_t &offset) const {
225 return VectorIterator(data_ - offset * IndirectHelper<T>::element_stride,
226 0);
227 }
228
229 VectorIterator &operator-=(const uoffset_t &offset) {
230 data_ -= offset * IndirectHelper<T>::element_stride;
231 return *this;
232 }
233
234 private:
235 const uint8_t *data_;
236 };
237
238 template<typename Iterator>
239 struct VectorReverseIterator : public std::reverse_iterator<Iterator> {
240 explicit VectorReverseIterator(Iterator iter)
241 : std::reverse_iterator<Iterator>(iter) {}
242
243 typename Iterator::value_type operator*() const {
244 return *(std::reverse_iterator<Iterator>::current);
245 }
246
247 typename Iterator::value_type operator->() const {
248 return *(std::reverse_iterator<Iterator>::current);
249 }
250 };
251
252 struct String;
253
254 // This is used as a helper type for accessing vectors.
255 // Vector::data() assumes the vector elements start after the length field.
256 template<typename T> class Vector {
257 public:
258 typedef VectorIterator<T, typename IndirectHelper<T>::mutable_return_type>
259 iterator;
260 typedef VectorIterator<T, typename IndirectHelper<T>::return_type>
261 const_iterator;
262 typedef VectorReverseIterator<iterator> reverse_iterator;
263 typedef VectorReverseIterator<const_iterator> const_reverse_iterator;
264
265 uoffset_t size() const { return EndianScalar(length_); }
266
267 // Deprecated: use size(). Here for backwards compatibility.
268 FLATBUFFERS_ATTRIBUTE(deprecated("use size() instead"))
269 uoffset_t Length() const { return size(); }
270
271 typedef typename IndirectHelper<T>::return_type return_type;
272 typedef typename IndirectHelper<T>::mutable_return_type mutable_return_type;
273
274 return_type Get(uoffset_t i) const {
275 FLATBUFFERS_ASSERT(i < size());
276 return IndirectHelper<T>::Read(Data(), i);
277 }
278
279 return_type operator[](uoffset_t i) const { return Get(i); }
280
281 // If this is a Vector of enums, T will be its storage type, not the enum
282 // type. This function makes it convenient to retrieve value with enum
283 // type E.
284 template<typename E> E GetEnum(uoffset_t i) const {
285 return static_cast<E>(Get(i));
286 }
287
288 // If this a vector of unions, this does the cast for you. There's no check
289 // to make sure this is the right type!
290 template<typename U> const U *GetAs(uoffset_t i) const {
291 return reinterpret_cast<const U *>(Get(i));
292 }
293
294 #ifndef FLATBUFFERS_CHRE
295 // If this a vector of unions, this does the cast for you. There's no check
296 // to make sure this is actually a string!
297 const String *GetAsString(uoffset_t i) const {
298 return reinterpret_cast<const String *>(Get(i));
299 }
300 #endif
301
302 const void *GetStructFromOffset(size_t o) const {
303 return reinterpret_cast<const void *>(Data() + o);
304 }
305
306 iterator begin() { return iterator(Data(), 0); }
307 const_iterator begin() const { return const_iterator(Data(), 0); }
308
309 iterator end() { return iterator(Data(), size()); }
310 const_iterator end() const { return const_iterator(Data(), size()); }
311
312 reverse_iterator rbegin() { return reverse_iterator(end() - 1); }
313 const_reverse_iterator rbegin() const {
314 return const_reverse_iterator(end() - 1);
315 }
316
317 reverse_iterator rend() { return reverse_iterator(begin() - 1); }
318 const_reverse_iterator rend() const {
319 return const_reverse_iterator(begin() - 1);
320 }
321
322 const_iterator cbegin() const { return begin(); }
323
324 const_iterator cend() const { return end(); }
325
326 const_reverse_iterator crbegin() const { return rbegin(); }
327
328 const_reverse_iterator crend() const { return rend(); }
329
330 // Change elements if you have a non-const pointer to this object.
331 // Scalars only. See reflection.h, and the documentation.
332 void Mutate(uoffset_t i, const T &val) {
333 FLATBUFFERS_ASSERT(i < size());
334 WriteScalar(data() + i, val);
335 }
336
337 // Change an element of a vector of tables (or strings).
338 // "val" points to the new table/string, as you can obtain from
339 // e.g. reflection::AddFlatBuffer().
340 void MutateOffset(uoffset_t i, const uint8_t *val) {
341 FLATBUFFERS_ASSERT(i < size());
342 static_assert(sizeof(T) == sizeof(uoffset_t), "Unrelated types");
343 WriteScalar(data() + i,
344 static_cast<uoffset_t>(val - (Data() + i * sizeof(uoffset_t))));
345 }
346
347 // Get a mutable pointer to tables/strings inside this vector.
348 mutable_return_type GetMutableObject(uoffset_t i) const {
349 FLATBUFFERS_ASSERT(i < size());
350 return const_cast<mutable_return_type>(IndirectHelper<T>::Read(Data(), i));
351 }
352
353 // The raw data in little endian format. Use with care.
354 const uint8_t *Data() const {
355 return reinterpret_cast<const uint8_t *>(&length_ + 1);
356 }
357
358 uint8_t *Data() { return reinterpret_cast<uint8_t *>(&length_ + 1); }
359
360 // Similarly, but typed, much like std::vector::data
361 const T *data() const { return reinterpret_cast<const T *>(Data()); }
362 T *data() { return reinterpret_cast<T *>(Data()); }
363
364 template<typename K> return_type LookupByKey(K key) const {
365 void *search_result = std::bsearch(
366 &key, Data(), size(), IndirectHelper<T>::element_stride, KeyCompare<K>);
367
368 if (!search_result) {
369 return nullptr; // Key not found.
370 }
371
372 const uint8_t *element = reinterpret_cast<const uint8_t *>(search_result);
373
374 return IndirectHelper<T>::Read(element, 0);
375 }
376
377 protected:
378 // This class is only used to access pre-existing data. Don't ever
379 // try to construct these manually.
380 Vector();
381
382 uoffset_t length_;
383
384 private:
385 // This class is a pointer. Copying will therefore create an invalid object.
386 // Private and unimplemented copy constructor.
387 Vector(const Vector &);
388 Vector &operator=(const Vector &);
389
390 template<typename K> static int KeyCompare(const void *ap, const void *bp) {
391 const K *key = reinterpret_cast<const K *>(ap);
392 const uint8_t *data = reinterpret_cast<const uint8_t *>(bp);
393 auto table = IndirectHelper<T>::Read(data, 0);
394
395 // std::bsearch compares with the operands transposed, so we negate the
396 // result here.
397 return -table->KeyCompareWithValue(*key);
398 }
399 };
400
401 // Represent a vector much like the template above, but in this case we
402 // don't know what the element types are (used with reflection.h).
403 class VectorOfAny {
404 public:
405 uoffset_t size() const { return EndianScalar(length_); }
406
407 const uint8_t *Data() const {
408 return reinterpret_cast<const uint8_t *>(&length_ + 1);
409 }
410 uint8_t *Data() { return reinterpret_cast<uint8_t *>(&length_ + 1); }
411
412 protected:
413 VectorOfAny();
414
415 uoffset_t length_;
416
417 private:
418 VectorOfAny(const VectorOfAny &);
419 VectorOfAny &operator=(const VectorOfAny &);
420 };
421
422 #ifndef FLATBUFFERS_CPP98_STL
423 template<typename T, typename U>
424 Vector<Offset<T>> *VectorCast(Vector<Offset<U>> *ptr) {
425 static_assert(std::is_base_of<T, U>::value, "Unrelated types");
426 return reinterpret_cast<Vector<Offset<T>> *>(ptr);
427 }
428
429 template<typename T, typename U>
430 const Vector<Offset<T>> *VectorCast(const Vector<Offset<U>> *ptr) {
431 static_assert(std::is_base_of<T, U>::value, "Unrelated types");
432 return reinterpret_cast<const Vector<Offset<T>> *>(ptr);
433 }
434 #endif
435
436 // Convenient helper function to get the length of any vector, regardless
437 // of whether it is null or not (the field is not set).
438 template<typename T> static inline size_t VectorLength(const Vector<T> *v) {
439 return v ? v->size() : 0;
440 }
441
442 // This is used as a helper type for accessing arrays.
443 template<typename T, uint16_t length> class Array {
444 typedef
445 typename flatbuffers::integral_constant<bool,
446 flatbuffers::is_scalar<T>::value>
447 scalar_tag;
448 typedef
449 typename flatbuffers::conditional<scalar_tag::value, T, const T *>::type
450 IndirectHelperType;
451
452 public:
453 typedef typename IndirectHelper<IndirectHelperType>::return_type return_type;
454 typedef VectorIterator<T, return_type> const_iterator;
455 typedef VectorReverseIterator<const_iterator> const_reverse_iterator;
456
457 FLATBUFFERS_CONSTEXPR uint16_t size() const { return length; }
458
459 return_type Get(uoffset_t i) const {
460 FLATBUFFERS_ASSERT(i < size());
461 return IndirectHelper<IndirectHelperType>::Read(Data(), i);
462 }
463
464 return_type operator[](uoffset_t i) const { return Get(i); }
465
466 // If this is a Vector of enums, T will be its storage type, not the enum
467 // type. This function makes it convenient to retrieve value with enum
468 // type E.
469 template<typename E> E GetEnum(uoffset_t i) const {
470 return static_cast<E>(Get(i));
471 }
472
473 const_iterator begin() const { return const_iterator(Data(), 0); }
474 const_iterator end() const { return const_iterator(Data(), size()); }
475
476 const_reverse_iterator rbegin() const {
477 return const_reverse_iterator(end());
478 }
479 const_reverse_iterator rend() const { return const_reverse_iterator(end()); }
480
481 const_iterator cbegin() const { return begin(); }
482 const_iterator cend() const { return end(); }
483
484 const_reverse_iterator crbegin() const { return rbegin(); }
485 const_reverse_iterator crend() const { return rend(); }
486
487 // Get a mutable pointer to elements inside this array.
488 // This method used to mutate arrays of structs followed by a @p Mutate
489 // operation. For primitive types use @p Mutate directly.
490 // @warning Assignments and reads to/from the dereferenced pointer are not
491 // automatically converted to the correct endianness.
492 typename flatbuffers::conditional<scalar_tag::value, void, T *>::type
493 GetMutablePointer(uoffset_t i) const {
494 FLATBUFFERS_ASSERT(i < size());
495 return const_cast<T *>(&data()[i]);
496 }
497
498 // Change elements if you have a non-const pointer to this object.
499 void Mutate(uoffset_t i, const T &val) { MutateImpl(scalar_tag(), i, val); }
500
501 // The raw data in little endian format. Use with care.
502 const uint8_t *Data() const { return data_; }
503
504 uint8_t *Data() { return data_; }
505
506 // Similarly, but typed, much like std::vector::data
507 const T *data() const { return reinterpret_cast<const T *>(Data()); }
508 T *data() { return reinterpret_cast<T *>(Data()); }
509
510 protected:
511 void MutateImpl(flatbuffers::integral_constant<bool, true>, uoffset_t i,
512 const T &val) {
513 FLATBUFFERS_ASSERT(i < size());
514 WriteScalar(data() + i, val);
515 }
516
517 void MutateImpl(flatbuffers::integral_constant<bool, false>, uoffset_t i,
518 const T &val) {
519 *(GetMutablePointer(i)) = val;
520 }
521
522 // This class is only used to access pre-existing data. Don't ever
523 // try to construct these manually.
524 // 'constexpr' allows us to use 'size()' at compile time.
525 // @note Must not use 'FLATBUFFERS_CONSTEXPR' here, as const is not allowed on
526 // a constructor.
527 #if defined(__cpp_constexpr)
528 constexpr Array();
529 #else
530 Array();
531 #endif
532
533 uint8_t data_[length * sizeof(T)];
534
535 private:
536 // This class is a pointer. Copying will therefore create an invalid object.
537 // Private and unimplemented copy constructor.
538 Array(const Array &);
539 Array &operator=(const Array &);
540 };
541
542 // Specialization for Array[struct] with access using Offset<void> pointer.
543 // This specialization used by idl_gen_text.cpp.
544 template<typename T, uint16_t length> class Array<Offset<T>, length> {
545 static_assert(flatbuffers::is_same<T, void>::value, "unexpected type T");
546
547 public:
548 typedef const void *return_type;
549
550 const uint8_t *Data() const { return data_; }
551
552 // Make idl_gen_text.cpp::PrintContainer happy.
553 return_type operator[](uoffset_t) const {
554 FLATBUFFERS_ASSERT(false);
555 return nullptr;
556 }
557
558 private:
559 // This class is only used to access pre-existing data.
560 Array();
561 Array(const Array &);
562 Array &operator=(const Array &);
563
564 uint8_t data_[1];
565 };
566
567 // Lexicographically compare two strings (possibly containing nulls), and
568 // return true if the first is less than the second.
569 static inline bool StringLessThan(const char *a_data, uoffset_t a_size,
570 const char *b_data, uoffset_t b_size) {
571 const auto cmp = memcmp(a_data, b_data, (std::min)(a_size, b_size));
572 return cmp == 0 ? a_size < b_size : cmp < 0;
573 }
574
575 struct String : public Vector<char> {
576 const char *c_str() const { return reinterpret_cast<const char *>(Data()); }
577 #ifndef FLATBUFFERS_CHRE
578 std::string str() const { return std::string(c_str(), size()); }
579 #endif // !FLATBUFFERS_CHRE
580
581 // clang-format off
582 #ifdef FLATBUFFERS_HAS_STRING_VIEW
583 flatbuffers::string_view string_view() const {
584 return flatbuffers::string_view(c_str(), size());
585 }
586 #endif // FLATBUFFERS_HAS_STRING_VIEW
587 // clang-format on
588
589 bool operator<(const String &o) const {
590 return StringLessThan(this->data(), this->size(), o.data(), o.size());
591 }
592 };
593
594 #ifndef FLATBUFFERS_CHRE
595 // Convenience function to get std::string from a String returning an empty
596 // string on null pointer.
