1 /**
2  * @file drivers/sensor.h
3  *
4  * @brief Public APIs for the sensor driver.
5  */
6 
7 /*
8  * Copyright (c) 2016 Intel Corporation
9  *
10  * SPDX-License-Identifier: Apache-2.0
11  */
12 #ifndef ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_
13 #define ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_
14 
15 /**
16  * @brief Sensor Interface
17  * @defgroup sensor_interface Sensor Interface
18  * @ingroup io_interfaces
19  * @{
20  */
21 
22 #include <errno.h>
23 #include <stdlib.h>
24 
25 #include <zephyr/device.h>
26 #include <zephyr/drivers/sensor_data_types.h>
27 #include <zephyr/dsp/types.h>
28 #include <zephyr/rtio/rtio.h>
29 #include <zephyr/sys/iterable_sections.h>
30 #include <zephyr/types.h>
31 
32 #ifdef __cplusplus
33 extern "C" {
34 #endif
35 
36 /**
37  * @brief Representation of a sensor readout value.
38  *
39  * The value is represented as having an integer and a fractional part,
40  * and can be obtained using the formula val1 + val2 * 10^(-6). Negative
41  * values also adhere to the above formula, but may need special attention.
42  * Here are some examples of the value representation:
43  *
44  *      0.5: val1 =  0, val2 =  500000
45  *     -0.5: val1 =  0, val2 = -500000
46  *     -1.0: val1 = -1, val2 =  0
47  *     -1.5: val1 = -1, val2 = -500000
48  */
49 struct sensor_value {
50 	/** Integer part of the value. */
51 	int32_t val1;
52 	/** Fractional part of the value (in one-millionth parts). */
53 	int32_t val2;
54 };
55 
56 /**
57  * @brief Sensor channels.
58  */
59 enum sensor_channel {
60 	/** Acceleration on the X axis, in m/s^2. */
61 	SENSOR_CHAN_ACCEL_X,
62 	/** Acceleration on the Y axis, in m/s^2. */
63 	SENSOR_CHAN_ACCEL_Y,
64 	/** Acceleration on the Z axis, in m/s^2. */
65 	SENSOR_CHAN_ACCEL_Z,
66 	/** Acceleration on the X, Y and Z axes. */
67 	SENSOR_CHAN_ACCEL_XYZ,
68 	/** Angular velocity around the X axis, in radians/s. */
69 	SENSOR_CHAN_GYRO_X,
70 	/** Angular velocity around the Y axis, in radians/s. */
71 	SENSOR_CHAN_GYRO_Y,
72 	/** Angular velocity around the Z axis, in radians/s. */
73 	SENSOR_CHAN_GYRO_Z,
74 	/** Angular velocity around the X, Y and Z axes. */
75 	SENSOR_CHAN_GYRO_XYZ,
76 	/** Magnetic field on the X axis, in Gauss. */
77 	SENSOR_CHAN_MAGN_X,
78 	/** Magnetic field on the Y axis, in Gauss. */
79 	SENSOR_CHAN_MAGN_Y,
80 	/** Magnetic field on the Z axis, in Gauss. */
81 	SENSOR_CHAN_MAGN_Z,
82 	/** Magnetic field on the X, Y and Z axes. */
83 	SENSOR_CHAN_MAGN_XYZ,
84 	/** Device die temperature in degrees Celsius. */
85 	SENSOR_CHAN_DIE_TEMP,
86 	/** Ambient temperature in degrees Celsius. */
87 	SENSOR_CHAN_AMBIENT_TEMP,
88 	/** Pressure in kilopascal. */
89 	SENSOR_CHAN_PRESS,
90 	/**
91 	 * Proximity.  Adimensional.  A value of 1 indicates that an
92 	 * object is close.
93 	 */
94 	SENSOR_CHAN_PROX,
95 	/** Humidity, in percent. */
96 	SENSOR_CHAN_HUMIDITY,
97 	/** Illuminance in visible spectrum, in lux. */
98 	SENSOR_CHAN_LIGHT,
99 	/** Illuminance in infra-red spectrum, in lux. */
100 	SENSOR_CHAN_IR,
101 	/** Illuminance in red spectrum, in lux. */
102 	SENSOR_CHAN_RED,
103 	/** Illuminance in green spectrum, in lux. */
104 	SENSOR_CHAN_GREEN,
105 	/** Illuminance in blue spectrum, in lux. */
106 	SENSOR_CHAN_BLUE,
107 	/** Altitude, in meters */
108 	SENSOR_CHAN_ALTITUDE,
109 
110 	/** 1.0 micro-meters Particulate Matter, in ug/m^3 */
111 	SENSOR_CHAN_PM_1_0,
112 	/** 2.5 micro-meters Particulate Matter, in ug/m^3 */
113 	SENSOR_CHAN_PM_2_5,
114 	/** 10 micro-meters Particulate Matter, in ug/m^3 */
115 	SENSOR_CHAN_PM_10,
116 	/** Distance. From sensor to target, in meters */
117 	SENSOR_CHAN_DISTANCE,
118 
119 	/** CO2 level, in parts per million (ppm) **/
120 	SENSOR_CHAN_CO2,
121 	/** VOC level, in parts per billion (ppb) **/
122 	SENSOR_CHAN_VOC,
123 	/** Gas sensor resistance in ohms. */
124 	SENSOR_CHAN_GAS_RES,
125 
126 	/** Voltage, in volts **/
127 	SENSOR_CHAN_VOLTAGE,
128 
129 	/** Current Shunt Voltage in milli-volts **/
130 	SENSOR_CHAN_VSHUNT,
131 
132 	/** Current, in amps **/
133 	SENSOR_CHAN_CURRENT,
134 	/** Power in watts **/
135 	SENSOR_CHAN_POWER,
136 
137 	/** Resistance , in Ohm **/
138 	SENSOR_CHAN_RESISTANCE,
139 
140 	/** Angular rotation, in degrees */
141 	SENSOR_CHAN_ROTATION,
142 
143 	/** Position change on the X axis, in points. */
144 	SENSOR_CHAN_POS_DX,
145 	/** Position change on the Y axis, in points. */
146 	SENSOR_CHAN_POS_DY,
147 	/** Position change on the Z axis, in points. */
148 	SENSOR_CHAN_POS_DZ,
149 
150 	/** Revolutions per minute, in RPM. */
151 	SENSOR_CHAN_RPM,
152 
153 	/** Voltage, in volts **/
154 	SENSOR_CHAN_GAUGE_VOLTAGE,
155 	/** Average current, in amps **/
156 	SENSOR_CHAN_GAUGE_AVG_CURRENT,
157 	/** Standby current, in amps **/
158 	SENSOR_CHAN_GAUGE_STDBY_CURRENT,
159 	/** Max load current, in amps **/
160 	SENSOR_CHAN_GAUGE_MAX_LOAD_CURRENT,
161 	/** Gauge temperature  **/
162 	SENSOR_CHAN_GAUGE_TEMP,
163 	/** State of charge measurement in % **/
164 	SENSOR_CHAN_GAUGE_STATE_OF_CHARGE,
165 	/** Full Charge Capacity in mAh **/
166 	SENSOR_CHAN_GAUGE_FULL_CHARGE_CAPACITY,
167 	/** Remaining Charge Capacity in mAh **/
168 	SENSOR_CHAN_GAUGE_REMAINING_CHARGE_CAPACITY,
169 	/** Nominal Available Capacity in mAh **/
170 	SENSOR_CHAN_GAUGE_NOM_AVAIL_CAPACITY,
171 	/** Full Available Capacity in mAh **/
172 	SENSOR_CHAN_GAUGE_FULL_AVAIL_CAPACITY,
173 	/** Average power in mW **/
174 	SENSOR_CHAN_GAUGE_AVG_POWER,
175 	/** State of health measurement in % **/
176 	SENSOR_CHAN_GAUGE_STATE_OF_HEALTH,
177 	/** Time to empty in minutes **/
178 	SENSOR_CHAN_GAUGE_TIME_TO_EMPTY,
179 	/** Time to full in minutes **/
180 	SENSOR_CHAN_GAUGE_TIME_TO_FULL,
181 	/** Cycle count (total number of charge/discharge cycles) **/
182 	SENSOR_CHAN_GAUGE_CYCLE_COUNT,
183 	/** Design voltage of cell in V (max voltage)*/
184 	SENSOR_CHAN_GAUGE_DESIGN_VOLTAGE,
185 	/** Desired voltage of cell in V (nominal voltage) */
186 	SENSOR_CHAN_GAUGE_DESIRED_VOLTAGE,
187 	/** Desired charging current in mA */
188 	SENSOR_CHAN_GAUGE_DESIRED_CHARGING_CURRENT,
189 
190 	/** All channels. */
191 	SENSOR_CHAN_ALL,
192 
193 	/**
194 	 * Number of all common sensor channels.
