1 /**
2  * @file drivers/sensor.h
3  *
4  * @brief Public APIs for the sensor driver.
5  */
6 
7 /*
8  * Copyright (c) 2016 Intel Corporation
9  *
10  * SPDX-License-Identifier: Apache-2.0
11  */
12 #ifndef ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_
13 #define ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_
14 
15 /**
16  * @brief Sensor Interface
17  * @defgroup sensor_interface Sensor Interface
18  * @since 1.2
19  * @version 1.0.0
20  * @ingroup io_interfaces
21  * @{
22  */
23 
24 #include <errno.h>
25 #include <stdlib.h>
26 
27 #include <zephyr/device.h>
28 #include <zephyr/drivers/sensor_data_types.h>
29 #include <zephyr/dsp/types.h>
30 #include <zephyr/rtio/rtio.h>
31 #include <zephyr/sys/iterable_sections.h>
32 #include <zephyr/types.h>
33 
34 #ifdef __cplusplus
35 extern "C" {
36 #endif
37 
38 /**
39  * @brief Representation of a sensor readout value.
40  *
41  * The value is represented as having an integer and a fractional part,
42  * and can be obtained using the formula val1 + val2 * 10^(-6). Negative
43  * values also adhere to the above formula, but may need special attention.
44  * Here are some examples of the value representation:
45  *
46  *      0.5: val1 =  0, val2 =  500000
47  *     -0.5: val1 =  0, val2 = -500000
48  *     -1.0: val1 = -1, val2 =  0
49  *     -1.5: val1 = -1, val2 = -500000
50  */
51 struct sensor_value {
52 	/** Integer part of the value. */
53 	int32_t val1;
54 	/** Fractional part of the value (in one-millionth parts). */
55 	int32_t val2;
56 };
57 
58 /**
59  * @brief Sensor channels.
60  */
61 enum sensor_channel {
62 	/** Acceleration on the X axis, in m/s^2. */
63 	SENSOR_CHAN_ACCEL_X,
64 	/** Acceleration on the Y axis, in m/s^2. */
65 	SENSOR_CHAN_ACCEL_Y,
66 	/** Acceleration on the Z axis, in m/s^2. */
67 	SENSOR_CHAN_ACCEL_Z,
68 	/** Acceleration on the X, Y and Z axes. */
69 	SENSOR_CHAN_ACCEL_XYZ,
70 	/** Angular velocity around the X axis, in radians/s. */
71 	SENSOR_CHAN_GYRO_X,
72 	/** Angular velocity around the Y axis, in radians/s. */
73 	SENSOR_CHAN_GYRO_Y,
74 	/** Angular velocity around the Z axis, in radians/s. */
75 	SENSOR_CHAN_GYRO_Z,
76 	/** Angular velocity around the X, Y and Z axes. */
77 	SENSOR_CHAN_GYRO_XYZ,
78 	/** Magnetic field on the X axis, in Gauss. */
79 	SENSOR_CHAN_MAGN_X,
80 	/** Magnetic field on the Y axis, in Gauss. */
81 	SENSOR_CHAN_MAGN_Y,
82 	/** Magnetic field on the Z axis, in Gauss. */
83 	SENSOR_CHAN_MAGN_Z,
84 	/** Magnetic field on the X, Y and Z axes. */
85 	SENSOR_CHAN_MAGN_XYZ,
86 	/** Device die temperature in degrees Celsius. */
87 	SENSOR_CHAN_DIE_TEMP,
88 	/** Ambient temperature in degrees Celsius. */
89 	SENSOR_CHAN_AMBIENT_TEMP,
90 	/** Pressure in kilopascal. */
91 	SENSOR_CHAN_PRESS,
92 	/**
93 	 * Proximity.  Adimensional.  A value of 1 indicates that an
94 	 * object is close.