597 static inline std::string GetString(const String *str) {
598 return str ? str->str() : "";
599 }
600 #endif // !FLATBUFFERS_CHRE
601
602 // Convenience function to get char* from a String returning an empty string on
603 // null pointer.
604 static inline const char *GetCstring(const String *str) {
605 return str ? str->c_str() : "";
606 }
607
608 // Allocator interface. This is flatbuffers-specific and meant only for
609 // `vector_downward` usage.
610 class Allocator {
611 public:
612 virtual ~Allocator() {}
613
614 // Allocate `size` bytes of memory.
615 virtual uint8_t *allocate(size_t size) = 0;
616
617 // Deallocate `size` bytes of memory at `p` allocated by this allocator.
618 virtual void deallocate(uint8_t *p, size_t size) = 0;
619
620 // Reallocate `new_size` bytes of memory, replacing the old region of size
621 // `old_size` at `p`. In contrast to a normal realloc, this grows downwards,
622 // and is intended specifcally for `vector_downward` use.
623 // `in_use_back` and `in_use_front` indicate how much of `old_size` is
624 // actually in use at each end, and needs to be copied.
625 virtual uint8_t *reallocate_downward(uint8_t *old_p, size_t old_size,
626 size_t new_size, size_t in_use_back,
627 size_t in_use_front) {
628 FLATBUFFERS_ASSERT(new_size > old_size); // vector_downward only grows
629 uint8_t *new_p = allocate(new_size);
630 memcpy_downward(old_p, old_size, new_p, new_size, in_use_back,
631 in_use_front);
632 deallocate(old_p, old_size);
633 return new_p;
634 }
635
636 protected:
637 // Called by `reallocate_downward` to copy memory from `old_p` of `old_size`
638 // to `new_p` of `new_size`. Only memory of size `in_use_front` and
639 // `in_use_back` will be copied from the front and back of the old memory
640 // allocation.
641 void memcpy_downward(uint8_t *old_p, size_t old_size, uint8_t *new_p,
642 size_t new_size, size_t in_use_back,
643 size_t in_use_front) {
644 memcpy(new_p + new_size - in_use_back, old_p + old_size - in_use_back,
645 in_use_back);
646 memcpy(new_p, old_p, in_use_front);
647 }
648 };
649
650 #ifndef FLATBUFFERS_CHRE
651 // DefaultAllocator uses new/delete to allocate memory regions
652 class DefaultAllocator : public Allocator {
653 public:
654 uint8_t *allocate(size_t size) FLATBUFFERS_OVERRIDE {
655 return new uint8_t[size];
656 }
657
658 void deallocate(uint8_t *p, size_t) FLATBUFFERS_OVERRIDE {
659 delete[] p;
660 }
661
662 static void dealloc(void *p, size_t) {
663 delete[] static_cast<uint8_t *>(p);
664 }
665 };
666 #endif
667
668 // These functions allow for a null allocator to mean use the default allocator,
669 // as used by DetachedBuffer and vector_downward below.
670 // This is to avoid having a statically or dynamically allocated default
671 // allocator, or having to move it between the classes that may own it.
672 inline uint8_t *Allocate(Allocator *allocator, size_t size) {
673 #ifndef FLATBUFFERS_CHRE
674 return allocator ? allocator->allocate(size)
675 : DefaultAllocator().allocate(size);
676 #else
677 if (allocator)
678 return allocator->allocate(size);
679 else {
680 FLATBUFFERS_ASSERT(false);
681 return nullptr;
682 }
683 #endif // FLATBUFFERS_CHRE
684 }
685
686 inline void Deallocate(Allocator *allocator, uint8_t *p, size_t size) {
687 #ifndef FLATBUFFERS_CHRE
688 if (allocator)
689 allocator->deallocate(p, size);
690 else
691 DefaultAllocator().deallocate(p, size);
692 #else
693 if (allocator)
694 allocator->deallocate(p, size);
695 else
696 FLATBUFFERS_ASSERT(false);
697 #endif // FLATBUFFERS_CHRE
698 }
699
700 inline uint8_t *ReallocateDownward(Allocator *allocator, uint8_t *old_p,
701 size_t old_size, size_t new_size,
702 size_t in_use_back, size_t in_use_front) {
703 #ifndef FLATBUFFERS_CHRE
704 return allocator ? allocator->reallocate_downward(old_p, old_size, new_size,
705 in_use_back, in_use_front)
706 : DefaultAllocator().reallocate_downward(
707 old_p, old_size, new_size, in_use_back, in_use_front);
708 #else
709 if (allocator)
710 return allocator->reallocate_downward(old_p, old_size, new_size,
711 in_use_back, in_use_front);
712 else {
713 FLATBUFFERS_ASSERT(false);
714 return nullptr;
715 }
716 #endif // FLATBUFFERS_CHRE
717 }
718
719 // DetachedBuffer is a finished flatbuffer memory region, detached from its
720 // builder. The original memory region and allocator are also stored so that
721 // the DetachedBuffer can manage the memory lifetime.
722 class DetachedBuffer {
723 public:
724 DetachedBuffer()
725 : allocator_(nullptr),
726 own_allocator_(false),
727 buf_(nullptr),
728 reserved_(0),
729 cur_(nullptr),
730 size_(0) {}
731
732 DetachedBuffer(Allocator *allocator, bool own_allocator, uint8_t *buf,
733 size_t reserved, uint8_t *cur, size_t sz)
734 : allocator_(allocator),
735 own_allocator_(own_allocator),
736 buf_(buf),
737 reserved_(reserved),
738 cur_(cur),
739 size_(sz) {}
740
741 // clang-format off
742 #if !defined(FLATBUFFERS_CPP98_STL)
743 // clang-format on
744 DetachedBuffer(DetachedBuffer &&other)
745 : allocator_(other.allocator_),
746 own_allocator_(other.own_allocator_),
747 buf_(other.buf_),
748 reserved_(other.reserved_),
749 cur_(other.cur_),
750 size_(other.size_) {
751 other.reset();
752 }
753 // clang-format off
754 #endif // !defined(FLATBUFFERS_CPP98_STL)
755 // clang-format on
756
757 // clang-format off
758 #if !defined(FLATBUFFERS_CPP98_STL)
759 // clang-format on
760 DetachedBuffer &operator=(DetachedBuffer &&other) {
761 if (this == &other) return *this;
762
763 destroy();
764
765 allocator_ = other.allocator_;
766 own_allocator_ = other.own_allocator_;
767 buf_ = other.buf_;
768 reserved_ = other.reserved_;
769 cur_ = other.cur_;
770 size_ = other.size_;
771
772 other.reset();
773
774 return *this;
775 }
776 // clang-format off
777 #endif // !defined(FLATBUFFERS_CPP98_STL)
778 // clang-format on
779
780 ~DetachedBuffer() { destroy(); }
781
782 const uint8_t *data() const { return cur_; }
783
784 uint8_t *data() { return cur_; }
785
786 size_t size() const { return size_; }
787
788 // clang-format off
789 #if 0 // disabled for now due to the ordering of classes in this header
790 template <class T>
791 bool Verify() const {
792 Verifier verifier(data(), size());
793 return verifier.Verify<T>(nullptr);
794 }
795
796 template <class T>
797 const T* GetRoot() const {
798 return flatbuffers::GetRoot<T>(data());
799 }
800
801 template <class T>
802 T* GetRoot() {
803 return flatbuffers::GetRoot<T>(data());
804 }
805 #endif
806 // clang-format on
807
808 // clang-format off
809 #if !defined(FLATBUFFERS_CPP98_STL)
810 // clang-format on
811 // These may change access mode, leave these at end of public section
812 FLATBUFFERS_DELETE_FUNC(DetachedBuffer(const DetachedBuffer &other))
813 FLATBUFFERS_DELETE_FUNC(
814 DetachedBuffer &operator=(const DetachedBuffer &other))
815 // clang-format off
816 #endif // !defined(FLATBUFFERS_CPP98_STL)
817 // clang-format on
818
819 protected:
820 Allocator *allocator_;
821 bool own_allocator_;
822 uint8_t *buf_;
823 size_t reserved_;
824 uint8_t *cur_;
825 size_t size_;
826
827 inline void destroy() {
828 if (buf_) Deallocate(allocator_, buf_, reserved_);
829 if (own_allocator_ && allocator_) { delete allocator_; }
830 reset();
831 }
832
833 inline void reset() {
834 allocator_ = nullptr;
835 own_allocator_ = false;
836 buf_ = nullptr;
837 reserved_ = 0;
838 cur_ = nullptr;
839 size_ = 0;
840 }
841 };
842
843 // This is a minimal replication of std::vector<uint8_t> functionality,
844 // except growing from higher to lower addresses. i.e push_back() inserts data
845 // in the lowest address in the vector.
846 // Since this vector leaves the lower part unused, we support a "scratch-pad"
847 // that can be stored there for temporary data, to share the allocated space.
848 // Essentially, this supports 2 std::vectors in a single buffer.
849 class vector_downward {
850 public:
851 explicit vector_downward(size_t initial_size, Allocator *allocator,
852 bool own_allocator, size_t buffer_minalign)
853 : allocator_(allocator),
854 own_allocator_(own_allocator),
855 initial_size_(initial_size),
856 buffer_minalign_(buffer_minalign),
857 reserved_(0),
858 buf_(nullptr),
859 cur_(nullptr),
860 scratch_(nullptr) {}
861
862 // clang-format off
863 #if !defined(FLATBUFFERS_CPP98_STL)
864 vector_downward(vector_downward &&other)
865 #else
866 vector_downward(vector_downward &other)
867 #endif // defined(FLATBUFFERS_CPP98_STL)
868 // clang-format on
869 : allocator_(other.allocator_),
870 own_allocator_(other.own_allocator_),
871 initial_size_(other.initial_size_),
872 buffer_minalign_(other.buffer_minalign_),
873 reserved_(other.reserved_),
874 buf_(other.buf_),
875 cur_(other.cur_),
876 scratch_(other.scratch_) {
877 // No change in other.allocator_
878 // No change in other.initial_size_
879 // No change in other.buffer_minalign_
880 other.own_allocator_ = false;
881 other.reserved_ = 0;
882 other.buf_ = nullptr;
883 other.cur_ = nullptr;
884 other.scratch_ = nullptr;
885 }
886
887 // clang-format off
888 #if !defined(FLATBUFFERS_CPP98_STL)
889 // clang-format on
890 vector_downward &operator=(vector_downward &&other) {
891 // Move construct a temporary and swap idiom
892 vector_downward temp(std::move(other));
893 swap(temp);
894 return *this;
895 }
896 // clang-format off
897 #endif // defined(FLATBUFFERS_CPP98_STL)
898 // clang-format on
899
900 ~vector_downward() {
901 clear_buffer();
902 clear_allocator();
903 }
904
905 void reset() {
906 clear_buffer();
907 clear();
908 }
909
910 void clear() {
911 if (buf_) {
912 cur_ = buf_ + reserved_;
913 } else {
914 reserved_ = 0;
915 cur_ = nullptr;
916 }
917 clear_scratch();
918 }
919
920 void clear_scratch() { scratch_ = buf_; }
921
922 void clear_allocator() {
923 if (own_allocator_ && allocator_) { delete allocator_; }
924 allocator_ = nullptr;
925 own_allocator_ = false;
926 }
927
928 void clear_buffer() {
929 if (buf_) Deallocate(allocator_, buf_, reserved_);
930 buf_ = nullptr;
931 }
932
933 // Relinquish the pointer to the caller.
934 uint8_t *release_raw(size_t &allocated_bytes, size_t &offset) {
935 auto *buf = buf_;
936 allocated_bytes = reserved_;
937 offset = static_cast<size_t>(cur_ - buf_);
938
939 // release_raw only relinquishes the buffer ownership.
940 // Does not deallocate or reset the allocator. Destructor will do that.
941 buf_ = nullptr;
942 clear();
943 return buf;
944 }
945
946 // Relinquish the pointer to the caller.
947 DetachedBuffer release() {
948 // allocator ownership (if any) is transferred to DetachedBuffer.
949 DetachedBuffer fb(allocator_, own_allocator_, buf_, reserved_, cur_,
950 size());
951 if (own_allocator_) {
952 allocator_ = nullptr;
953 own_allocator_ = false;
954 }
955 buf_ = nullptr;
956 clear();
957 return fb;
958 }
959
960 size_t ensure_space(size_t len) {
961 FLATBUFFERS_ASSERT(cur_ >= scratch_ && scratch_ >= buf_);
962 if (len > static_cast<size_t>(cur_ - scratch_)) { reallocate(len); }
963 // Beyond this, signed offsets may not have enough range:
964 // (FlatBuffers > 2GB not supported).
965 FLATBUFFERS_ASSERT(size() < FLATBUFFERS_MAX_BUFFER_SIZE);
966 return len;
967 }
968
969 inline uint8_t *make_space(size_t len) {
970 size_t space = ensure_space(len);
971 cur_ -= space;
972 return cur_;
973 }
974
975 // Returns nullptr if using the DefaultAllocator.
976 Allocator *get_custom_allocator() { return allocator_; }
977
978 uoffset_t size() const {
979 return static_cast<uoffset_t>(reserved_ - static_cast<size_t>(cur_ - buf_));
980 }
981
982 uoffset_t scratch_size() const {
983 return static_cast<uoffset_t>(scratch_ - buf_);
984 }
985
986 size_t capacity() const { return reserved_; }
987
988 uint8_t *data() const {
989 FLATBUFFERS_ASSERT(cur_);
990 return cur_;
991 }
992
993 uint8_t *scratch_data() const {
994 FLATBUFFERS_ASSERT(buf_);
995 return buf_;
996 }
997
998 uint8_t *scratch_end() const {
999 FLATBUFFERS_ASSERT(scratch_);
1000 return scratch_;
1001 }
1002
1003 uint8_t *data_at(size_t offset) const { return buf_ + reserved_ - offset; }
1004
1005 void push(const uint8_t *bytes, size_t num) {
1006 if (num > 0) { memcpy(make_space(num), bytes, num); }
1007 }
1008
1009 // Specialized version of push() that avoids memcpy call for small data.