195 	 */
196 	SENSOR_CHAN_COMMON_COUNT,
197 
198 	/**
199 	 * This and higher values are sensor specific.
200 	 * Refer to the sensor header file.
201 	 */
202 	SENSOR_CHAN_PRIV_START = SENSOR_CHAN_COMMON_COUNT,
203 
204 	/**
205 	 * Maximum value describing a sensor channel type.
206 	 */
207 	SENSOR_CHAN_MAX = INT16_MAX,
208 };
209 
210 /**
211  * @brief Sensor trigger types.
212  */
213 enum sensor_trigger_type {
214 	/**
215 	 * Timer-based trigger, useful when the sensor does not have an
216 	 * interrupt line.
217 	 */
218 	SENSOR_TRIG_TIMER,
219 	/** Trigger fires whenever new data is ready. */
220 	SENSOR_TRIG_DATA_READY,
221 	/**
222 	 * Trigger fires when the selected channel varies significantly.
223 	 * This includes any-motion detection when the channel is
224 	 * acceleration or gyro. If detection is based on slope between
225 	 * successive channel readings, the slope threshold is configured
226 	 * via the @ref SENSOR_ATTR_SLOPE_TH and @ref SENSOR_ATTR_SLOPE_DUR
227 	 * attributes.
228 	 */
229 	SENSOR_TRIG_DELTA,
230 	/** Trigger fires when a near/far event is detected. */
231 	SENSOR_TRIG_NEAR_FAR,
232 	/**
233 	 * Trigger fires when channel reading transitions configured
234 	 * thresholds.  The thresholds are configured via the @ref
235 	 * SENSOR_ATTR_LOWER_THRESH, @ref SENSOR_ATTR_UPPER_THRESH, and
236 	 * @ref SENSOR_ATTR_HYSTERESIS attributes.
237 	 */
238 	SENSOR_TRIG_THRESHOLD,
239 
240 	/** Trigger fires when a single tap is detected. */
241 	SENSOR_TRIG_TAP,
242 
243 	/** Trigger fires when a double tap is detected. */
244 	SENSOR_TRIG_DOUBLE_TAP,
245 
246 	/** Trigger fires when a free fall is detected. */
247 	SENSOR_TRIG_FREEFALL,
248 
249 	/** Trigger fires when motion is detected. */
250 	SENSOR_TRIG_MOTION,
251 
252 	/** Trigger fires when no motion has been detected for a while. */
253 	SENSOR_TRIG_STATIONARY,
254 	/**
255 	 * Number of all common sensor triggers.
256 	 */
257 	SENSOR_TRIG_COMMON_COUNT,
258 
259 	/**
260 	 * This and higher values are sensor specific.
261 	 * Refer to the sensor header file.
262 	 */
263 	SENSOR_TRIG_PRIV_START = SENSOR_TRIG_COMMON_COUNT,
264 
265 	/**
266 	 * Maximum value describing a sensor trigger type.
267 	 */
268 	SENSOR_TRIG_MAX = INT16_MAX,
269 };
270 
271 /**
272  * @brief Sensor trigger spec.
273  */
274 struct sensor_trigger {
275 	/** Trigger type. */
276 	enum sensor_trigger_type type;
277 	/** Channel the trigger is set on. */
278 	enum sensor_channel chan;
279 };
280 
281 /**
282  * @brief Sensor attribute types.
283  */
284 enum sensor_attribute {
285 	/**
286 	 * Sensor sampling frequency, i.e. how many times a second the
287 	 * sensor takes a measurement.
288 	 */
289 	SENSOR_ATTR_SAMPLING_FREQUENCY,
290 	/** Lower threshold for trigger. */
291 	SENSOR_ATTR_LOWER_THRESH,
292 	/** Upper threshold for trigger. */
293 	SENSOR_ATTR_UPPER_THRESH,
294 	/** Threshold for any-motion (slope) trigger. */
295 	SENSOR_ATTR_SLOPE_TH,
296 	/**
297 	 * Duration for which the slope values needs to be
298 	 * outside the threshold for the trigger to fire.
299 	 */
300 	SENSOR_ATTR_SLOPE_DUR,
301 	/* Hysteresis for trigger thresholds. */
302 	SENSOR_ATTR_HYSTERESIS,
303 	/** Oversampling factor */
304 	SENSOR_ATTR_OVERSAMPLING,
305 	/** Sensor range, in SI units. */
306 	SENSOR_ATTR_FULL_SCALE,
307 	/**
308 	 * The sensor value returned will be altered by the amount indicated by
309 	 * offset: final_value = sensor_value + offset.
310 	 */
311 	SENSOR_ATTR_OFFSET,
312 	/**
313 	 * Calibration target. This will be used by the internal chip's
314 	 * algorithms to calibrate itself on a certain axis, or all of them.
315 	 */
316 	SENSOR_ATTR_CALIB_TARGET,
317 	/** Configure the operating modes of a sensor. */
318 	SENSOR_ATTR_CONFIGURATION,
319 	/** Set a calibration value needed by a sensor. */
320 	SENSOR_ATTR_CALIBRATION,
321 	/** Enable/disable sensor features */
322 	SENSOR_ATTR_FEATURE_MASK,
323 	/** Alert threshold or alert enable/disable */
324 	SENSOR_ATTR_ALERT,
325 	/** Free-fall duration represented in milliseconds.