95 	 */
96 	SENSOR_CHAN_PROX,
97 	/** Humidity, in percent. */
98 	SENSOR_CHAN_HUMIDITY,
99 	/** Illuminance in visible spectrum, in lux. */
100 	SENSOR_CHAN_LIGHT,
101 	/** Illuminance in infra-red spectrum, in lux. */
102 	SENSOR_CHAN_IR,
103 	/** Illuminance in red spectrum, in lux. */
104 	SENSOR_CHAN_RED,
105 	/** Illuminance in green spectrum, in lux. */
106 	SENSOR_CHAN_GREEN,
107 	/** Illuminance in blue spectrum, in lux. */
108 	SENSOR_CHAN_BLUE,
109 	/** Altitude, in meters */
110 	SENSOR_CHAN_ALTITUDE,
111 
112 	/** 1.0 micro-meters Particulate Matter, in ug/m^3 */
113 	SENSOR_CHAN_PM_1_0,
114 	/** 2.5 micro-meters Particulate Matter, in ug/m^3 */
115 	SENSOR_CHAN_PM_2_5,
116 	/** 10 micro-meters Particulate Matter, in ug/m^3 */
117 	SENSOR_CHAN_PM_10,
118 	/** Distance. From sensor to target, in meters */
119 	SENSOR_CHAN_DISTANCE,
120 
121 	/** CO2 level, in parts per million (ppm) **/
122 	SENSOR_CHAN_CO2,
123 	/** O2 level, in parts per million (ppm) **/
124 	SENSOR_CHAN_O2,
125 	/** VOC level, in parts per billion (ppb) **/
126 	SENSOR_CHAN_VOC,
127 	/** Gas sensor resistance in ohms. */
128 	SENSOR_CHAN_GAS_RES,
129 
130 	/** Voltage, in volts **/
131 	SENSOR_CHAN_VOLTAGE,
132 
133 	/** Current Shunt Voltage in milli-volts **/
134 	SENSOR_CHAN_VSHUNT,
135 
136 	/** Current, in amps **/
137 	SENSOR_CHAN_CURRENT,
138 	/** Power in watts **/
139 	SENSOR_CHAN_POWER,
140 
141 	/** Resistance , in Ohm **/
142 	SENSOR_CHAN_RESISTANCE,
143 
144 	/** Angular rotation, in degrees */
145 	SENSOR_CHAN_ROTATION,
146 
147 	/** Position change on the X axis, in points. */
148 	SENSOR_CHAN_POS_DX,
149 	/** Position change on the Y axis, in points. */
150 	SENSOR_CHAN_POS_DY,
151 	/** Position change on the Z axis, in points. */
152 	SENSOR_CHAN_POS_DZ,
153 	/** Position change on the X, Y and Z axis, in points. */
154 	SENSOR_CHAN_POS_DXYZ,
155 
156 	/** Revolutions per minute, in RPM. */
157 	SENSOR_CHAN_RPM,
158 
159 	/** Frequency, in Hz. */
160 	SENSOR_CHAN_FREQUENCY,
161 
162 	/** Voltage, in volts **/
163 	SENSOR_CHAN_GAUGE_VOLTAGE,
164 	/** Average current, in amps **/
165 	SENSOR_CHAN_GAUGE_AVG_CURRENT,
166 	/** Standby current, in amps **/
167 	SENSOR_CHAN_GAUGE_STDBY_CURRENT,
168 	/** Max load current, in amps **/
169 	SENSOR_CHAN_GAUGE_MAX_LOAD_CURRENT,
170 	/** Gauge temperature  **/
171 	SENSOR_CHAN_GAUGE_TEMP,
172 	/** State of charge measurement in % **/
173 	SENSOR_CHAN_GAUGE_STATE_OF_CHARGE,
174 	/** Full Charge Capacity in mAh **/
175 	SENSOR_CHAN_GAUGE_FULL_CHARGE_CAPACITY,
176 	/** Remaining Charge Capacity in mAh **/
177 	SENSOR_CHAN_GAUGE_REMAINING_CHARGE_CAPACITY,
178 	/** Nominal Available Capacity in mAh **/
179 	SENSOR_CHAN_GAUGE_NOM_AVAIL_CAPACITY,
180 	/** Full Available Capacity in mAh **/
181 	SENSOR_CHAN_GAUGE_FULL_AVAIL_CAPACITY,
182 	/** Average power in mW **/
183 	SENSOR_CHAN_GAUGE_AVG_POWER,
184 	/** State of health measurement in % **/
185 	SENSOR_CHAN_GAUGE_STATE_OF_HEALTH,
186 	/** Time to empty in minutes **/
187 	SENSOR_CHAN_GAUGE_TIME_TO_EMPTY,
188 	/** Time to full in minutes **/
189 	SENSOR_CHAN_GAUGE_TIME_TO_FULL,
190 	/** Cycle count (total number of charge/discharge cycles) **/
191 	SENSOR_CHAN_GAUGE_CYCLE_COUNT,
192 	/** Design voltage of cell in V (max voltage)*/
193 	SENSOR_CHAN_GAUGE_DESIGN_VOLTAGE,
194 	/** Desired voltage of cell in V (nominal voltage) */
195 	SENSOR_CHAN_GAUGE_DESIRED_VOLTAGE,
196 	/** Desired charging current in mA */
197 	SENSOR_CHAN_GAUGE_DESIRED_CHARGING_CURRENT,
198 	/** Game Rotation Vector (unit quaternion components X/Y/Z/W) */
199 	SENSOR_CHAN_GAME_ROTATION_VECTOR,
200 	/** Gravity Vector (X/Y/Z components in m/s^2) */
201 	SENSOR_CHAN_GRAVITY_VECTOR,
202 	/** Gyroscope bias (X/Y/Z components in radians/s) */
203 	SENSOR_CHAN_GBIAS_XYZ,
204 
205 	/** All channels. */
206 	SENSOR_CHAN_ALL,
207 
208 	/**
209 	 * Number of all common sensor channels.