1010 template<typename T> void push_small(const T &little_endian_t) {
1011 make_space(sizeof(T));
1012 *reinterpret_cast<T *>(cur_) = little_endian_t;
1013 }
1014
1015 template<typename T> void scratch_push_small(const T &t) {
1016 ensure_space(sizeof(T));
1017 *reinterpret_cast<T *>(scratch_) = t;
1018 scratch_ += sizeof(T);
1019 }
1020
1021 // fill() is most frequently called with small byte counts (<= 4),
1022 // which is why we're using loops rather than calling memset.
1023 void fill(size_t zero_pad_bytes) {
1024 make_space(zero_pad_bytes);
1025 for (size_t i = 0; i < zero_pad_bytes; i++) cur_[i] = 0;
1026 }
1027
1028 // Version for when we know the size is larger.
1029 // Precondition: zero_pad_bytes > 0
1030 void fill_big(size_t zero_pad_bytes) {
1031 memset(make_space(zero_pad_bytes), 0, zero_pad_bytes);
1032 }
1033
1034 void pop(size_t bytes_to_remove) { cur_ += bytes_to_remove; }
1035 void scratch_pop(size_t bytes_to_remove) { scratch_ -= bytes_to_remove; }
1036
1037 void swap(vector_downward &other) {
1038 using std::swap;
1039 swap(allocator_, other.allocator_);
1040 swap(own_allocator_, other.own_allocator_);
1041 swap(initial_size_, other.initial_size_);
1042 swap(buffer_minalign_, other.buffer_minalign_);
1043 swap(reserved_, other.reserved_);
1044 swap(buf_, other.buf_);
1045 swap(cur_, other.cur_);
1046 swap(scratch_, other.scratch_);
1047 }
1048
1049 void swap_allocator(vector_downward &other) {
1050 using std::swap;
1051 swap(allocator_, other.allocator_);
1052 swap(own_allocator_, other.own_allocator_);
1053 }
1054
1055 private:
1056 // You shouldn't really be copying instances of this class.
1057 FLATBUFFERS_DELETE_FUNC(vector_downward(const vector_downward &))
1058 FLATBUFFERS_DELETE_FUNC(vector_downward &operator=(const vector_downward &))
1059
1060 Allocator *allocator_;
1061 bool own_allocator_;
1062 size_t initial_size_;
1063 size_t buffer_minalign_;
1064 size_t reserved_;
1065 uint8_t *buf_;
1066 uint8_t *cur_; // Points at location between empty (below) and used (above).
1067 uint8_t *scratch_; // Points to the end of the scratchpad in use.
1068
1069 void reallocate(size_t len) {
1070 auto old_reserved = reserved_;
1071 auto old_size = size();
1072 auto old_scratch_size = scratch_size();
1073 reserved_ +=
1074 (std::max)(len, old_reserved ? old_reserved / 2 : initial_size_);
1075 reserved_ = (reserved_ + buffer_minalign_ - 1) & ~(buffer_minalign_ - 1);
1076 if (buf_) {
1077 buf_ = ReallocateDownward(allocator_, buf_, old_reserved, reserved_,
1078 old_size, old_scratch_size);
1079 } else {
1080 buf_ = Allocate(allocator_, reserved_);
1081 }
1082 cur_ = buf_ + reserved_ - old_size;
1083 scratch_ = buf_ + old_scratch_size;
1084 }
1085 };
1086
1087 // Converts a Field ID to a virtual table offset.
1088 inline voffset_t FieldIndexToOffset(voffset_t field_id) {
1089 // Should correspond to what EndTable() below builds up.
1090 const int fixed_fields = 2; // Vtable size and Object Size.
1091 return static_cast<voffset_t>((field_id + fixed_fields) * sizeof(voffset_t));
1092 }
1093
1094 #ifndef FLATBUFFERS_CHRE
1095 template<typename T, typename Alloc>
1096 const T *data(const std::vector<T, Alloc> &v) {
1097 // Eventually the returned pointer gets passed down to memcpy, so
1098 // we need it to be non-null to avoid undefined behavior.
1099 static uint8_t t;
1100 return v.empty() ? reinterpret_cast<const T *>(&t) : &v.front();
1101 }
1102 template<typename T, typename Alloc> T *data(std::vector<T, Alloc> &v) {
1103 // Eventually the returned pointer gets passed down to memcpy, so
1104 // we need it to be non-null to avoid undefined behavior.
1105 static uint8_t t;
1106 return v.empty() ? reinterpret_cast<T *>(&t) : &v.front();
1107 }
1108 #endif
1109
1110 /// @endcond
1111
1112 /// @addtogroup flatbuffers_cpp_api
1113 /// @{
1114 /// @class FlatBufferBuilder
1115 /// @brief Helper class to hold data needed in creation of a FlatBuffer.
1116 /// To serialize data, you typically call one of the `Create*()` functions in
1117 /// the generated code, which in turn call a sequence of `StartTable`/
1118 /// `PushElement`/`AddElement`/`EndTable`, or the builtin `CreateString`/
1119 /// `CreateVector` functions. Do this is depth-first order to build up a tree to
1120 /// the root. `Finish()` wraps up the buffer ready for transport.
1121 class FlatBufferBuilder {
1122 public:
1123 /// @brief Default constructor for FlatBufferBuilder.
1124 /// @param[in] initial_size The initial size of the buffer, in bytes. Defaults
1125 /// to `1024`.
1126 /// @param[in] allocator An `Allocator` to use. If null will use
1127 /// `DefaultAllocator`.
1128 /// @param[in] own_allocator Whether the builder/vector should own the
1129 /// allocator. Defaults to / `false`.
1130 /// @param[in] buffer_minalign Force the buffer to be aligned to the given
1131 /// minimum alignment upon reallocation. Only needed if you intend to store
1132 /// types with custom alignment AND you wish to read the buffer in-place
1133 /// directly after creation.
1134 explicit FlatBufferBuilder(
1135 size_t initial_size = 1024, Allocator *allocator = nullptr,
1136 bool own_allocator = false,
1137 size_t buffer_minalign = AlignOf<largest_scalar_t>())
1138 : buf_(initial_size, allocator, own_allocator, buffer_minalign),
1139 num_field_loc(0),
1140 max_voffset_(0),
1141 nested(false),
1142 finished(false),
1143 minalign_(1),
1144 force_defaults_(false),
1145 dedup_vtables_(true) {
1146 #ifndef FLATBUFFERS_CHRE
1147 string_pool = nullptr;
1148 #endif
1149
1150 EndianCheck();
1151 }
1152
1153 // clang-format off
1154 /// @brief Move constructor for FlatBufferBuilder.
1155 #if !defined(FLATBUFFERS_CPP98_STL)
1156 FlatBufferBuilder(FlatBufferBuilder &&other)
1157 #else
1158 FlatBufferBuilder(FlatBufferBuilder &other)
1159 #endif // #if !defined(FLATBUFFERS_CPP98_STL)
1160 : buf_(1024, nullptr, false, AlignOf<largest_scalar_t>()),
1161 num_field_loc(0),
1162 max_voffset_(0),
1163 nested(false),
1164 finished(false),
1165 minalign_(1),
1166 force_defaults_(false),
1167 dedup_vtables_(true) {
1168 #ifndef FLATBUFFERS_CHRE
1169 string_pool = nullptr;
1170 #endif
1171
1172 EndianCheck();
1173 // Default construct and swap idiom.
1174 // Lack of delegating constructors in vs2010 makes it more verbose than needed.
1175 Swap(other);
1176 }
1177 // clang-format on
1178
1179 // clang-format off
1180 #if !defined(FLATBUFFERS_CPP98_STL)
1181 // clang-format on
1182 /// @brief Move assignment operator for FlatBufferBuilder.
1183 FlatBufferBuilder &operator=(FlatBufferBuilder &&other) {
1184 // Move construct a temporary and swap idiom
1185 FlatBufferBuilder temp(std::move(other));
1186 Swap(temp);
1187 return *this;
1188 }
1189 // clang-format off
1190 #endif // defined(FLATBUFFERS_CPP98_STL)
1191 // clang-format on
1192
1193 void Swap(FlatBufferBuilder &other) {
1194 using std::swap;
1195 buf_.swap(other.buf_);
1196 swap(num_field_loc, other.num_field_loc);
1197 swap(max_voffset_, other.max_voffset_);
1198 swap(nested, other.nested);
1199 swap(finished, other.finished);
1200 swap(minalign_, other.minalign_);
1201 swap(force_defaults_, other.force_defaults_);
1202 swap(dedup_vtables_, other.dedup_vtables_);
1203 #ifndef FLATBUFFERS_CHRE
1204 swap(string_pool, other.string_pool);
1205 #endif
1206 }
1207
1208 ~FlatBufferBuilder() {
1209 #ifndef FLATBUFFERS_CHRE
1210 if (string_pool) delete string_pool;
1211 #endif
1212 }
1213
1214 void Reset() {
1215 Clear(); // clear builder state
1216 buf_.reset(); // deallocate buffer
1217 }
1218
1219 /// @brief Reset all the state in this FlatBufferBuilder so it can be reused
1220 /// to construct another buffer.
1221 void Clear() {
1222 ClearOffsets();
1223 buf_.clear();
1224 nested = false;
1225 finished = false;
1226 minalign_ = 1;
1227 #ifndef FLATBUFFERS_CHRE
1228 if (string_pool) string_pool->clear();
1229 #endif
1230 }
1231
1232 /// @brief The current size of the serialized buffer, counting from the end.
1233 /// @return Returns an `uoffset_t` with the current size of the buffer.
1234 uoffset_t GetSize() const { return buf_.size(); }
1235
1236 /// @brief Get the serialized buffer (after you call `Finish()`).
1237 /// @return Returns an `uint8_t` pointer to the FlatBuffer data inside the
1238 /// buffer.
1239 uint8_t *GetBufferPointer() const {
1240 Finished();
1241 return buf_.data();
1242 }
1243
1244 /// @brief Get a pointer to an unfinished buffer.
1245 /// @return Returns a `uint8_t` pointer to the unfinished buffer.
1246 uint8_t *GetCurrentBufferPointer() const { return buf_.data(); }
1247
1248 /// @brief Get the released pointer to the serialized buffer.
1249 /// @warning Do NOT attempt to use this FlatBufferBuilder afterwards!
1250 /// @return A `FlatBuffer` that owns the buffer and its allocator and
1251 /// behaves similar to a `unique_ptr` with a deleter.
1252 FLATBUFFERS_ATTRIBUTE(deprecated("use Release() instead"))
1253 DetachedBuffer ReleaseBufferPointer() {
1254 Finished();
1255 return buf_.release();
1256 }
1257
1258 /// @brief Get the released DetachedBuffer.
1259 /// @return A `DetachedBuffer` that owns the buffer and its allocator.
1260 DetachedBuffer Release() {
1261 Finished();
1262 return buf_.release();
1263 }
1264
1265 /// @brief Get the released pointer to the serialized buffer.
1266 /// @param size The size of the memory block containing
1267 /// the serialized `FlatBuffer`.
1268 /// @param offset The offset from the released pointer where the finished
1269 /// `FlatBuffer` starts.
1270 /// @return A raw pointer to the start of the memory block containing
1271 /// the serialized `FlatBuffer`.
1272 /// @remark If the allocator is owned, it gets deleted when the destructor is
1273 /// called..
1274 uint8_t *ReleaseRaw(size_t &size, size_t &offset) {
1275 Finished();
1276 return buf_.release_raw(size, offset);
1277 }
1278
1279 /// @brief get the minimum alignment this buffer needs to be accessed
1280 /// properly. This is only known once all elements have been written (after
1281 /// you call Finish()). You can use this information if you need to embed
1282 /// a FlatBuffer in some other buffer, such that you can later read it
1283 /// without first having to copy it into its own buffer.
1284 size_t GetBufferMinAlignment() {
1285 Finished();
1286 return minalign_;
1287 }
1288
1289 /// @cond FLATBUFFERS_INTERNAL
1290 void Finished() const {
1291 // If you get this assert, you're attempting to get access a buffer
1292 // which hasn't been finished yet. Be sure to call
1293 // FlatBufferBuilder::Finish with your root table.
1294 // If you really need to access an unfinished buffer, call
1295 // GetCurrentBufferPointer instead.
1296 FLATBUFFERS_ASSERT(finished);
1297 }
1298 /// @endcond
1299
1300 /// @brief In order to save space, fields that are set to their default value
1301 /// don't get serialized into the buffer.
1302 /// @param[in] fd When set to `true`, always serializes default values that
1303 /// are set. Optional fields which are not set explicitly, will still not be
1304 /// serialized.
1305 void ForceDefaults(bool fd) { force_defaults_ = fd; }
1306
1307 /// @brief By default vtables are deduped in order to save space.
1308 /// @param[in] dedup When set to `true`, dedup vtables.
1309 void DedupVtables(bool dedup) { dedup_vtables_ = dedup; }
1310
1311 /// @cond FLATBUFFERS_INTERNAL
1312 void Pad(size_t num_bytes) { buf_.fill(num_bytes); }
1313
1314 void TrackMinAlign(size_t elem_size) {
1315 if (elem_size > minalign_) minalign_ = elem_size;
1316 }
1317
1318 void Align(size_t elem_size) {
1319 TrackMinAlign(elem_size);
1320 buf_.fill(PaddingBytes(buf_.size(), elem_size));
1321 }
1322
1323 void PushFlatBuffer(const uint8_t *bytes, size_t size) {
1324 PushBytes(bytes, size);
1325 finished = true;
1326 }
1327
1328 void PushBytes(const uint8_t *bytes, size_t size) { buf_.push(bytes, size); }
1329
1330 void PopBytes(size_t amount) { buf_.pop(amount); }
1331
1332 template<typename T> void AssertScalarT() {
1333 // The code assumes power of 2 sizes and endian-swap-ability.