326 	 *  If the sampling frequency is changed during runtime,
327 	 *  this attribute should be set to adjust freefall duration
328 	 *  to the new sampling frequency.
329 	 */
330 	SENSOR_ATTR_FF_DUR,
331 	/**
332 	 * Number of all common sensor attributes.
333 	 */
334 	SENSOR_ATTR_COMMON_COUNT,
335 
336 	/**
337 	 * This and higher values are sensor specific.
338 	 * Refer to the sensor header file.
339 	 */
340 	SENSOR_ATTR_PRIV_START = SENSOR_ATTR_COMMON_COUNT,
341 
342 	/**
343 	 * Maximum value describing a sensor attribute type.
344 	 */
345 	SENSOR_ATTR_MAX = INT16_MAX,
346 };
347 
348 /**
349  * @typedef sensor_trigger_handler_t
350  * @brief Callback API upon firing of a trigger
351  *
352  * @param dev Pointer to the sensor device
353  * @param trigger The trigger
354  */
355 typedef void (*sensor_trigger_handler_t)(const struct device *dev,
356 					 const struct sensor_trigger *trigger);
357 
358 /**
359  * @typedef sensor_attr_set_t
360  * @brief Callback API upon setting a sensor's attributes
361  *
362  * See sensor_attr_set() for argument description
363  */
364 typedef int (*sensor_attr_set_t)(const struct device *dev,
365 				 enum sensor_channel chan,
366 				 enum sensor_attribute attr,
367 				 const struct sensor_value *val);
368 
369 /**
370  * @typedef sensor_attr_get_t
371  * @brief Callback API upon getting a sensor's attributes
372  *
373  * See sensor_attr_get() for argument description
374  */
375 typedef int (*sensor_attr_get_t)(const struct device *dev,
376 				 enum sensor_channel chan,
377 				 enum sensor_attribute attr,
378 				 struct sensor_value *val);
379 
380 /**
381  * @typedef sensor_trigger_set_t
382  * @brief Callback API for setting a sensor's trigger and handler
383  *
384  * See sensor_trigger_set() for argument description
385  */
386 typedef int (*sensor_trigger_set_t)(const struct device *dev,
387 				    const struct sensor_trigger *trig,
388 				    sensor_trigger_handler_t handler);
389 /**
390  * @typedef sensor_sample_fetch_t
391  * @brief Callback API for fetching data from a sensor
392  *
393  * See sensor_sample_fetch() for argument description
394  */
395 typedef int (*sensor_sample_fetch_t)(const struct device *dev,
396 				     enum sensor_channel chan);
397 /**
398  * @typedef sensor_channel_get_t
399  * @brief Callback API for getting a reading from a sensor
400  *
401  * See sensor_channel_get() for argument description
402  */
403 typedef int (*sensor_channel_get_t)(const struct device *dev,
404 				    enum sensor_channel chan,
405 				    struct sensor_value *val);
406 
407 /**
408  * @brief Decodes a single raw data buffer
409  *
410  * Data buffers are provided on the @ref rtio context that's supplied to
411  * c:func:`sensor_read`.
412  */
413 struct sensor_decoder_api {
414 	/**
415 	 * @brief Get the number of frames in the current buffer.
416 	 *
417 	 * @param[in]  buffer The buffer provided on the @ref rtio context.
418 	 * @param[in]  channel The channel to get the count for
419 	 * @param[in]  channel_idx The index of the channel
420 	 * @param[out] frame_count The number of frames on the buffer (at least 1)
421 	 * @return 0 on success
422 	 * @return -ENOTSUP if the channel/channel_idx aren't found
423 	 */
424 	int (*get_frame_count)(const uint8_t *buffer, enum sensor_channel channel,
425 			       size_t channel_idx, uint16_t *frame_count);
426 
427 	/**
428 	 * @brief Get the size required to decode a given channel
429 	 *
430 	 * When decoding a single frame, use @p base_size. For every additional frame, add another
431 	 * @p frame_size. As an example, to decode 3 frames use: 'base_size + 2 * frame_size'.
432 	 *
433 	 * @param[in]  channel The channel to query
434 	 * @param[out] base_size The size of decoding the first frame
435 	 * @param[out] frame_size The additional size of every additional frame
436 	 * @return 0 on success
437 	 * @return -ENOTSUP if the channel is not supported
438 	 */
439 	int (*get_size_info)(enum sensor_channel channel, size_t *base_size, size_t *frame_size);
440 
441 	/**
442 	 * @brief Decode up to @p max_count samples from the buffer
443 	 *
444 	 * Decode samples of channel @ref sensor_channel across multiple frames. If there exist
445 	 * multiple instances of the same channel, @p channel_index is used to differentiate them.
446 	 * As an example, assume a sensor provides 2 distance measurements:
447 	 *
448 	 * @code{.c}
449 	 * // Decode the first channel instance of 'distance'
450 	 * decoder->decode(buffer, SENSOR_CHAN_DISTANCE, 0, &fit, 5, out);
451 	 * ...
452 	 *
453 	 * // Decode the second channel instance of 'distance'
454 	 * decoder->decode(buffer, SENSOR_CHAN_DISTANCE, 1, &fit, 5, out);
455 	 * @endcode
456 	 *
457 	 * @param[in]     buffer The buffer provided on the @ref rtio context
458 	 * @param[in]     channel The channel to decode
459 	 * @param[in]     channel_idx The index of the channel
460 	 * @param[in,out] fit The current frame iterator
461 	 * @param[in]     max_count The maximum number of channels to decode.
462 	 * @param[out]    data_out The decoded data
463 	 * @return 0 no more samples to decode
464 	 * @return >0 the number of decoded frames
465 	 * @return <0 on error
466 	 */
467 	int (*decode)(const uint8_t *buffer, enum sensor_channel channel, size_t channel_idx,
468 		      uint32_t *fit, uint16_t max_count, void *data_out);
469 };
470 
471 /**
472  * @brief Used for iterating over the data frames via the sensor_decoder_api.
473  *
474  * Example usage:
475  *
476  * @code(.c)
477  *     struct sensor_decode_context ctx = SENSOR_DECODE_CONTEXT_INIT(
478  *         decoder, buffer, SENSOR_CHAN_ACCEL_XYZ, 0);
479  *
480  *     while (true) {
481  *       struct sensor_three_axis_data accel_out_data;
482  *
483  *       num_decoded_channels = sensor_decode(ctx, &accel_out_data, 1);
484  *
485  *       if (num_decoded_channels <= 0) {
486  *         printk("Done decoding buffer\n");
487  *         break;
488  *       }
489  *
490  *       printk("Decoded (%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", accel_out_data.readings[0].x,
491  *           accel_out_data.readings[0].y, accel_out_data.readings[0].z);
492  *     }
493  * @endcode
494  */
495 struct sensor_decode_context {
496 	const struct sensor_decoder_api *decoder;
497 	const uint8_t *buffer;
498 	enum sensor_channel channel;
499 	size_t channel_idx;
500 	uint32_t fit;
501 };
502 
503 /**
504  * @brief Initialize a sensor_decode_context
505  */
506 #define SENSOR_DECODE_CONTEXT_INIT(decoder_, buffer_, channel_, channel_index_)                    \
507 	{                                                                                          \
508 		.decoder = (decoder_),                                                             \
509 		.buffer = (buffer_),                                                               \
510 		.channel = (channel_),                                                             \
511 		.channel_idx = (channel_index_),                                                   \
512 		.fit = 0,                                                                          \
513 	}
514 
515 /**
516  * @brief Decode N frames using a sensor_decode_context
517  *
518  * @param[in,out] ctx The context to use for decoding
519  * @param[out]    out The output buffer
520  * @param[in]     max_count Maximum number of frames to decode
521  * @return The decode result from sensor_decoder_api's decode function
522  */
sensor_decode(struct sensor_decode_context * ctx,void * out,uint16_t max_count)523 static inline int sensor_decode(struct sensor_decode_context *ctx, void *out, uint16_t max_count)
524 {
525 	return ctx->decoder->decode(ctx->buffer, ctx->channel, ctx->channel_idx, &ctx->fit,
526 				    max_count, out);
527 }
528 
529 int sensor_natively_supported_channel_size_info(enum sensor_channel channel, size_t *base_size,
530 						size_t *frame_size);
531 
532 /**
533  * @typedef sensor_get_decoder_t
534  * @brief Get the decoder associate with the given device
535  *
536  * @see sensor_get_decoder for more details
537  */
538 typedef int (*sensor_get_decoder_t)(const struct device *dev,
539 				    const struct sensor_decoder_api **api);
540 
541 /*
542  * Internal data structure used to store information about the IODevice for async reading and
543  * streaming sensor data.
544  */
545 struct sensor_read_config {
546 	const struct device *sensor;
547 	enum sensor_channel *const channels;
548 	size_t count;
549 	const size_t max;
550 };
551 
552 /**
553  * @brief Define a reading instance of a sensor
554  *
555  * Use this macro to generate a @ref rtio_iodev for reading specific channels. Example:
556  *
557  * @code(.c)
558  * SENSOR_DT_READ_IODEV(icm42688_accelgyro, DT_NODELABEL(icm42688),
559  *     SENSOR_CHAN_ACCEL_XYZ, SENSOR_CHAN_GYRO_XYZ);
560  *
561  * int main(void) {
562  *   sensor_read(&icm42688_accelgyro, &rtio);
563  * }
564  * @endcode
565  */
566 #define SENSOR_DT_READ_IODEV(name, dt_node, ...)                                                   \
567 	static enum sensor_channel __channel_array_##name[] = {__VA_ARGS__};                       \
568 	static struct sensor_read_config __sensor_read_config_##name = {                           \
569 		.sensor = DEVICE_DT_GET(dt_node),                                                  \
570 		.channels = __channel_array_##name,                                                \
571 		.count = ARRAY_SIZE(__channel_array_##name),                                       \
572 		.max = ARRAY_SIZE(__channel_array_##name),                                         \
573 	};                                                                                         \
574 	RTIO_IODEV_DEFINE(name, &__sensor_iodev_api, &__sensor_read_config_##name)
575 
576 /* Used to submit an RTIO sqe to the sensor's iodev */
577 typedef int (*sensor_submit_t)(const struct device *sensor, struct rtio_iodev_sqe *sqe);
578 
579 /* The default decoder API */
580 extern const struct sensor_decoder_api __sensor_default_decoder;
581 
582 /* The default sensor iodev API */
583 extern const struct rtio_iodev_api __sensor_iodev_api;
584 
585 __subsystem struct sensor_driver_api {
586 	sensor_attr_set_t attr_set;
587 	sensor_attr_get_t attr_get;
588 	sensor_trigger_set_t trigger_set;
589 	sensor_sample_fetch_t sample_fetch;
590 	sensor_channel_get_t channel_get;
591 	sensor_get_decoder_t get_decoder;
592 	sensor_submit_t submit;
593 };
594 
595 /**
596  * @brief Set an attribute for a sensor
597  *
598  * @param dev Pointer to the sensor device
599  * @param chan The channel the attribute belongs to, if any.  Some
600  * attributes may only be set for all channels of a device, depending on
601  * device capabilities.
602  * @param attr The attribute to set
603  * @param val The value to set the attribute to
604  *
605  * @return 0 if successful, negative errno code if failure.
606  */
607 __syscall int sensor_attr_set(const struct device *dev,
608 			      enum sensor_channel chan,
609 			      enum sensor_attribute attr,
610 			      const struct sensor_value *val);
611 
z_impl_sensor_attr_set(const struct device * dev,enum sensor_channel chan,enum sensor_attribute attr,const struct sensor_value * val)612 static inline int z_impl_sensor_attr_set(const struct device *dev,
613 					 enum sensor_channel chan,
614 					 enum sensor_attribute attr,
615 					 const struct sensor_value *val)
616 {
617 	const struct sensor_driver_api *api =
618 		(const struct sensor_driver_api *)dev->api;
619 
620 	if (api->attr_set == NULL) {
621 		return -ENOSYS;
622 	}
623 
624 	return api->attr_set(dev, chan, attr, val);
625 }
626 
627 /**
628  * @brief Get an attribute for a sensor
629  *
630  * @param dev Pointer to the sensor device
631  * @param chan The channel the attribute belongs to, if any.  Some
632  * attributes may only be set for all channels of a device, depending on
633  * device capabilities.
634  * @param attr The attribute to get
635  * @param val Pointer to where to store the attribute
636  *
637  * @return 0 if successful, negative errno code if failure.
638  */
639 __syscall int sensor_attr_get(const struct device *dev,
640 			      enum sensor_channel chan,
641 			      enum sensor_attribute attr,
642 			      struct sensor_value *val);
643 
z_impl_sensor_attr_get(const struct device * dev,enum sensor_channel chan,enum sensor_attribute attr,struct sensor_value * val)644 static inline int z_impl_sensor_attr_get(const struct device *dev,
645 					 enum sensor_channel chan,
646 					 enum sensor_attribute attr,
647 					 struct sensor_value *val)
648 {
649 	const struct sensor_driver_api *api =
650 		(const struct sensor_driver_api *)dev->api;
651 
652 	if (api->attr_get == NULL) {
653 		return -ENOSYS;
654 	}
655 
656 	return api->attr_get(dev, chan, attr, val);
657 }
658 
659 /**
660  * @brief Activate a sensor's trigger and set the trigger handler
661  *
662  * The handler will be called from a thread, so I2C or SPI operations are
663  * safe.  However, the thread's stack is limited and defined by the
664  * driver.  It is currently up to the caller to ensure that the handler
665  * does not overflow the stack.
666  *
667  * The user-allocated trigger will be stored by the driver as a pointer, rather
668  * than a copy, and passed back to the handler. This enables the handler to use
669  * CONTAINER_OF to retrieve a context pointer when the trigger is embedded in a
670  * larger struct and requires that the trigger is not allocated on the stack.