1334 static_assert(flatbuffers::is_scalar<T>::value, "T must be a scalar type");
1335 }
1336
1337 // Write a single aligned scalar to the buffer
1338 template<typename T> uoffset_t PushElement(T element) {
1339 AssertScalarT<T>();
1340 T litle_endian_element = EndianScalar(element);
1341 Align(sizeof(T));
1342 buf_.push_small(litle_endian_element);
1343 return GetSize();
1344 }
1345
1346 template<typename T> uoffset_t PushElement(Offset<T> off) {
1347 // Special case for offsets: see ReferTo below.
1348 return PushElement(ReferTo(off.o));
1349 }
1350
1351 // When writing fields, we track where they are, so we can create correct
1352 // vtables later.
1353 void TrackField(voffset_t field, uoffset_t off) {
1354 FieldLoc fl = { off, field };
1355 buf_.scratch_push_small(fl);
1356 num_field_loc++;
1357 max_voffset_ = (std::max)(max_voffset_, field);
1358 }
1359
1360 // Like PushElement, but additionally tracks the field this represents.
1361 template<typename T> void AddElement(voffset_t field, T e, T def) {
1362 // We don't serialize values equal to the default.
1363 if (IsTheSameAs(e, def) && !force_defaults_) return;
1364 auto off = PushElement(e);
1365 TrackField(field, off);
1366 }
1367
1368 template<typename T> void AddOffset(voffset_t field, Offset<T> off) {
1369 if (off.IsNull()) return; // Don't store.
1370 AddElement(field, ReferTo(off.o), static_cast<uoffset_t>(0));
1371 }
1372
1373 template<typename T> void AddStruct(voffset_t field, const T *structptr) {
1374 if (!structptr) return; // Default, don't store.
1375 Align(AlignOf<T>());
1376 buf_.push_small(*structptr);
1377 TrackField(field, GetSize());
1378 }
1379
1380 void AddStructOffset(voffset_t field, uoffset_t off) {
1381 TrackField(field, off);
1382 }
1383
1384 // Offsets initially are relative to the end of the buffer (downwards).
1385 // This function converts them to be relative to the current location
1386 // in the buffer (when stored here), pointing upwards.
1387 uoffset_t ReferTo(uoffset_t off) {
1388 // Align to ensure GetSize() below is correct.
1389 Align(sizeof(uoffset_t));
1390 // Offset must refer to something already in buffer.
1391 FLATBUFFERS_ASSERT(off && off <= GetSize());
1392 return GetSize() - off + static_cast<uoffset_t>(sizeof(uoffset_t));
1393 }
1394
1395 void NotNested() {
1396 // If you hit this, you're trying to construct a Table/Vector/String
1397 // during the construction of its parent table (between the MyTableBuilder
1398 // and table.Finish().
1399 // Move the creation of these sub-objects to above the MyTableBuilder to
1400 // not get this assert.
1401 // Ignoring this assert may appear to work in simple cases, but the reason
1402 // it is here is that storing objects in-line may cause vtable offsets
1403 // to not fit anymore. It also leads to vtable duplication.
1404 FLATBUFFERS_ASSERT(!nested);
1405 // If you hit this, fields were added outside the scope of a table.
1406 FLATBUFFERS_ASSERT(!num_field_loc);
1407 }
1408
1409 // From generated code (or from the parser), we call StartTable/EndTable
1410 // with a sequence of AddElement calls in between.
1411 uoffset_t StartTable() {
1412 NotNested();
1413 nested = true;
1414 return GetSize();
1415 }
1416
1417 // This finishes one serialized object by generating the vtable if it's a
1418 // table, comparing it against existing vtables, and writing the
1419 // resulting vtable offset.
1420 uoffset_t EndTable(uoffset_t start) {
1421 // If you get this assert, a corresponding StartTable wasn't called.
1422 FLATBUFFERS_ASSERT(nested);
1423 // Write the vtable offset, which is the start of any Table.
1424 // We fill it's value later.
1425 auto vtableoffsetloc = PushElement<soffset_t>(0);
1426 // Write a vtable, which consists entirely of voffset_t elements.
1427 // It starts with the number of offsets, followed by a type id, followed
1428 // by the offsets themselves. In reverse:
1429 // Include space for the last offset and ensure empty tables have a
1430 // minimum size.
1431 max_voffset_ =
1432 (std::max)(static_cast<voffset_t>(max_voffset_ + sizeof(voffset_t)),
1433 FieldIndexToOffset(0));
1434 buf_.fill_big(max_voffset_);
1435 auto table_object_size = vtableoffsetloc - start;
1436 // Vtable use 16bit offsets.
1437 FLATBUFFERS_ASSERT(table_object_size < 0x10000);
1438 WriteScalar<voffset_t>(buf_.data() + sizeof(voffset_t),
1439 static_cast<voffset_t>(table_object_size));
1440 WriteScalar<voffset_t>(buf_.data(), max_voffset_);
1441 // Write the offsets into the table
1442 for (auto it = buf_.scratch_end() - num_field_loc * sizeof(FieldLoc);
1443 it < buf_.scratch_end(); it += sizeof(FieldLoc)) {
1444 auto field_location = reinterpret_cast<FieldLoc *>(it);
1445 auto pos = static_cast<voffset_t>(vtableoffsetloc - field_location->off);
1446 // If this asserts, it means you've set a field twice.
1447 FLATBUFFERS_ASSERT(
1448 !ReadScalar<voffset_t>(buf_.data() + field_location->id));
1449 WriteScalar<voffset_t>(buf_.data() + field_location->id, pos);
1450 }
1451 ClearOffsets();
1452 auto vt1 = reinterpret_cast<voffset_t *>(buf_.data());
1453 auto vt1_size = ReadScalar<voffset_t>(vt1);
1454 auto vt_use = GetSize();
1455 // See if we already have generated a vtable with this exact same
1456 // layout before. If so, make it point to the old one, remove this one.
1457 if (dedup_vtables_) {
1458 for (auto it = buf_.scratch_data(); it < buf_.scratch_end();
1459 it += sizeof(uoffset_t)) {
1460 auto vt_offset_ptr = reinterpret_cast<uoffset_t *>(it);
1461 auto vt2 = reinterpret_cast<voffset_t *>(buf_.data_at(*vt_offset_ptr));
1462 auto vt2_size = ReadScalar<voffset_t>(vt2);
1463 if (vt1_size != vt2_size || 0 != memcmp(vt2, vt1, vt1_size)) continue;
1464 vt_use = *vt_offset_ptr;
1465 buf_.pop(GetSize() - vtableoffsetloc);
1466 break;
1467 }
1468 }
1469 // If this is a new vtable, remember it.
1470 if (vt_use == GetSize()) { buf_.scratch_push_small(vt_use); }
1471 // Fill the vtable offset we created above.
1472 // The offset points from the beginning of the object to where the
1473 // vtable is stored.
1474 // Offsets default direction is downward in memory for future format
1475 // flexibility (storing all vtables at the start of the file).
1476 WriteScalar(buf_.data_at(vtableoffsetloc),
1477 static_cast<soffset_t>(vt_use) -
1478 static_cast<soffset_t>(vtableoffsetloc));
1479
1480 nested = false;
1481 return vtableoffsetloc;
1482 }
1483
1484 FLATBUFFERS_ATTRIBUTE(deprecated("call the version above instead"))
1485 uoffset_t EndTable(uoffset_t start, voffset_t /*numfields*/) {
1486 return EndTable(start);
1487 }
1488
1489 // This checks a required field has been set in a given table that has
1490 // just been constructed.
1491 template<typename T> void Required(Offset<T> table, voffset_t field);
1492
1493 uoffset_t StartStruct(size_t alignment) {
1494 Align(alignment);
1495 return GetSize();
1496 }
1497
1498 uoffset_t EndStruct() { return GetSize(); }
1499
1500 void ClearOffsets() {
1501 buf_.scratch_pop(num_field_loc * sizeof(FieldLoc));
1502 num_field_loc = 0;
1503 max_voffset_ = 0;
1504 }
1505
1506 // Aligns such that when "len" bytes are written, an object can be written
1507 // after it with "alignment" without padding.
1508 void PreAlign(size_t len, size_t alignment) {
1509 TrackMinAlign(alignment);
1510 buf_.fill(PaddingBytes(GetSize() + len, alignment));
1511 }
1512 template<typename T> void PreAlign(size_t len) {
1513 AssertScalarT<T>();
1514 PreAlign(len, sizeof(T));
1515 }
1516 /// @endcond
1517
1518 /// @brief Store a string in the buffer, which can contain any binary data.
1519 /// @param[in] str A const char pointer to the data to be stored as a string.
1520 /// @param[in] len The number of bytes that should be stored from `str`.
1521 /// @return Returns the offset in the buffer where the string starts.
1522 Offset<String> CreateString(const char *str, size_t len) {
1523 NotNested();
1524 PreAlign<uoffset_t>(len + 1); // Always 0-terminated.
1525 buf_.fill(1);
1526 PushBytes(reinterpret_cast<const uint8_t *>(str), len);
1527 PushElement(static_cast<uoffset_t>(len));
1528 return Offset<String>(GetSize());
1529 }
1530
1531 /// @brief Store a string in the buffer, which is null-terminated.
1532 /// @param[in] str A const char pointer to a C-string to add to the buffer.
1533 /// @return Returns the offset in the buffer where the string starts.
1534 Offset<String> CreateString(const char *str) {
1535 return CreateString(str, strlen(str));
1536 }
1537
1538 /// @brief Store a string in the buffer, which is null-terminated.
1539 /// @param[in] str A char pointer to a C-string to add to the buffer.
1540 /// @return Returns the offset in the buffer where the string starts.
1541 Offset<String> CreateString(char *str) {
1542 return CreateString(str, strlen(str));
1543 }
1544
1545 #ifndef FLATBUFFERS_CHRE
1546 /// @brief Store a string in the buffer, which can contain any binary data.
1547 /// @param[in] str A const reference to a std::string to store in the buffer.
1548 /// @return Returns the offset in the buffer where the string starts.
1549 Offset<String> CreateString(const std::string &str) {
1550 return CreateString(str.c_str(), str.length());
1551 }
1552
1553 // clang-format off
1554 #ifdef FLATBUFFERS_HAS_STRING_VIEW
1555 /// @brief Store a string in the buffer, which can contain any binary data.
1556 /// @param[in] str A const string_view to copy in to the buffer.
1557 /// @return Returns the offset in the buffer where the string starts.
1558 Offset<String> CreateString(flatbuffers::string_view str) {
1559 return CreateString(str.data(), str.size());
1560 }
1561 #endif // FLATBUFFERS_HAS_STRING_VIEW
1562 // clang-format on
1563
1564 /// @brief Store a string in the buffer, which can contain any binary data.
1565 /// @param[in] str A const pointer to a `String` struct to add to the buffer.
1566 /// @return Returns the offset in the buffer where the string starts
1567 Offset<String> CreateString(const String *str) {
1568 return str ? CreateString(str->c_str(), str->size()) : 0;
1569 }
1570
1571 /// @brief Store a string in the buffer, which can contain any binary data.
1572 /// @param[in] str A const reference to a std::string like type with support
1573 /// of T::c_str() and T::length() to store in the buffer.
1574 /// @return Returns the offset in the buffer where the string starts.
1575 template<typename T> Offset<String> CreateString(const T &str) {
1576 return CreateString(str.c_str(), str.length());
1577 }
1578
1579 /// @brief Store a string in the buffer, which can contain any binary data.
1580 /// If a string with this exact contents has already been serialized before,
1581 /// instead simply returns the offset of the existing string.
1582 /// @param[in] str A const char pointer to the data to be stored as a string.
1583 /// @param[in] len The number of bytes that should be stored from `str`.
1584 /// @return Returns the offset in the buffer where the string starts.
1585 Offset<String> CreateSharedString(const char *str, size_t len) {
1586 if (!string_pool)
1587 string_pool = new StringOffsetMap(StringOffsetCompare(buf_));
1588 auto size_before_string = buf_.size();
1589 // Must first serialize the string, since the set is all offsets into
1590 // buffer.
1591 auto off = CreateString(str, len);
1592 auto it = string_pool->find(off);
1593 // If it exists we reuse existing serialized data!
1594 if (it != string_pool->end()) {
1595 // We can remove the string we serialized.
1596 buf_.pop(buf_.size() - size_before_string);
1597 return *it;
1598 }
1599 // Record this string for future use.
1600 string_pool->insert(off);
1601 return off;
1602 }
1603
1604 /// @brief Store a string in the buffer, which null-terminated.
1605 /// If a string with this exact contents has already been serialized before,
1606 /// instead simply returns the offset of the existing string.
1607 /// @param[in] str A const char pointer to a C-string to add to the buffer.
1608 /// @return Returns the offset in the buffer where the string starts.
1609 Offset<String> CreateSharedString(const char *str) {
1610 return CreateSharedString(str, strlen(str));
1611 }
1612
1613 /// @brief Store a string in the buffer, which can contain any binary data.
1614 /// If a string with this exact contents has already been serialized before,
1615 /// instead simply returns the offset of the existing string.
1616 /// @param[in] str A const reference to a std::string to store in the buffer.
1617 /// @return Returns the offset in the buffer where the string starts.
1618 Offset<String> CreateSharedString(const std::string &str) {
1619 return CreateSharedString(str.c_str(), str.length());
1620 }
1621
1622 /// @brief Store a string in the buffer, which can contain any binary data.
1623 /// If a string with this exact contents has already been serialized before,
1624 /// instead simply returns the offset of the existing string.
1625 /// @param[in] str A const pointer to a `String` struct to add to the buffer.
1626 /// @return Returns the offset in the buffer where the string starts
1627 Offset<String> CreateSharedString(const String *str) {
1628 return CreateSharedString(str->c_str(), str->size());
1629 }
1630 #endif // !FLATBUFFERS_CHRE
1631
1632 /// @cond FLATBUFFERS_INTERNAL
1633 uoffset_t EndVector(size_t len) {
1634 FLATBUFFERS_ASSERT(nested); // Hit if no corresponding StartVector.
1635 nested = false;
1636 return PushElement(static_cast<uoffset_t>(len));
1637 }
1638
1639 void StartVector(size_t len, size_t elemsize) {
1640 NotNested();
1641 nested = true;
1642 PreAlign<uoffset_t>(len * elemsize);
1643 PreAlign(len * elemsize, elemsize); // Just in case elemsize > uoffset_t.
1644 }
1645
1646 // Call this right before StartVector/CreateVector if you want to force the
1647 // alignment to be something different than what the element size would
1648 // normally dictate.
1649 // This is useful when storing a nested_flatbuffer in a vector of bytes,
1650 // or when storing SIMD floats, etc.
1651 void ForceVectorAlignment(size_t len, size_t elemsize, size_t alignment) {
1652 PreAlign(len * elemsize, alignment);
1653 }
1654
1655 // Similar to ForceVectorAlignment but for String fields.
1656 void ForceStringAlignment(size_t len, size_t alignment) {
1657 PreAlign((len + 1) * sizeof(char), alignment);
1658 }
1659
1660 /// @endcond
1661
1662 /// @brief Serialize an array into a FlatBuffer `vector`.
1663 /// @tparam T The data type of the array elements.
1664 /// @param[in] v A pointer to the array of type `T` to serialize into the
1665 /// buffer as a `vector`.
1666 /// @param[in] len The number of elements to serialize.
1667 /// @return Returns a typed `Offset` into the serialized data indicating
1668 /// where the vector is stored.
1669 template<typename T> Offset<Vector<T>> CreateVector(const T *v, size_t len) {
1670 // If this assert hits, you're specifying a template argument that is
1671 // causing the wrong overload to be selected, remove it.
1672 AssertScalarT<T>();
1673 StartVector(len, sizeof(T));
1674 // clang-format off
1675 #if FLATBUFFERS_LITTLEENDIAN
1676 PushBytes(reinterpret_cast<const uint8_t *>(v), len * sizeof(T));
1677 #else
1678 if (sizeof(T) == 1) {
1679 PushBytes(reinterpret_cast<const uint8_t *>(v), len);
1680 } else {
1681 for (auto i = len; i > 0; ) {
1682 PushElement(v[--i]);
1683 }
1684 }
1685 #endif
1686 // clang-format on
1687 return Offset<Vector<T>>(EndVector(len));
1688 }
1689
1690 template<typename T>
1691 Offset<Vector<Offset<T>>> CreateVector(const Offset<T> *v, size_t len) {
1692 StartVector(len, sizeof(Offset<T>));
1693 for (auto i = len; i > 0;) { PushElement(v[--i]); }
1694 return Offset<Vector<Offset<T>>>(EndVector(len));
1695 }
1696
1697 #ifndef FLATBUFFERS_CHRE
1698 /// @brief Serialize a `std::vector` into a FlatBuffer `vector`.
1699 /// @tparam T The data type of the `std::vector` elements.
1700 /// @param v A const reference to the `std::vector` to serialize into the
1701 /// buffer as a `vector`.
1702 /// @return Returns a typed `Offset` into the serialized data indicating
1703 /// where the vector is stored.
1704 template<typename T> Offset<Vector<T>> CreateVector(const std::vector<T> &v) {
1705 return CreateVector(data(v), v.size());
1706 }
1707
1708 // vector<bool> may be implemented using a bit-set, so we can't access it as
1709 // an array. Instead, read elements manually.
1710 // Background: https://isocpp.org/blog/2012/11/on-vectorbool
1711 Offset<Vector<uint8_t>> CreateVector(const std::vector<bool> &v) {
1712 StartVector(v.size(), sizeof(uint8_t));
1713 for (auto i = v.size(); i > 0;) {
1714 PushElement(static_cast<uint8_t>(v[--i]));
1715 }
1716 return Offset<Vector<uint8_t>>(EndVector(v.size()));
1717 }
1718 #else // else if defined(FLATBUFFERS_CHRE)
1719 // We need to define this function as it's optionally used in the
1720 // Create<Type>Direct() helper functions generated by the FlatBuffer compiler,
1721 // however its use at runtime is not supported.
1722 template<typename T> Offset<Vector<T>> CreateVector(
1723 const std::vector<T>& /* v */) {
1724 // std::vector use by FlatBuffers is not supported in CHRE.
1725 FLATBUFFERS_ASSERT(false);
1726 return 0;
1727 }
1728 #endif // FLATBUFFERS_CHRE
1729
1730 // clang-format off
1731 #if !defined(FLATBUFFERS_CPP98_STL) && !defined(FLATBUFFERS_CHRE)
1732 /// @brief Serialize values returned by a function into a FlatBuffer `vector`.
1733 /// This is a convenience function that takes care of iteration for you.
1734 /// @tparam T The data type of the `std::vector` elements.
1735 /// @param f A function that takes the current iteration 0..vector_size-1 and
1736 /// returns any type that you can construct a FlatBuffers vector out of.
1737 /// @return Returns a typed `Offset` into the serialized data indicating
1738 /// where the vector is stored.
1739 template<typename T> Offset<Vector<T>> CreateVector(size_t vector_size,
1740 const std::function<T (size_t i)> &f) {
1741 std::vector<T> elems(vector_size);
1742 for (size_t i = 0; i < vector_size; i++) elems[i] = f(i);
1743 return CreateVector(elems);
1744 }
1745 #endif
1746 // clang-format on
1747
1748 #ifndef FLATBUFFERS_CHRE
1749 /// @brief Serialize values returned by a function into a FlatBuffer `vector`.
1750 /// This is a convenience function that takes care of iteration for you.
1751 /// @tparam T The data type of the `std::vector` elements.
1752 /// @param f A function that takes the current iteration 0..vector_size-1,
1753 /// and the state parameter returning any type that you can construct a
1754 /// FlatBuffers vector out of.
1755 /// @param state State passed to f.
1756 /// @return Returns a typed `Offset` into the serialized data indicating
1757 /// where the vector is stored.
1758 template<typename T, typename F, typename S>
1759 Offset<Vector<T>> CreateVector(size_t vector_size, F f, S *state) {
1760 std::vector<T> elems(vector_size);
1761 for (size_t i = 0; i < vector_size; i++) elems[i] = f(i, state);
1762 return CreateVector(elems);
1763 }
1764
1765 /// @brief Serialize a `std::vector<std::string>` into a FlatBuffer `vector`.
1766 /// This is a convenience function for a common case.
1767 /// @param v A const reference to the `std::vector` to serialize into the
1768 /// buffer as a `vector`.
1769 /// @return Returns a typed `Offset` into the serialized data indicating
1770 /// where the vector is stored.
1771 Offset<Vector<Offset<String>>> CreateVectorOfStrings(
1772 const std::vector<std::string> &v) {
1773 std::vector<Offset<String>> offsets(v.size());
1774 for (size_t i = 0; i < v.size(); i++) offsets[i] = CreateString(v[i]);
1775 return CreateVector(offsets);
1776 }
1777 #endif // !FLATBUFFERS_CHRE
1778
1779 /// @brief Serialize an array of structs into a FlatBuffer `vector`.
1780 /// @tparam T The data type of the struct array elements.
1781 /// @param[in] v A pointer to the array of type `T` to serialize into the
1782 /// buffer as a `vector`.
1783 /// @param[in] len The number of elements to serialize.
1784 /// @return Returns a typed `Offset` into the serialized data indicating
1785 /// where the vector is stored.
1786 template<typename T>
1787 Offset<Vector<const T *>> CreateVectorOfStructs(const T *v, size_t len) {
1788 StartVector(len * sizeof(T) / AlignOf<T>(), AlignOf<T>());
1789 PushBytes(reinterpret_cast<const uint8_t *>(v), sizeof(T) * len);
1790 return Offset<Vector<const T *>>(EndVector(len));
1791 }
1792
1793 #ifndef FLATBUFFERS_CHRE
1794 /// @brief Serialize an array of native structs into a FlatBuffer `vector`.
1795 /// @tparam T The data type of the struct array elements.
1796 /// @tparam S The data type of the native struct array elements.
1797 /// @param[in] v A pointer to the array of type `S` to serialize into the
1798 /// buffer as a `vector`.
1799 /// @param[in] len The number of elements to serialize.
1800 /// @return Returns a typed `Offset` into the serialized data indicating
1801 /// where the vector is stored.
1802 template<typename T, typename S>
1803 Offset<Vector<const T *>> CreateVectorOfNativeStructs(const S *v,
1804 size_t len) {
1805 extern T Pack(const S &);
1806 std::vector<T> vv(len);
1807 std::transform(v, v + len, vv.begin(), Pack);
1808 return CreateVectorOfStructs<T>(data(vv), vv.size());
1809 }
1810
1811 // clang-format off
1812 #ifndef FLATBUFFERS_CPP98_STL
1813 /// @brief Serialize an array of structs into a FlatBuffer `vector`.
1814 /// @tparam T The data type of the struct array elements.
1815 /// @param[in] filler A function that takes the current iteration 0..vector_size-1
1816 /// and a pointer to the struct that must be filled.
1817 /// @return Returns a typed `Offset` into the serialized data indicating
1818 /// where the vector is stored.
1819 /// This is mostly useful when flatbuffers are generated with mutation
1820 /// accessors.
1821 template<typename T> Offset<Vector<const T *>> CreateVectorOfStructs(
1822 size_t vector_size, const std::function<void(size_t i, T *)> &filler) {
1823 T* structs = StartVectorOfStructs<T>(vector_size);
1824 for (size_t i = 0; i < vector_size; i++) {
1825 filler(i, structs);
1826 structs++;
1827 }
1828 return EndVectorOfStructs<T>(vector_size);
1829 }
1830 #endif
1831 #endif // !FLATBUFFERS_CHRE
1832 // clang-format on
1833
1834 /// @brief Serialize an array of structs into a FlatBuffer `vector`.
1835 /// @tparam T The data type of the struct array elements.
1836 /// @param[in] f A function that takes the current iteration 0..vector_size-1,
1837 /// a pointer to the struct that must be filled and the state argument.
1838 /// @param[in] state Arbitrary state to pass to f.
1839 /// @return Returns a typed `Offset` into the serialized data indicating
1840 /// where the vector is stored.
1841 /// This is mostly useful when flatbuffers are generated with mutation
1842 /// accessors.
1843 template<typename T, typename F, typename S>
1844 Offset<Vector<const T *>> CreateVectorOfStructs(size_t vector_size, F f,
1845 S *state) {
1846 T *structs = StartVectorOfStructs<T>(vector_size);
1847 for (size_t i = 0; i < vector_size; i++) {
1848 f(i, structs, state);
1849 structs++;
1850 }
1851 return EndVectorOfStructs<T>(vector_size);
1852 }
1853
1854 #ifndef FLATBUFFERS_CHRE
1855 /// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`.
1856 /// @tparam T The data type of the `std::vector` struct elements.
1857 /// @param[in] v A const reference to the `std::vector` of structs to
1858 /// serialize into the buffer as a `vector`.
1859 /// @return Returns a typed `Offset` into the serialized data indicating
1860 /// where the vector is stored.
1861 template<typename T, typename Alloc>
1862 Offset<Vector<const T *>> CreateVectorOfStructs(
1863 const std::vector<T, Alloc> &v) {
1864 return CreateVectorOfStructs(data(v), v.size());
1865 }
1866
1867 /// @brief Serialize a `std::vector` of native structs into a FlatBuffer
1868 /// `vector`.
1869 /// @tparam T The data type of the `std::vector` struct elements.
1870 /// @tparam S The data type of the `std::vector` native struct elements.
1871 /// @param[in] v A const reference to the `std::vector` of structs to
1872 /// serialize into the buffer as a `vector`.
1873 /// @return Returns a typed `Offset` into the serialized data indicating
1874 /// where the vector is stored.
1875 template<typename T, typename S>
1876 Offset<Vector<const T *>> CreateVectorOfNativeStructs(
1877 const std::vector<S> &v) {
1878 return CreateVectorOfNativeStructs<T, S>(data(v), v.size());
1879 }
1880
1881 /// @cond FLATBUFFERS_INTERNAL
1882 template<typename T> struct StructKeyComparator {
1883 bool operator()(const T &a, const T &b) const {
1884 return a.KeyCompareLessThan(&b);
1885 }
1886
1887 private:
1888 StructKeyComparator &operator=(const StructKeyComparator &);
1889 };
1890 /// @endcond
1891
1892 /// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`
1893 /// in sorted order.
1894 /// @tparam T The data type of the `std::vector` struct elements.
1895 /// @param[in] v A const reference to the `std::vector` of structs to
1896 /// serialize into the buffer as a `vector`.
1897 /// @return Returns a typed `Offset` into the serialized data indicating
1898 /// where the vector is stored.
1899 template<typename T>
1900 Offset<Vector<const T *>> CreateVectorOfSortedStructs(std::vector<T> *v) {
1901 return CreateVectorOfSortedStructs(data(*v), v->size());
1902 }
1903
1904 /// @brief Serialize a `std::vector` of native structs into a FlatBuffer
1905 /// `vector` in sorted order.
1906 /// @tparam T The data type of the `std::vector` struct elements.
1907 /// @tparam S The data type of the `std::vector` native struct elements.
1908 /// @param[in] v A const reference to the `std::vector` of structs to
1909 /// serialize into the buffer as a `vector`.
1910 /// @return Returns a typed `Offset` into the serialized data indicating
1911 /// where the vector is stored.
1912 template<typename T, typename S>
1913 Offset<Vector<const T *>> CreateVectorOfSortedNativeStructs(
1914 std::vector<S> *v) {
1915 return CreateVectorOfSortedNativeStructs<T, S>(data(*v), v->size());
1916 }
1917
1918 /// @brief Serialize an array of structs into a FlatBuffer `vector` in sorted
1919 /// order.
1920 /// @tparam T The data type of the struct array elements.
1921 /// @param[in] v A pointer to the array of type `T` to serialize into the
1922 /// buffer as a `vector`.