671  *
672  * @funcprops \supervisor
673  *
674  * @param dev Pointer to the sensor device
675  * @param trig The trigger to activate
676  * @param handler The function that should be called when the trigger
677  * fires
678  *
679  * @return 0 if successful, negative errno code if failure.
680  */
sensor_trigger_set(const struct device * dev,const struct sensor_trigger * trig,sensor_trigger_handler_t handler)681 static inline int sensor_trigger_set(const struct device *dev,
682 				     const struct sensor_trigger *trig,
683 				     sensor_trigger_handler_t handler)
684 {
685 	const struct sensor_driver_api *api =
686 		(const struct sensor_driver_api *)dev->api;
687 
688 	if (api->trigger_set == NULL) {
689 		return -ENOSYS;
690 	}
691 
692 	return api->trigger_set(dev, trig, handler);
693 }
694 
695 /**
696  * @brief Fetch a sample from the sensor and store it in an internal
697  * driver buffer
698  *
699  * Read all of a sensor's active channels and, if necessary, perform any
700  * additional operations necessary to make the values useful.  The user
701  * may then get individual channel values by calling @ref
702  * sensor_channel_get.
703  *
704  * The function blocks until the fetch operation is complete.
705  *
706  * Since the function communicates with the sensor device, it is unsafe
707  * to call it in an ISR if the device is connected via I2C or SPI.
708  *
709  * @param dev Pointer to the sensor device
710  *
711  * @return 0 if successful, negative errno code if failure.
712  */
713 __syscall int sensor_sample_fetch(const struct device *dev);
714 
z_impl_sensor_sample_fetch(const struct device * dev)715 static inline int z_impl_sensor_sample_fetch(const struct device *dev)
716 {
717 	const struct sensor_driver_api *api =
718 		(const struct sensor_driver_api *)dev->api;
719 
720 	return api->sample_fetch(dev, SENSOR_CHAN_ALL);
721 }
722 
723 /**
724  * @brief Fetch a sample from the sensor and store it in an internal
725  * driver buffer
726  *
727  * Read and compute compensation for one type of sensor data (magnetometer,
728  * accelerometer, etc). The user may then get individual channel values by
729  * calling @ref sensor_channel_get.
730  *
731  * This is mostly implemented by multi function devices enabling reading at
732  * different sampling rates.
733  *
734  * The function blocks until the fetch operation is complete.
735  *
736  * Since the function communicates with the sensor device, it is unsafe
737  * to call it in an ISR if the device is connected via I2C or SPI.
738  *
739  * @param dev Pointer to the sensor device
740  * @param type The channel that needs updated
741  *
742  * @return 0 if successful, negative errno code if failure.
743  */
744 __syscall int sensor_sample_fetch_chan(const struct device *dev,
745 				       enum sensor_channel type);
746 
z_impl_sensor_sample_fetch_chan(const struct device * dev,enum sensor_channel type)747 static inline int z_impl_sensor_sample_fetch_chan(const struct device *dev,
748 						  enum sensor_channel type)
749 {
750 	const struct sensor_driver_api *api =
751 		(const struct sensor_driver_api *)dev->api;
752 
753 	return api->sample_fetch(dev, type);
754 }
755 
756 /**
757  * @brief Get a reading from a sensor device
758  *
759  * Return a useful value for a particular channel, from the driver's
760  * internal data.  Before calling this function, a sample must be
761  * obtained by calling @ref sensor_sample_fetch or
762  * @ref sensor_sample_fetch_chan. It is guaranteed that two subsequent
763  * calls of this function for the same channels will yield the same
764  * value, if @ref sensor_sample_fetch or @ref sensor_sample_fetch_chan
765  * has not been called in the meantime.
766  *
767  * For vectorial data samples you can request all axes in just one call
768  * by passing the specific channel with _XYZ suffix. The sample will be
769  * returned at val[0], val[1] and val[2] (X, Y and Z in that order).
770  *
771  * @param dev Pointer to the sensor device
772  * @param chan The channel to read
773  * @param val Where to store the value
774  *
775  * @return 0 if successful, negative errno code if failure.
776  */
777 __syscall int sensor_channel_get(const struct device *dev,
778 				 enum sensor_channel chan,
779 				 struct sensor_value *val);
780 
z_impl_sensor_channel_get(const struct device * dev,enum sensor_channel chan,struct sensor_value * val)781 static inline int z_impl_sensor_channel_get(const struct device *dev,
782 					    enum sensor_channel chan,
783 					    struct sensor_value *val)
784 {
785 	const struct sensor_driver_api *api =
786 		(const struct sensor_driver_api *)dev->api;
787 
788 	return api->channel_get(dev, chan, val);
789 }
790 
791 #if defined(CONFIG_SENSOR_ASYNC_API) || defined(__DOXYGEN__)
792 
793 /*
794  * Generic data structure used for encoding the sample timestamp and number of channels sampled.
795  */
796 struct __attribute__((__packed__)) sensor_data_generic_header {
797 	/* The timestamp at which the data was collected from the sensor */
798 	uint64_t timestamp_ns;
799 
800 	/*
801 	 * The number of channels present in the frame. This will be the true number of elements in
802 	 * channel_info and in the q31 values that follow the header.
803 	 */
804 	uint32_t num_channels;
805 
806 	/* Shift value for all samples in the frame */
807 	int8_t shift;
808 
809 	/* This padding is needed to make sure that the 'channels' field is aligned */
810 	int8_t _padding[sizeof(enum sensor_channel) - 1];
811 
812 	/* Channels present in the frame */
813 	enum sensor_channel channels[0];
814 };
815 
816 /**
817  * @brief checks if a given channel is a 3-axis channel
818  *
819  * @param[in] chan The channel to check
820  * @retval true if @p chan is any of @ref SENSOR_CHAN_ACCEL_XYZ, @ref SENSOR_CHAN_GYRO_XYZ, or
821  *         @ref SENSOR_CHAN_MAGN_XYZ
822  * @retval false otherwise
823  */
824 #define SENSOR_CHANNEL_3_AXIS(chan)                                                                \
825 	((chan) == SENSOR_CHAN_ACCEL_XYZ || (chan) == SENSOR_CHAN_GYRO_XYZ ||                      \
826 	 (chan) == SENSOR_CHAN_MAGN_XYZ)
827 
828 /**
829  * @brief Get the sensor's decoder API
830  *
831  * @param[in] dev The sensor device
832  * @param[in] decoder Pointer to the decoder which will be set upon success
833  * @return 0 on success
834  * @return < 0 on error
835  */
836 __syscall int sensor_get_decoder(const struct device *dev,
837 				 const struct sensor_decoder_api **decoder);
838 
z_impl_sensor_get_decoder(const struct device * dev,const struct sensor_decoder_api ** decoder)839 static inline int z_impl_sensor_get_decoder(const struct device *dev,
840 					    const struct sensor_decoder_api **decoder)
841 {
842 	const struct sensor_driver_api *api = (const struct sensor_driver_api *)dev->api;
843 
844 	__ASSERT_NO_MSG(api != NULL);
845 
846 	if (api->get_decoder == NULL) {
847 		*decoder = &__sensor_default_decoder;
848 		return 0;
849 	}
850 
851 	return api->get_decoder(dev, decoder);
852 }
853 
854 /**
855  * @brief Reconfigure a reading iodev
856  *
857  * Allows a reconfiguration of the iodev associated with reading a sample from a sensor.