1923 /// @param[in] len The number of elements to serialize.
1924 /// @return Returns a typed `Offset` into the serialized data indicating
1925 /// where the vector is stored.
1926 template<typename T>
1927 Offset<Vector<const T *>> CreateVectorOfSortedStructs(T *v, size_t len) {
1928 std::sort(v, v + len, StructKeyComparator<T>());
1929 return CreateVectorOfStructs(v, len);
1930 }
1931
1932 /// @brief Serialize an array of native structs into a FlatBuffer `vector` in
1933 /// sorted order.
1934 /// @tparam T The data type of the struct array elements.
1935 /// @tparam S The data type of the native struct array elements.
1936 /// @param[in] v A pointer to the array of type `S` to serialize into the
1937 /// buffer as a `vector`.
1938 /// @param[in] len The number of elements to serialize.
1939 /// @return Returns a typed `Offset` into the serialized data indicating
1940 /// where the vector is stored.
1941 template<typename T, typename S>
1942 Offset<Vector<const T *>> CreateVectorOfSortedNativeStructs(S *v,
1943 size_t len) {
1944 extern T Pack(const S &);
1945 typedef T (*Pack_t)(const S &);
1946 std::vector<T> vv(len);
1947 std::transform(v, v + len, vv.begin(), static_cast<Pack_t &>(Pack));
1948 return CreateVectorOfSortedStructs<T>(vv, len);
1949 }
1950
1951 /// @cond FLATBUFFERS_INTERNAL
1952 template<typename T> struct TableKeyComparator {
1953 TableKeyComparator(vector_downward &buf) : buf_(buf) {}
1954 TableKeyComparator(const TableKeyComparator &other) : buf_(other.buf_) {}
1955 bool operator()(const Offset<T> &a, const Offset<T> &b) const {
1956 auto table_a = reinterpret_cast<T *>(buf_.data_at(a.o));
1957 auto table_b = reinterpret_cast<T *>(buf_.data_at(b.o));
1958 return table_a->KeyCompareLessThan(table_b);
1959 }
1960 vector_downward &buf_;
1961
1962 private:
1963 TableKeyComparator &operator=(const TableKeyComparator &other) {
1964 buf_ = other.buf_;
1965 return *this;
1966 }
1967 };
1968 /// @endcond
1969
1970 /// @brief Serialize an array of `table` offsets as a `vector` in the buffer
1971 /// in sorted order.
1972 /// @tparam T The data type that the offset refers to.
1973 /// @param[in] v An array of type `Offset<T>` that contains the `table`
1974 /// offsets to store in the buffer in sorted order.
1975 /// @param[in] len The number of elements to store in the `vector`.
1976 /// @return Returns a typed `Offset` into the serialized data indicating
1977 /// where the vector is stored.
1978 template<typename T>
1979 Offset<Vector<Offset<T>>> CreateVectorOfSortedTables(Offset<T> *v,
1980 size_t len) {
1981 std::sort(v, v + len, TableKeyComparator<T>(buf_));
1982 return CreateVector(v, len);
1983 }
1984
1985 /// @brief Serialize an array of `table` offsets as a `vector` in the buffer
1986 /// in sorted order.
1987 /// @tparam T The data type that the offset refers to.
1988 /// @param[in] v An array of type `Offset<T>` that contains the `table`
1989 /// offsets to store in the buffer in sorted order.
1990 /// @return Returns a typed `Offset` into the serialized data indicating
1991 /// where the vector is stored.
1992 template<typename T>
1993 Offset<Vector<Offset<T>>> CreateVectorOfSortedTables(
1994 std::vector<Offset<T>> *v) {
1995 return CreateVectorOfSortedTables(data(*v), v->size());
1996 }
1997 #endif // !FLATBUFFERS_CHRE
1998
1999 /// @brief Specialized version of `CreateVector` for non-copying use cases.
2000 /// Write the data any time later to the returned buffer pointer `buf`.
2001 /// @param[in] len The number of elements to store in the `vector`.
2002 /// @param[in] elemsize The size of each element in the `vector`.
2003 /// @param[out] buf A pointer to a `uint8_t` pointer that can be
2004 /// written to at a later time to serialize the data into a `vector`
2005 /// in the buffer.
2006 uoffset_t CreateUninitializedVector(size_t len, size_t elemsize,
2007 uint8_t **buf) {
2008 NotNested();
2009 StartVector(len, elemsize);
2010 buf_.make_space(len * elemsize);
2011 auto vec_start = GetSize();
2012 auto vec_end = EndVector(len);
2013 *buf = buf_.data_at(vec_start);
2014 return vec_end;
2015 }
2016
2017 /// @brief Specialized version of `CreateVector` for non-copying use cases.
2018 /// Write the data any time later to the returned buffer pointer `buf`.
2019 /// @tparam T The data type of the data that will be stored in the buffer
2020 /// as a `vector`.
2021 /// @param[in] len The number of elements to store in the `vector`.
2022 /// @param[out] buf A pointer to a pointer of type `T` that can be
2023 /// written to at a later time to serialize the data into a `vector`
2024 /// in the buffer.
2025 template<typename T>
2026 Offset<Vector<T>> CreateUninitializedVector(size_t len, T **buf) {
2027 AssertScalarT<T>();
2028 return CreateUninitializedVector(len, sizeof(T),
2029 reinterpret_cast<uint8_t **>(buf));
2030 }
2031
2032 template<typename T>
2033 Offset<Vector<const T *>> CreateUninitializedVectorOfStructs(size_t len,
2034 T **buf) {
2035 return CreateUninitializedVector(len, sizeof(T),
2036 reinterpret_cast<uint8_t **>(buf));
2037 }
2038
2039 // @brief Create a vector of scalar type T given as input a vector of scalar
2040 // type U, useful with e.g. pre "enum class" enums, or any existing scalar
2041 // data of the wrong type.
2042 template<typename T, typename U>
2043 Offset<Vector<T>> CreateVectorScalarCast(const U *v, size_t len) {
2044 AssertScalarT<T>();
2045 AssertScalarT<U>();
2046 StartVector(len, sizeof(T));
2047 for (auto i = len; i > 0;) { PushElement(static_cast<T>(v[--i])); }
2048 return Offset<Vector<T>>(EndVector(len));
2049 }
2050
2051 /// @brief Write a struct by itself, typically to be part of a union.
2052 template<typename T> Offset<const T *> CreateStruct(const T &structobj) {
2053 NotNested();
2054 Align(AlignOf<T>());
2055 buf_.push_small(structobj);
2056 return Offset<const T *>(GetSize());
2057 }
2058
2059 /// @brief The length of a FlatBuffer file header.
2060 static const size_t kFileIdentifierLength = 4;
2061
2062 /// @brief Finish serializing a buffer by writing the root offset.
2063 /// @param[in] file_identifier If a `file_identifier` is given, the buffer
2064 /// will be prefixed with a standard FlatBuffers file header.
2065 template<typename T>
2066 void Finish(Offset<T> root, const char *file_identifier = nullptr) {
2067 Finish(root.o, file_identifier, false);
2068 }
2069
2070 /// @brief Finish a buffer with a 32 bit size field pre-fixed (size of the
2071 /// buffer following the size field). These buffers are NOT compatible
2072 /// with standard buffers created by Finish, i.e. you can't call GetRoot
2073 /// on them, you have to use GetSizePrefixedRoot instead.
2074 /// All >32 bit quantities in this buffer will be aligned when the whole
2075 /// size pre-fixed buffer is aligned.
2076 /// These kinds of buffers are useful for creating a stream of FlatBuffers.
2077 template<typename T>
2078 void FinishSizePrefixed(Offset<T> root,
2079 const char *file_identifier = nullptr) {
2080 Finish(root.o, file_identifier, true);
2081 }
2082
2083 void SwapBufAllocator(FlatBufferBuilder &other) {
2084 buf_.swap_allocator(other.buf_);
2085 }
2086
2087 protected:
2088 // You shouldn't really be copying instances of this class.
2089 FlatBufferBuilder(const FlatBufferBuilder &);
2090 FlatBufferBuilder &operator=(const FlatBufferBuilder &);
2091
2092 void Finish(uoffset_t root, const char *file_identifier, bool size_prefix) {
2093 NotNested();
2094 buf_.clear_scratch();
2095 // This will cause the whole buffer to be aligned.
2096 PreAlign((size_prefix ? sizeof(uoffset_t) : 0) + sizeof(uoffset_t) +
2097 (file_identifier ? kFileIdentifierLength : 0),
2098 minalign_);
2099 if (file_identifier) {
2100 FLATBUFFERS_ASSERT(strlen(file_identifier) == kFileIdentifierLength);
2101 PushBytes(reinterpret_cast<const uint8_t *>(file_identifier),
2102 kFileIdentifierLength);
2103 }
2104 PushElement(ReferTo(root)); // Location of root.
2105 if (size_prefix) { PushElement(GetSize()); }
2106 finished = true;
2107 }
2108
2109 struct FieldLoc {
2110 uoffset_t off;
2111 voffset_t id;
2112 };
2113
2114 vector_downward buf_;
2115
2116 // Accumulating offsets of table members while it is being built.
2117 // We store these in the scratch pad of buf_, after the vtable offsets.
2118 uoffset_t num_field_loc;
2119 // Track how much of the vtable is in use, so we can output the most compact
2120 // possible vtable.
2121 voffset_t max_voffset_;
2122
2123 // Ensure objects are not nested.
2124 bool nested;
2125
2126 // Ensure the buffer is finished before it is being accessed.
2127 bool finished;
2128
2129 size_t minalign_;
2130
2131 bool force_defaults_; // Serialize values equal to their defaults anyway.
2132
2133 bool dedup_vtables_;
2134
2135 #ifndef FLATBUFFERS_CHRE
2136 struct StringOffsetCompare {
2137 StringOffsetCompare(const vector_downward &buf) : buf_(&buf) {}
2138 bool operator()(const Offset<String> &a, const Offset<String> &b) const {
2139 auto stra = reinterpret_cast<const String *>(buf_->data_at(a.o));
2140 auto strb = reinterpret_cast<const String *>(buf_->data_at(b.o));
2141 return StringLessThan(stra->data(), stra->size(), strb->data(),
2142 strb->size());
2143 }
2144 const vector_downward *buf_;
2145 };
2146
2147 // For use with CreateSharedString. Instantiated on first use only.
2148 typedef std::set<Offset<String>, StringOffsetCompare> StringOffsetMap;
2149 StringOffsetMap *string_pool;
2150 #endif // !FLATBUFFERS_CHRE
2151
2152 private:
2153 // Allocates space for a vector of structures.
2154 // Must be completed with EndVectorOfStructs().
2155 template<typename T> T *StartVectorOfStructs(size_t vector_size) {
2156 StartVector(vector_size * sizeof(T) / AlignOf<T>(), AlignOf<T>());
2157 return reinterpret_cast<T *>(buf_.make_space(vector_size * sizeof(T)));
2158 }
2159
2160 // End the vector of structues in the flatbuffers.
2161 // Vector should have previously be started with StartVectorOfStructs().
2162 template<typename T>
2163 Offset<Vector<const T *>> EndVectorOfStructs(size_t vector_size) {
2164 return Offset<Vector<const T *>>(EndVector(vector_size));
2165 }
2166 };
2167 /// @}
2168
2169 /// @cond FLATBUFFERS_INTERNAL
2170 // Helpers to get a typed pointer to the root object contained in the buffer.
2171 template<typename T> T *GetMutableRoot(void *buf) {
2172 EndianCheck();
2173 return reinterpret_cast<T *>(
2174 reinterpret_cast<uint8_t *>(buf) +
2175 EndianScalar(*reinterpret_cast<uoffset_t *>(buf)));
2176 }
2177
2178 template<typename T> const T *GetRoot(const void *buf) {
2179 return GetMutableRoot<T>(const_cast<void *>(buf));
2180 }
2181
2182 template<typename T> const T *GetSizePrefixedRoot(const void *buf) {
2183 return GetRoot<T>(reinterpret_cast<const uint8_t *>(buf) + sizeof(uoffset_t));
2184 }
2185
2186 /// Helpers to get a typed pointer to objects that are currently being built.
2187 /// @warning Creating new objects will lead to reallocations and invalidates
2188 /// the pointer!
2189 template<typename T>
2190 T *GetMutableTemporaryPointer(FlatBufferBuilder &fbb, Offset<T> offset) {
2191 return reinterpret_cast<T *>(fbb.GetCurrentBufferPointer() + fbb.GetSize() -
2192 offset.o);
2193 }
2194
2195 template<typename T>
2196 const T *GetTemporaryPointer(FlatBufferBuilder &fbb, Offset<T> offset) {
2197 return GetMutableTemporaryPointer<T>(fbb, offset);
2198 }
2199
2200 /// @brief Get a pointer to the the file_identifier section of the buffer.
2201 /// @return Returns a const char pointer to the start of the file_identifier
2202 /// characters in the buffer. The returned char * has length
2203 /// 'flatbuffers::FlatBufferBuilder::kFileIdentifierLength'.
2204 /// This function is UNDEFINED for FlatBuffers whose schema does not include
2205 /// a file_identifier (likely points at padding or the start of a the root
2206 /// vtable).
2207 inline const char *GetBufferIdentifier(const void *buf,
2208 bool size_prefixed = false) {
2209 return reinterpret_cast<const char *>(buf) +
2210 ((size_prefixed) ? 2 * sizeof(uoffset_t) : sizeof(uoffset_t));
2211 }
2212
2213 // Helper to see if the identifier in a buffer has the expected value.