858  *
859  * <b>Important</b>: If the iodev is currently servicing a read operation, the data will likely be
860  * invalid. Please be sure the flush or wait for all pending operations to complete before using the
861  * data after a configuration change.
862  *
863  * It is also important that the `data` field of the iodev is a @ref sensor_read_config.
864  *
865  * @param[in] iodev The iodev to reconfigure
866  * @param[in] sensor The sensor to read from
867  * @param[in] channels One or more channels to read
868  * @param[in] num_channels The number of channels in @p channels
869  * @return 0 on success
870  * @return < 0 on error
871  */
872 __syscall int sensor_reconfigure_read_iodev(struct rtio_iodev *iodev, const struct device *sensor,
873 					    const enum sensor_channel *channels,
874 					    size_t num_channels);
875 
z_impl_sensor_reconfigure_read_iodev(struct rtio_iodev * iodev,const struct device * sensor,const enum sensor_channel * channels,size_t num_channels)876 static inline int z_impl_sensor_reconfigure_read_iodev(struct rtio_iodev *iodev,
877 						       const struct device *sensor,
878 						       const enum sensor_channel *channels,
879 						       size_t num_channels)
880 {
881 	struct sensor_read_config *cfg = (struct sensor_read_config *)iodev->data;
882 
883 	if (cfg->max < num_channels) {
884 		return -ENOMEM;
885 	}
886 
887 	cfg->sensor = sensor;
888 	memcpy(cfg->channels, channels, num_channels * sizeof(enum sensor_channel));
889 	cfg->count = num_channels;
890 	return 0;
891 	return 0;
892 }
893 
894 /**
895  * @brief Read data from a sensor.
896  *
897  * Using @p cfg, read one snapshot of data from the device by using the provided RTIO context
898  * @p ctx. This call will generate a @ref rtio_sqe that will leverage the RTIO's internal
899  * mempool when the time comes to service the read.
900  *
901  * @param[in] iodev The iodev created by @ref SENSOR_DT_READ_IODEV
902  * @param[in] ctx The RTIO context to service the read
903  * @param[in] userdata Optional userdata that will be available when the read is complete
904  * @return 0 on success
905  * @return < 0 on error
906  */
sensor_read(struct rtio_iodev * iodev,struct rtio * ctx,void * userdata)907 static inline int sensor_read(struct rtio_iodev *iodev, struct rtio *ctx, void *userdata)
908 {
909 	if (IS_ENABLED(CONFIG_USERSPACE)) {
910 		struct rtio_sqe sqe;
911 
912 		rtio_sqe_prep_read_with_pool(&sqe, iodev, RTIO_PRIO_NORM, userdata);
913 		rtio_sqe_copy_in(ctx, &sqe, 1);
914 	} else {
915 		struct rtio_sqe *sqe = rtio_sqe_acquire(ctx);
916 
917 		if (sqe == NULL) {
918 			return -ENOMEM;
919 		}
920 		rtio_sqe_prep_read_with_pool(sqe, iodev, RTIO_PRIO_NORM, userdata);
921 	}
922 	rtio_submit(ctx, 0);
923 	return 0;
924 }
925 
926 /**
927  * @typedef sensor_processing_callback_t
928  * @brief Callback function used with the helper processing function.
929  *
930  * @see sensor_processing_with_callback
931  *
932  * @param[in] result The result code of the read (0 being success)
933  * @param[in] buf The data buffer holding the sensor data
934  * @param[in] buf_len The length (in bytes) of the @p buf
935  * @param[in] userdata The optional userdata passed to sensor_read()
936  */
937 typedef void (*sensor_processing_callback_t)(int result, uint8_t *buf, uint32_t buf_len,
938 					     void *userdata);
939 
940 /**
941  * @brief Helper function for common processing of sensor data.
942  *
943  * This function can be called in a blocking manner after sensor_read() or in a standalone
944  * thread dedicated to processing. It will wait for a cqe from the RTIO context, once received, it
945  * will decode the userdata and call the @p cb. Once the @p cb returns, the buffer will be released
946  * back into @p ctx's mempool if available.
947  *
948  * @param[in] ctx The RTIO context to wait on
949  * @param[in] cb Callback to call when data is ready for processing
950  */
951 void sensor_processing_with_callback(struct rtio *ctx, sensor_processing_callback_t cb);
952 
953 #endif /* defined(CONFIG_SENSOR_ASYNC_API) || defined(__DOXYGEN__) */
954 
955 /**
956  * @brief The value of gravitational constant in micro m/s^2.
957  */
958 #define SENSOR_G		9806650LL
959 
960 /**
961  * @brief The value of constant PI in micros.
962  */
963 #define SENSOR_PI		3141592LL
964 
965 /**
966  * @brief Helper function to convert acceleration from m/s^2 to Gs
967  *
968  * @param ms2 A pointer to a sensor_value struct holding the acceleration,
969  *            in m/s^2.
970  *
971  * @return The converted value, in Gs.
972  */
sensor_ms2_to_g(const struct sensor_value * ms2)973 static inline int32_t sensor_ms2_to_g(const struct sensor_value *ms2)
974 {
975 	int64_t micro_ms2 = ms2->val1 * 1000000LL + ms2->val2;
976 
977 	if (micro_ms2 > 0) {
978 		return (micro_ms2 + SENSOR_G / 2) / SENSOR_G;
979 	} else {
980 		return (micro_ms2 - SENSOR_G / 2) / SENSOR_G;
981 	}
982 }
983 
984 /**
985  * @brief Helper function to convert acceleration from Gs to m/s^2
986  *
987  * @param g The G value to be converted.
988  * @param ms2 A pointer to a sensor_value struct, where the result is stored.
989  */
sensor_g_to_ms2(int32_t g,struct sensor_value * ms2)990 static inline void sensor_g_to_ms2(int32_t g, struct sensor_value *ms2)
991 {
992 	ms2->val1 = ((int64_t)g * SENSOR_G) / 1000000LL;
993 	ms2->val2 = ((int64_t)g * SENSOR_G) % 1000000LL;
994 }
995 
996 /**
997  * @brief Helper function to convert acceleration from m/s^2 to micro Gs
998  *
999  * @param ms2 A pointer to a sensor_value struct holding the acceleration,
1000  *            in m/s^2.
1001  *
1002  * @return The converted value, in micro Gs.