2214 inline bool BufferHasIdentifier(const void *buf, const char *identifier,
2215 bool size_prefixed = false) {
2216 return strncmp(GetBufferIdentifier(buf, size_prefixed), identifier,
2217 FlatBufferBuilder::kFileIdentifierLength) == 0;
2218 }
2219
2220 // Helper class to verify the integrity of a FlatBuffer
2221 class Verifier FLATBUFFERS_FINAL_CLASS {
2222 public:
2223 Verifier(const uint8_t *buf, size_t buf_len, uoffset_t _max_depth = 64,
2224 uoffset_t _max_tables = 1000000, bool _check_alignment = true)
2225 : buf_(buf),
2226 size_(buf_len),
2227 depth_(0),
2228 max_depth_(_max_depth),
2229 num_tables_(0),
2230 max_tables_(_max_tables),
2231 upper_bound_(0),
2232 check_alignment_(_check_alignment) {
2233 FLATBUFFERS_ASSERT(size_ < FLATBUFFERS_MAX_BUFFER_SIZE);
2234 }
2235
2236 // Central location where any verification failures register.
2237 bool Check(bool ok) const {
2238 // clang-format off
2239 #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE
2240 FLATBUFFERS_ASSERT(ok);
2241 #endif
2242 #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
2243 if (!ok)
2244 upper_bound_ = 0;
2245 #endif
2246 // clang-format on
2247 return ok;
2248 }
2249
2250 // Verify any range within the buffer.
2251 bool Verify(size_t elem, size_t elem_len) const {
2252 // clang-format off
2253 #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
2254 auto upper_bound = elem + elem_len;
2255 if (upper_bound_ < upper_bound)
2256 upper_bound_ = upper_bound;
2257 #endif
2258 // clang-format on
2259 return Check(elem_len < size_ && elem <= size_ - elem_len);
2260 }
2261
2262 template<typename T> bool VerifyAlignment(size_t elem) const {
2263 return Check((elem & (sizeof(T) - 1)) == 0 || !check_alignment_);
2264 }
2265
2266 // Verify a range indicated by sizeof(T).
2267 template<typename T> bool Verify(size_t elem) const {
2268 return VerifyAlignment<T>(elem) && Verify(elem, sizeof(T));
2269 }
2270
2271 bool VerifyFromPointer(const uint8_t *p, size_t len) {
2272 auto o = static_cast<size_t>(p - buf_);
2273 return Verify(o, len);
2274 }
2275
2276 // Verify relative to a known-good base pointer.
2277 bool Verify(const uint8_t *base, voffset_t elem_off, size_t elem_len) const {
2278 return Verify(static_cast<size_t>(base - buf_) + elem_off, elem_len);
2279 }
2280
2281 template<typename T>
2282 bool Verify(const uint8_t *base, voffset_t elem_off) const {
2283 return Verify(static_cast<size_t>(base - buf_) + elem_off, sizeof(T));
2284 }
2285
2286 // Verify a pointer (may be NULL) of a table type.
2287 template<typename T> bool VerifyTable(const T *table) {
2288 return !table || table->Verify(*this);
2289 }
2290
2291 // Verify a pointer (may be NULL) of any vector type.
2292 template<typename T> bool VerifyVector(const Vector<T> *vec) const {
2293 return !vec || VerifyVectorOrString(reinterpret_cast<const uint8_t *>(vec),
2294 sizeof(T));
2295 }
2296
2297 // Verify a pointer (may be NULL) of a vector to struct.
2298 template<typename T> bool VerifyVector(const Vector<const T *> *vec) const {
2299 return VerifyVector(reinterpret_cast<const Vector<T> *>(vec));
2300 }
2301
2302 // Verify a pointer (may be NULL) to string.
2303 bool VerifyString(const String *str) const {
2304 size_t end;
2305 return !str || (VerifyVectorOrString(reinterpret_cast<const uint8_t *>(str),
2306 1, &end) &&
2307 Verify(end, 1) && // Must have terminator
2308 Check(buf_[end] == '\0')); // Terminating byte must be 0.
2309 }
2310
2311 // Common code between vectors and strings.
2312 bool VerifyVectorOrString(const uint8_t *vec, size_t elem_size,
2313 size_t *end = nullptr) const {
2314 auto veco = static_cast<size_t>(vec - buf_);
2315 // Check we can read the size field.
2316 if (!Verify<uoffset_t>(veco)) return false;
2317 // Check the whole array. If this is a string, the byte past the array
2318 // must be 0.
2319 auto size = ReadScalar<uoffset_t>(vec);
2320 auto max_elems = FLATBUFFERS_MAX_BUFFER_SIZE / elem_size;
2321 if (!Check(size < max_elems))
2322 return false; // Protect against byte_size overflowing.
2323 auto byte_size = sizeof(size) + elem_size * size;
2324 if (end) *end = veco + byte_size;
2325 return Verify(veco, byte_size);
2326 }
2327
2328 #ifndef FLATBUFFERS_CHRE
2329 // Special case for string contents, after the above has been called.
2330 bool VerifyVectorOfStrings(const Vector<Offset<String>> *vec) const {
2331 if (vec) {
2332 for (uoffset_t i = 0; i < vec->size(); i++) {
2333 if (!VerifyString(vec->Get(i))) return false;
2334 }
2335 }
2336 return true;
2337 }
2338 #endif
2339
2340 // Special case for table contents, after the above has been called.
2341 template<typename T> bool VerifyVectorOfTables(const Vector<Offset<T>> *vec) {
2342 if (vec) {
2343 for (uoffset_t i = 0; i < vec->size(); i++) {
2344 if (!vec->Get(i)->Verify(*this)) return false;
2345 }
2346 }
2347 return true;
2348 }
2349
2350 __supress_ubsan__("unsigned-integer-overflow") bool VerifyTableStart(
2351 const uint8_t *table) {
2352 // Check the vtable offset.
2353 auto tableo = static_cast<size_t>(table - buf_);
2354 if (!Verify<soffset_t>(tableo)) return false;
2355 // This offset may be signed, but doing the subtraction unsigned always
2356 // gives the result we want.
2357 auto vtableo = tableo - static_cast<size_t>(ReadScalar<soffset_t>(table));
2358 // Check the vtable size field, then check vtable fits in its entirety.
2359 return VerifyComplexity() && Verify<voffset_t>(vtableo) &&
2360 VerifyAlignment<voffset_t>(ReadScalar<voffset_t>(buf_ + vtableo)) &&
2361 Verify(vtableo, ReadScalar<voffset_t>(buf_ + vtableo));
2362 }
2363
2364 template<typename T>
2365 bool VerifyBufferFromStart(const char *identifier, size_t start) {
2366 if (identifier && (size_ < 2 * sizeof(flatbuffers::uoffset_t) ||
2367 !BufferHasIdentifier(buf_ + start, identifier))) {
2368 return false;
2369 }
2370
2371 // Call T::Verify, which must be in the generated code for this type.
2372 auto o = VerifyOffset(start);
2373 return o && reinterpret_cast<const T *>(buf_ + start + o)->Verify(*this)
2374 // clang-format off
2375 #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
2376 && GetComputedSize()
2377 #endif
2378 ;
2379 // clang-format on
2380 }
2381
2382 // Verify this whole buffer, starting with root type T.
2383 template<typename T> bool VerifyBuffer() { return VerifyBuffer<T>(nullptr); }
2384
2385 template<typename T> bool VerifyBuffer(const char *identifier) {
2386 return VerifyBufferFromStart<T>(identifier, 0);
2387 }
2388
2389 template<typename T> bool VerifySizePrefixedBuffer(const char *identifier) {
2390 return Verify<uoffset_t>(0U) &&
2391 ReadScalar<uoffset_t>(buf_) == size_ - sizeof(uoffset_t) &&
2392 VerifyBufferFromStart<T>(identifier, sizeof(uoffset_t));
2393 }
2394
2395 uoffset_t VerifyOffset(size_t start) const {
2396 if (!Verify<uoffset_t>(start)) return 0;
2397 auto o = ReadScalar<uoffset_t>(buf_ + start);
2398 // May not point to itself.
2399 if (!Check(o != 0)) return 0;
2400 // Can't wrap around / buffers are max 2GB.
2401 if (!Check(static_cast<soffset_t>(o) >= 0)) return 0;
2402 // Must be inside the buffer to create a pointer from it (pointer outside
2403 // buffer is UB).
2404 if (!Verify(start + o, 1)) return 0;
2405 return o;
2406 }
2407
2408 uoffset_t VerifyOffset(const uint8_t *base, voffset_t start) const {
2409 return VerifyOffset(static_cast<size_t>(base - buf_) + start);
2410 }
2411
2412 // Called at the start of a table to increase counters measuring data
2413 // structure depth and amount, and possibly bails out with false if
2414 // limits set by the constructor have been hit. Needs to be balanced
2415 // with EndTable().
2416 bool VerifyComplexity() {
2417 depth_++;
2418 num_tables_++;
2419 return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_);
2420 }
2421
2422 // Called at the end of a table to pop the depth count.
2423 bool EndTable() {
2424 depth_--;
2425 return true;
2426 }
2427
2428 // Returns the message size in bytes
2429 size_t GetComputedSize() const {
2430 // clang-format off
2431 #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
2432 uintptr_t size = upper_bound_;
2433 // Align the size to uoffset_t
2434 size = (size - 1 + sizeof(uoffset_t)) & ~(sizeof(uoffset_t) - 1);
2435 return (size > size_) ? 0 : size;
2436 #else
2437 // Must turn on FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE for this to work.
2438 (void)upper_bound_;
2439 FLATBUFFERS_ASSERT(false);
2440 return 0;
2441 #endif
2442 // clang-format on
2443 }
2444
2445 private:
2446 const uint8_t *buf_;
2447 size_t size_;
2448 uoffset_t depth_;
2449 uoffset_t max_depth_;
2450 uoffset_t num_tables_;
2451 uoffset_t max_tables_;
2452 mutable size_t upper_bound_;
2453 bool check_alignment_;
2454 };
2455
2456 // Convenient way to bundle a buffer and its length, to pass it around
2457 // typed by its root.
2458 // A BufferRef does not own its buffer.
2459 struct BufferRefBase {}; // for std::is_base_of
2460 template<typename T> struct BufferRef : BufferRefBase {
2461 BufferRef() : buf(nullptr), len(0), must_free(false) {}
2462 BufferRef(uint8_t *_buf, uoffset_t _len)
2463 : buf(_buf), len(_len), must_free(false) {}
2464
2465 ~BufferRef() {
2466 if (must_free) free(buf);
2467 }
2468
2469 const T *GetRoot() const { return flatbuffers::GetRoot<T>(buf); }
2470
2471 bool Verify() {
2472 Verifier verifier(buf, len);
2473 return verifier.VerifyBuffer<T>(nullptr);
2474 }
2475
2476 uint8_t *buf;
2477 uoffset_t len;
2478 bool must_free;
2479 };
2480
2481 // "structs" are flat structures that do not have an offset table, thus
2482 // always have all members present and do not support forwards/backwards
2483 // compatible extensions.
2484
2485 class Struct FLATBUFFERS_FINAL_CLASS {
2486 public:
2487 template<typename T> T GetField(uoffset_t o) const {
2488 return ReadScalar<T>(&data_[o]);
2489 }
2490
2491 template<typename T> T GetStruct(uoffset_t o) const {
2492 return reinterpret_cast<T>(&data_[o]);
2493 }
2494
2495 const uint8_t *GetAddressOf(uoffset_t o) const { return &data_[o]; }
2496 uint8_t *GetAddressOf(uoffset_t o) { return &data_[o]; }
2497
2498 private:
2499 // private constructor & copy constructor: you obtain instances of this
2500 // class by pointing to existing data only
2501 Struct();
2502 Struct(const Struct &);
2503 Struct &operator=(const Struct &);
2504
2505 uint8_t data_[1];
2506 };
2507
2508 // "tables" use an offset table (possibly shared) that allows fields to be
2509 // omitted and added at will, but uses an extra indirection to read.
2510 class Table {
2511 public:
2512 const uint8_t *GetVTable() const {
2513 return data_ - ReadScalar<soffset_t>(data_);
2514 }
2515
2516 // This gets the field offset for any of the functions below it, or 0
2517 // if the field was not present.
2518 voffset_t GetOptionalFieldOffset(voffset_t field) const {
2519 // The vtable offset is always at the start.
2520 auto vtable = GetVTable();
2521 // The first element is the size of the vtable (fields + type id + itself).
2522 auto vtsize = ReadScalar<voffset_t>(vtable);
2523 // If the field we're accessing is outside the vtable, we're reading older
2524 // data, so it's the same as if the offset was 0 (not present).
2525 return field < vtsize ? ReadScalar<voffset_t>(vtable + field) : 0;
2526 }
2527
2528 template<typename T> T GetField(voffset_t field, T defaultval) const {
2529 auto field_offset = GetOptionalFieldOffset(field);
2530 return field_offset ? ReadScalar<T>(data_ + field_offset) : defaultval;
2531 }
2532
2533 template<typename P> P GetPointer(voffset_t field) {
2534 auto field_offset = GetOptionalFieldOffset(field);
2535 auto p = data_ + field_offset;
2536 return field_offset ? reinterpret_cast<P>(p + ReadScalar<uoffset_t>(p))
2537 : nullptr;
2538 }
2539 template<typename P> P GetPointer(voffset_t field) const {
2540 return const_cast<Table *>(this)->GetPointer<P>(field);
2541 }
2542
2543 template<typename P> P GetStruct(voffset_t field) const {
2544 auto field_offset = GetOptionalFieldOffset(field);
2545 auto p = const_cast<uint8_t *>(data_ + field_offset);
2546 return field_offset ? reinterpret_cast<P>(p) : nullptr;
2547 }
2548
2549 template<typename T> bool SetField(voffset_t field, T val, T def) {
2550 auto field_offset = GetOptionalFieldOffset(field);
2551 if (!field_offset) return IsTheSameAs(val, def);
2552 WriteScalar(data_ + field_offset, val);
2553 return true;
2554 }
2555
2556 bool SetPointer(voffset_t field, const uint8_t *val) {
2557 auto field_offset = GetOptionalFieldOffset(field);
2558 if (!field_offset) return false;
2559 WriteScalar(data_ + field_offset,
2560 static_cast<uoffset_t>(val - (data_ + field_offset)));
2561 return true;
2562 }
2563
2564 uint8_t *GetAddressOf(voffset_t field) {
2565 auto field_offset = GetOptionalFieldOffset(field);
2566 return field_offset ? data_ + field_offset : nullptr;
2567 }
2568 const uint8_t *GetAddressOf(voffset_t field) const {
2569 return const_cast<Table *>(this)->GetAddressOf(field);
2570 }
2571
2572 bool CheckField(voffset_t field) const {
2573 return GetOptionalFieldOffset(field) != 0;
2574 }
2575
2576 // Verify the vtable of this table.