1003  */
sensor_ms2_to_ug(const struct sensor_value * ms2)1004 static inline int32_t sensor_ms2_to_ug(const struct sensor_value *ms2)
1005 {
1006 	int64_t micro_ms2 = (ms2->val1 * INT64_C(1000000)) + ms2->val2;
1007 
1008 	return (micro_ms2 * 1000000LL) / SENSOR_G;
1009 }
1010 
1011 /**
1012  * @brief Helper function to convert acceleration from micro Gs to m/s^2
1013  *
1014  * @param ug The micro G value to be converted.
1015  * @param ms2 A pointer to a sensor_value struct, where the result is stored.
1016  */
sensor_ug_to_ms2(int32_t ug,struct sensor_value * ms2)1017 static inline void sensor_ug_to_ms2(int32_t ug, struct sensor_value *ms2)
1018 {
1019 	ms2->val1 = ((int64_t)ug * SENSOR_G / 1000000LL) / 1000000LL;
1020 	ms2->val2 = ((int64_t)ug * SENSOR_G / 1000000LL) % 1000000LL;
1021 }
1022 
1023 /**
1024  * @brief Helper function for converting radians to degrees.
1025  *
1026  * @param rad A pointer to a sensor_value struct, holding the value in radians.
1027  *
1028  * @return The converted value, in degrees.
1029  */
sensor_rad_to_degrees(const struct sensor_value * rad)1030 static inline int32_t sensor_rad_to_degrees(const struct sensor_value *rad)
1031 {
1032 	int64_t micro_rad_s = rad->val1 * 1000000LL + rad->val2;
1033 
1034 	if (micro_rad_s > 0) {
1035 		return (micro_rad_s * 180LL + SENSOR_PI / 2) / SENSOR_PI;
1036 	} else {
1037 		return (micro_rad_s * 180LL - SENSOR_PI / 2) / SENSOR_PI;
1038 	}
1039 }
1040 
1041 /**
1042  * @brief Helper function for converting degrees to radians.
1043  *
1044  * @param d The value (in degrees) to be converted.
1045  * @param rad A pointer to a sensor_value struct, where the result is stored.
1046  */
sensor_degrees_to_rad(int32_t d,struct sensor_value * rad)1047 static inline void sensor_degrees_to_rad(int32_t d, struct sensor_value *rad)
1048 {
1049 	rad->val1 = ((int64_t)d * SENSOR_PI / 180LL) / 1000000LL;
1050 	rad->val2 = ((int64_t)d * SENSOR_PI / 180LL) % 1000000LL;
1051 }
1052 
1053 /**
1054  * @brief Helper function for converting radians to 10 micro degrees.
1055  *
1056  * When the unit is 1 micro degree, the range that the int32_t can represent is
1057  * +/-2147.483 degrees. In order to increase this range, here we use 10 micro
1058  * degrees as the unit.
1059  *
1060  * @param rad A pointer to a sensor_value struct, holding the value in radians.
1061  *
1062  * @return The converted value, in 10 micro degrees.
1063  */
sensor_rad_to_10udegrees(const struct sensor_value * rad)1064 static inline int32_t sensor_rad_to_10udegrees(const struct sensor_value *rad)
1065 {
1066 	int64_t micro_rad_s = rad->val1 * 1000000LL + rad->val2;
1067 
1068 	return (micro_rad_s * 180LL * 100000LL) / SENSOR_PI;
1069 }
1070 
1071 /**
1072  * @brief Helper function for converting 10 micro degrees to radians.
1073  *
1074  * @param d The value (in 10 micro degrees) to be converted.
1075  * @param rad A pointer to a sensor_value struct, where the result is stored.
1076  */
sensor_10udegrees_to_rad(int32_t d,struct sensor_value * rad)1077 static inline void sensor_10udegrees_to_rad(int32_t d, struct sensor_value *rad)
1078 {
1079 	rad->val1 = ((int64_t)d * SENSOR_PI / 180LL / 100000LL) / 1000000LL;
1080 	rad->val2 = ((int64_t)d * SENSOR_PI / 180LL / 100000LL) % 1000000LL;
1081 }
1082 
1083 /**
1084  * @brief Helper function for converting struct sensor_value to double.
1085  *
1086  * @param val A pointer to a sensor_value struct.
1087  * @return The converted value.
1088  */
sensor_value_to_double(const struct sensor_value * val)1089 static inline double sensor_value_to_double(const struct sensor_value *val)
1090 {
1091 	return (double)val->val1 + (double)val->val2 / 1000000;
1092 }
1093 
1094 /**
1095  * @brief Helper function for converting struct sensor_value to float.
1096  *
1097  * @param val A pointer to a sensor_value struct.
1098  * @return The converted value.
1099  */
sensor_value_to_float(const struct sensor_value * val)1100 static inline float sensor_value_to_float(const struct sensor_value *val)
1101 {
1102 	return (float)val->val1 + (float)val->val2 / 1000000;
1103 }
1104 
1105 /**
1106  * @brief Helper function for converting double to struct sensor_value.
1107  *
1108  * @param val A pointer to a sensor_value struct.
1109  * @param inp The converted value.
1110  * @return 0 if successful, negative errno code if failure.
1111  */
sensor_value_from_double(struct sensor_value * val,double inp)1112 static inline int sensor_value_from_double(struct sensor_value *val, double inp)
1113 {
1114 	if (inp < INT32_MIN || inp > INT32_MAX) {
1115 		return -ERANGE;
1116 	}
1117 
1118 	double val2 = (inp - (int32_t)inp) * 1000000.0;
1119 
1120 	if (val2 < INT32_MIN || val2 > INT32_MAX) {
1121 		return -ERANGE;
1122 	}
1123 
1124 	val->val1 = (int32_t)inp;
1125 	val->val2 = (int32_t)val2;
1126 
1127 	return 0;
1128 }
1129 
1130 /**
1131  * @brief Helper function for converting float to struct sensor_value.
1132  *
1133  * @param val A pointer to a sensor_value struct.
1134  * @param inp The converted value.
1135  * @return 0 if successful, negative errno code if failure.
1136  */
sensor_value_from_float(struct sensor_value * val,float inp)1137 static inline int sensor_value_from_float(struct sensor_value *val, float inp)
1138 {
1139 	float val2 = (inp - (int32_t)inp) * 1000000.0f;
1140 
1141 	if (val2 < INT32_MIN || val2 > (float)(INT32_MAX - 1)) {
1142 		return -ERANGE;
1143 	}
1144 
1145 	val->val1 = (int32_t)inp;
1146 	val->val2 = (int32_t)val2;
1147 
1148 	return 0;
1149 }
1150 
1151 #ifdef CONFIG_SENSOR_INFO
1152 
1153 struct sensor_info {
1154 	const struct device *dev;
1155 	const char *vendor;
1156 	const char *model;
1157 	const char *friendly_name;
1158 };
1159 
1160 #define SENSOR_INFO_INITIALIZER(_dev, _vendor, _model, _friendly_name)	\
1161 	{								\
1162 		.dev = _dev,						\
1163 		.vendor = _vendor,					\
1164 		.model = _model,					\
1165 		.friendly_name = _friendly_name,			\
1166 	}
1167 
1168 #define SENSOR_INFO_DEFINE(name, ...)					\
1169 	static const STRUCT_SECTION_ITERABLE(sensor_info, name) =	\
1170 		SENSOR_INFO_INITIALIZER(__VA_ARGS__)
1171 
1172 #define SENSOR_INFO_DT_NAME(node_id)					\
1173 	_CONCAT(__sensor_info, DEVICE_DT_NAME_GET(node_id))
1174 
1175 #define SENSOR_INFO_DT_DEFINE(node_id)					\
1176 	SENSOR_INFO_DEFINE(SENSOR_INFO_DT_NAME(node_id),		\
1177 			   DEVICE_DT_GET(node_id),			\
1178 			   DT_NODE_VENDOR_OR(node_id, NULL),		\
1179 			   DT_NODE_MODEL_OR(node_id, NULL),		\
1180 			   DT_PROP_OR(node_id, friendly_name, NULL))	\
1181 
1182 #else
1183 
1184 #define SENSOR_INFO_DEFINE(name, ...)