2577 // Call this once per table, followed by VerifyField once per field.
2578 bool VerifyTableStart(Verifier &verifier) const {
2579 return verifier.VerifyTableStart(data_);
2580 }
2581
2582 // Verify a particular field.
2583 template<typename T>
2584 bool VerifyField(const Verifier &verifier, voffset_t field) const {
2585 // Calling GetOptionalFieldOffset should be safe now thanks to
2586 // VerifyTable().
2587 auto field_offset = GetOptionalFieldOffset(field);
2588 // Check the actual field.
2589 return !field_offset || verifier.Verify<T>(data_, field_offset);
2590 }
2591
2592 // VerifyField for required fields.
2593 template<typename T>
2594 bool VerifyFieldRequired(const Verifier &verifier, voffset_t field) const {
2595 auto field_offset = GetOptionalFieldOffset(field);
2596 return verifier.Check(field_offset != 0) &&
2597 verifier.Verify<T>(data_, field_offset);
2598 }
2599
2600 // Versions for offsets.
2601 bool VerifyOffset(const Verifier &verifier, voffset_t field) const {
2602 auto field_offset = GetOptionalFieldOffset(field);
2603 return !field_offset || verifier.VerifyOffset(data_, field_offset);
2604 }
2605
2606 bool VerifyOffsetRequired(const Verifier &verifier, voffset_t field) const {
2607 auto field_offset = GetOptionalFieldOffset(field);
2608 return verifier.Check(field_offset != 0) &&
2609 verifier.VerifyOffset(data_, field_offset);
2610 }
2611
2612 private:
2613 // private constructor & copy constructor: you obtain instances of this
2614 // class by pointing to existing data only
2615 Table();
2616 Table(const Table &other);
2617 Table &operator=(const Table &);
2618
2619 uint8_t data_[1];
2620 };
2621
2622 template<typename T>
2623 void FlatBufferBuilder::Required(Offset<T> table, voffset_t field) {
2624 auto table_ptr = reinterpret_cast<const Table *>(buf_.data_at(table.o));
2625 bool ok = table_ptr->GetOptionalFieldOffset(field) != 0;
2626 // If this fails, the caller will show what field needs to be set.
2627 FLATBUFFERS_ASSERT(ok);
2628 (void)ok;
2629 }
2630
2631 /// @brief This can compute the start of a FlatBuffer from a root pointer, i.e.
2632 /// it is the opposite transformation of GetRoot().
2633 /// This may be useful if you want to pass on a root and have the recipient
2634 /// delete the buffer afterwards.
2635 inline const uint8_t *GetBufferStartFromRootPointer(const void *root) {
2636 auto table = reinterpret_cast<const Table *>(root);
2637 auto vtable = table->GetVTable();
2638 // Either the vtable is before the root or after the root.
2639 auto start = (std::min)(vtable, reinterpret_cast<const uint8_t *>(root));
2640 // Align to at least sizeof(uoffset_t).
2641 start = reinterpret_cast<const uint8_t *>(reinterpret_cast<uintptr_t>(start) &
2642 ~(sizeof(uoffset_t) - 1));
2643 // Additionally, there may be a file_identifier in the buffer, and the root
2644 // offset. The buffer may have been aligned to any size between
2645 // sizeof(uoffset_t) and FLATBUFFERS_MAX_ALIGNMENT (see "force_align").
2646 // Sadly, the exact alignment is only known when constructing the buffer,
2647 // since it depends on the presence of values with said alignment properties.
2648 // So instead, we simply look at the next uoffset_t values (root,
2649 // file_identifier, and alignment padding) to see which points to the root.
2650 // None of the other values can "impersonate" the root since they will either
2651 // be 0 or four ASCII characters.
2652 static_assert(FlatBufferBuilder::kFileIdentifierLength == sizeof(uoffset_t),
2653 "file_identifier is assumed to be the same size as uoffset_t");
2654 for (auto possible_roots = FLATBUFFERS_MAX_ALIGNMENT / sizeof(uoffset_t) + 1;
2655 possible_roots; possible_roots--) {
2656 start -= sizeof(uoffset_t);
2657 if (ReadScalar<uoffset_t>(start) + start ==
2658 reinterpret_cast<const uint8_t *>(root))
2659 return start;
2660 }
2661 // We didn't find the root, either the "root" passed isn't really a root,
2662 // or the buffer is corrupt.
2663 // Assert, because calling this function with bad data may cause reads
2664 // outside of buffer boundaries.
2665 FLATBUFFERS_ASSERT(false);
2666 return nullptr;
2667 }
2668
2669 /// @brief This return the prefixed size of a FlatBuffer.
2670 inline uoffset_t GetPrefixedSize(const uint8_t *buf) {
2671 return ReadScalar<uoffset_t>(buf);
2672 }
2673
2674 // Base class for native objects (FlatBuffer data de-serialized into native
2675 // C++ data structures).
2676 // Contains no functionality, purely documentative.
2677 struct NativeTable {};
2678
2679 /// @brief Function types to be used with resolving hashes into objects and
2680 /// back again. The resolver gets a pointer to a field inside an object API
2681 /// object that is of the type specified in the schema using the attribute
2682 /// `cpp_type` (it is thus important whatever you write to this address
2683 /// matches that type). The value of this field is initially null, so you
2684 /// may choose to implement a delayed binding lookup using this function
2685 /// if you wish. The resolver does the opposite lookup, for when the object
2686 /// is being serialized again.
2687 typedef uint64_t hash_value_t;
2688 // clang-format off
2689 #if defined(FLATBUFFERS_CPP98_STL) || defined(FLATBUFFERS_CHRE)
2690 typedef void (*resolver_function_t)(void **pointer_adr, hash_value_t hash);
2691 typedef hash_value_t (*rehasher_function_t)(void *pointer);
2692 #else
2693 typedef std::function<void (void **pointer_adr, hash_value_t hash)>
2694 resolver_function_t;
2695 typedef std::function<hash_value_t (void *pointer)> rehasher_function_t;
2696 #endif
2697 // clang-format on
2698
2699 // Helper function to test if a field is present, using any of the field
2700 // enums in the generated code.
2701 // `table` must be a generated table type. Since this is a template parameter,
2702 // this is not typechecked to be a subclass of Table, so beware!
2703 // Note: this function will return false for fields equal to the default
2704 // value, since they're not stored in the buffer (unless force_defaults was
2705 // used).
2706 template<typename T>
2707 bool IsFieldPresent(const T *table, typename T::FlatBuffersVTableOffset field) {
2708 // Cast, since Table is a private baseclass of any table types.
2709 return reinterpret_cast<const Table *>(table)->CheckField(
2710 static_cast<voffset_t>(field));
2711 }
2712
2713 // Utility function for reverse lookups on the EnumNames*() functions
2714 // (in the generated C++ code)
2715 // names must be NULL terminated.
2716 inline int LookupEnum(const char **names, const char *name) {
2717 for (const char **p = names; *p; p++)
2718 if (!strcmp(*p, name)) return static_cast<int>(p - names);
2719 return -1;
2720 }
2721
2722 // These macros allow us to layout a struct with a guarantee that they'll end
2723 // up looking the same on different compilers and platforms.
2724 // It does this by disallowing the compiler to do any padding, and then
2725 // does padding itself by inserting extra padding fields that make every
2726 // element aligned to its own size.
2727 // Additionally, it manually sets the alignment of the struct as a whole,
2728 // which is typically its largest element, or a custom size set in the schema
2729 // by the force_align attribute.
2730 // These are used in the generated code only.
2731
2732 // clang-format off
2733 #if defined(_MSC_VER)
2734 #define FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(alignment) \
2735 __pragma(pack(1)) \
2736 struct __declspec(align(alignment))
2737 #define FLATBUFFERS_STRUCT_END(name, size) \
2738 __pragma(pack()) \
2739 static_assert(sizeof(name) == size, "compiler breaks packing rules")
2740 #elif defined(__GNUC__) || defined(__clang__) || defined(__ICCARM__)
2741 #define FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(alignment) \
2742 _Pragma("pack(1)") \
2743 struct __attribute__((aligned(alignment)))
2744 #define FLATBUFFERS_STRUCT_END(name, size) \
2745 _Pragma("pack()") \
2746 static_assert(sizeof(name) == size, "compiler breaks packing rules")
2747 #else
2748 #error Unknown compiler, please define structure alignment macros
2749 #endif
2750 // clang-format on
2751
2752 // Minimal reflection via code generation.
2753 // Besides full-fat reflection (see reflection.h) and parsing/printing by
2754 // loading schemas (see idl.h), we can also have code generation for mimimal
2755 // reflection data which allows pretty-printing and other uses without needing
2756 // a schema or a parser.
2757 // Generate code with --reflect-types (types only) or --reflect-names (names
2758 // also) to enable.
2759 // See minireflect.h for utilities using this functionality.
2760
2761 // These types are organized slightly differently as the ones in idl.h.
2762 enum SequenceType { ST_TABLE, ST_STRUCT, ST_UNION, ST_ENUM };
2763
2764 // Scalars have the same order as in idl.h
2765 // clang-format off
2766 #define FLATBUFFERS_GEN_ELEMENTARY_TYPES(ET) \
2767 ET(ET_UTYPE) \
2768 ET(ET_BOOL) \
2769 ET(ET_CHAR) \
2770 ET(ET_UCHAR) \
2771 ET(ET_SHORT) \
2772 ET(ET_USHORT) \
2773 ET(ET_INT) \
2774 ET(ET_UINT) \
2775 ET(ET_LONG) \
2776 ET(ET_ULONG) \
2777 ET(ET_FLOAT) \
2778 ET(ET_DOUBLE) \
2779 ET(ET_STRING) \
2780 ET(ET_SEQUENCE) // See SequenceType.
2781
2782 enum ElementaryType {
2783 #define FLATBUFFERS_ET(E) E,
2784 FLATBUFFERS_GEN_ELEMENTARY_TYPES(FLATBUFFERS_ET)
2785 #undef FLATBUFFERS_ET
2786 };
2787
2788 inline const char * const *ElementaryTypeNames() {
2789 static const char * const names[] = {
2790 #define FLATBUFFERS_ET(E) #E,
2791 FLATBUFFERS_GEN_ELEMENTARY_TYPES(FLATBUFFERS_ET)
2792 #undef FLATBUFFERS_ET
2793 };
2794 return names;
2795 }
2796 // clang-format on
2797
2798 // Basic type info cost just 16bits per field!
2799 struct TypeCode {
2800 uint16_t base_type : 4; // ElementaryType
2801 uint16_t is_vector : 1;
2802 int16_t sequence_ref : 11; // Index into type_refs below, or -1 for none.
2803 };
2804
2805 static_assert(sizeof(TypeCode) == 2, "TypeCode");
2806
2807 struct TypeTable;
2808
2809 // Signature of the static method present in each type.
2810 typedef const TypeTable *(*TypeFunction)();
2811
2812 struct TypeTable {
2813 SequenceType st;
2814 size_t num_elems; // of type_codes, values, names (but not type_refs).
2815 const TypeCode *type_codes; // num_elems count
2816 const TypeFunction *type_refs; // less than num_elems entries (see TypeCode).
2817 const int64_t *values; // Only set for non-consecutive enum/union or structs.
2818 const char *const *names; // Only set if compiled with --reflect-names.
2819 };
2820
2821 // String which identifies the current version of FlatBuffers.
2822 // flatbuffer_version_string is used by Google developers to identify which
2823 // applications uploaded to Google Play are using this library. This allows
2824 // the development team at Google to determine the popularity of the library.
2825 // How it works: Applications that are uploaded to the Google Play Store are
2826 // scanned for this version string. We track which applications are using it
2827 // to measure popularity. You are free to remove it (of course) but we would
2828 // appreciate if you left it in.
2829
2830 // Weak linkage is culled by VS & doesn't work on cygwin.
2831 // clang-format off
2832 #if !defined(_WIN32) && !defined(__CYGWIN__)
2833
2834 extern volatile __attribute__((weak)) const char *flatbuffer_version_string;
2835 volatile __attribute__((weak)) const char *flatbuffer_version_string =
2836 "FlatBuffers "
2837 FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MAJOR) "."
2838 FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MINOR) "."
2839 FLATBUFFERS_STRING(FLATBUFFERS_VERSION_REVISION);
2840
2841 #endif // !defined(_WIN32) && !defined(__CYGWIN__)
2842
2843 #define FLATBUFFERS_DEFINE_BITMASK_OPERATORS(E, T)\
2844 inline E operator | (E lhs, E rhs){\
2845 return E(T(lhs) | T(rhs));\
2846 }\
2847 inline E operator & (E lhs, E rhs){\
2848 return E(T(lhs) & T(rhs));\
2849 }\
2850 inline E operator ^ (E lhs, E rhs){\
2851 return E(T(lhs) ^ T(rhs));\
2852 }\
2853 inline E operator ~ (E lhs){\
2854 return E(~T(lhs));\
2855 }\
2856 inline E operator |= (E &lhs, E rhs){\
2857 lhs = lhs | rhs;\
2858 return lhs;\
2859 }\
2860 inline E operator &= (E &lhs, E rhs){\
2861 lhs = lhs & rhs;\
2862 return lhs;\
2863 }\
2864 inline E operator ^= (E &lhs, E rhs){\
2865 lhs = lhs ^ rhs;\
2866 return lhs;\
2867 }\
2868 inline bool operator !(E rhs) \
2869 {\
2870 return !bool(T(rhs)); \
2871 }
2872 /// @endcond
2873 } // namespace flatbuffers
2874
2875 // clang-format on
2876
2877 #endif // FLATBUFFERS_H_
2878