1185 #define SENSOR_INFO_DT_DEFINE(node_id)
1186 
1187 #endif /* CONFIG_SENSOR_INFO */
1188 
1189 /**
1190  * @brief Like DEVICE_DT_DEFINE() with sensor specifics.
1191  *
1192  * @details Defines a device which implements the sensor API. May define an
1193  * element in the sensor info iterable section used to enumerate all sensor
1194  * devices.
1195  *
1196  * @param node_id The devicetree node identifier.
1197  *
1198  * @param init_fn Name of the init function of the driver.
1199  *
1200  * @param pm_device PM device resources reference (NULL if device does not use
1201  * PM).
1202  *
1203  * @param data_ptr Pointer to the device's private data.
1204  *
1205  * @param cfg_ptr The address to the structure containing the configuration
1206  * information for this instance of the driver.
1207  *
1208  * @param level The initialization level. See SYS_INIT() for details.
1209  *
1210  * @param prio Priority within the selected initialization level. See
1211  * SYS_INIT() for details.
1212  *
1213  * @param api_ptr Provides an initial pointer to the API function struct used
1214  * by the driver. Can be NULL.
1215  */
1216 #define SENSOR_DEVICE_DT_DEFINE(node_id, init_fn, pm_device,		\
1217 				data_ptr, cfg_ptr, level, prio,		\
1218 				api_ptr, ...)				\
1219 	DEVICE_DT_DEFINE(node_id, init_fn, pm_device,			\
1220 			 data_ptr, cfg_ptr, level, prio,		\
1221 			 api_ptr, __VA_ARGS__);				\
1222 									\
1223 	SENSOR_INFO_DT_DEFINE(node_id);
1224 
1225 /**
1226  * @brief Like SENSOR_DEVICE_DT_DEFINE() for an instance of a DT_DRV_COMPAT
1227  * compatible
1228  *
1229  * @param inst instance number. This is replaced by
1230  * <tt>DT_DRV_COMPAT(inst)</tt> in the call to SENSOR_DEVICE_DT_DEFINE().
1231  *
1232  * @param ... other parameters as expected by SENSOR_DEVICE_DT_DEFINE().
1233  */
1234 #define SENSOR_DEVICE_DT_INST_DEFINE(inst, ...)				\
1235 	SENSOR_DEVICE_DT_DEFINE(DT_DRV_INST(inst), __VA_ARGS__)
1236 
1237 /**
1238  * @brief Helper function for converting struct sensor_value to integer milli units.
1239  *
1240  * @param val A pointer to a sensor_value struct.
1241  * @return The converted value.
1242  */
sensor_value_to_milli(const struct sensor_value * val)1243 static inline int64_t sensor_value_to_milli(const struct sensor_value *val)
1244 {
1245 	return ((int64_t)val->val1 * 1000) + val->val2 / 1000;
1246 }
1247 
1248 /**
1249  * @brief Helper function for converting struct sensor_value to integer micro units.
1250  *
1251  * @param val A pointer to a sensor_value struct.
1252  * @return The converted value.
1253  */
sensor_value_to_micro(const struct sensor_value * val)1254 static inline int64_t sensor_value_to_micro(const struct sensor_value *val)
1255 {
1256 	return ((int64_t)val->val1 * 1000000) + val->val2;
1257 }
1258 
1259 /**
1260  * @}
1261  */
1262 
1263 #if defined(CONFIG_HAS_DTS) || defined(__DOXYGEN__)
1264 
1265 /**
1266  * @brief Get the decoder name for the current driver
1267  *
1268  * This function depends on `DT_DRV_COMPAT` being defined.
1269  */
1270 #define SENSOR_DECODER_NAME() UTIL_CAT(DT_DRV_COMPAT, __decoder_api)
1271 
1272 /**
1273  * @brief Statically get the decoder for a given node
1274  *
1275  * @code{.c}
1276  * static const sensor_decoder_api *decoder = SENSOR_DECODER_DT_GET(DT_ALIAS(accel));
1277  * @endcode
1278  */
1279 #define SENSOR_DECODER_DT_GET(node_id)                                                             \
1280 	&UTIL_CAT(DT_STRING_TOKEN_BY_IDX(node_id, compatible, 0), __decoder_api)
1281 
1282 /**
1283  * @brief Define a decoder API
1284  *
1285  * This macro should be created once per compatible string of a sensor and will create a statically
1286  * referenceable decoder API.
1287  *
1288  * @code{.c}
1289  * SENSOR_DECODER_API_DT_DEFINE() = {
1290  *   .get_frame_count = my_driver_get_frame_count,
1291  *   .get_timestamp = my_driver_get_timestamp,
1292  *   .get_shift = my_driver_get_shift,
1293  *   .decode = my_driver_decode,
1294  * };
1295  * @endcode
1296  */
1297 #define SENSOR_DECODER_API_DT_DEFINE()                                                             \
1298 	COND_CODE_1(DT_HAS_COMPAT_STATUS_OKAY(DT_DRV_COMPAT), (), (static))                        \
1299 	const STRUCT_SECTION_ITERABLE(sensor_decoder_api, SENSOR_DECODER_NAME())
1300 
1301 #define Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL_IDX(node_id, prop, idx)                            \
1302 	extern const struct sensor_decoder_api UTIL_CAT(                                           \
1303 		DT_STRING_TOKEN_BY_IDX(node_id, prop, idx), __decoder_api);
1304 
1305 #define Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL(node_id)                                           \
1306 	COND_CODE_1(DT_NODE_HAS_PROP(node_id, compatible),                                         \
1307 		    (DT_FOREACH_PROP_ELEM(node_id, compatible,                                     \
1308 					  Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL_IDX)),           \
1309 		    ())
1310 
1311 DT_FOREACH_STATUS_OKAY_NODE(Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL)
1312 #endif /* defined(CONFIG_HAS_DTS) || defined(__DOXYGEN__) */
1313 
1314 #ifdef __cplusplus
1315 }
1316 #endif
1317 
1318 #include <syscalls/sensor.h>
1319 
1320 #endif /* ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_ */
1321