210 	 */
211 	SENSOR_CHAN_COMMON_COUNT,
212 
213 	/**
214 	 * This and higher values are sensor specific.
215 	 * Refer to the sensor header file.
216 	 */
217 	SENSOR_CHAN_PRIV_START = SENSOR_CHAN_COMMON_COUNT,
218 
219 	/**
220 	 * Maximum value describing a sensor channel type.
221 	 */
222 	SENSOR_CHAN_MAX = INT16_MAX,
223 };
224 
225 /**
226  * @brief Sensor trigger types.
227  */
228 enum sensor_trigger_type {
229 	/**
230 	 * Timer-based trigger, useful when the sensor does not have an
231 	 * interrupt line.
232 	 */
233 	SENSOR_TRIG_TIMER,
234 	/** Trigger fires whenever new data is ready. */
235 	SENSOR_TRIG_DATA_READY,
236 	/**
237 	 * Trigger fires when the selected channel varies significantly.
238 	 * This includes any-motion detection when the channel is
239 	 * acceleration or gyro. If detection is based on slope between
240 	 * successive channel readings, the slope threshold is configured
241 	 * via the @ref SENSOR_ATTR_SLOPE_TH and @ref SENSOR_ATTR_SLOPE_DUR
242 	 * attributes.
243 	 */
244 	SENSOR_TRIG_DELTA,
245 	/** Trigger fires when a near/far event is detected. */
246 	SENSOR_TRIG_NEAR_FAR,
247 	/**
248 	 * Trigger fires when channel reading transitions configured
249 	 * thresholds.  The thresholds are configured via the @ref
250 	 * SENSOR_ATTR_LOWER_THRESH, @ref SENSOR_ATTR_UPPER_THRESH, and
251 	 * @ref SENSOR_ATTR_HYSTERESIS attributes.
252 	 */
253 	SENSOR_TRIG_THRESHOLD,
254 
255 	/** Trigger fires when a single tap is detected. */
256 	SENSOR_TRIG_TAP,
257 
258 	/** Trigger fires when a double tap is detected. */
259 	SENSOR_TRIG_DOUBLE_TAP,
260 
261 	/** Trigger fires when a free fall is detected. */
262 	SENSOR_TRIG_FREEFALL,
263 
264 	/** Trigger fires when motion is detected. */
265 	SENSOR_TRIG_MOTION,
266 
267 	/** Trigger fires when no motion has been detected for a while. */
268 	SENSOR_TRIG_STATIONARY,
269 
270 	/** Trigger fires when the FIFO watermark has been reached. */
271 	SENSOR_TRIG_FIFO_WATERMARK,
272 
273 	/** Trigger fires when the FIFO becomes full. */
274 	SENSOR_TRIG_FIFO_FULL,
275 	/**
276 	 * Number of all common sensor triggers.
277 	 */
278 	SENSOR_TRIG_COMMON_COUNT,
279 
280 	/**
281 	 * This and higher values are sensor specific.
282 	 * Refer to the sensor header file.
283 	 */
284 	SENSOR_TRIG_PRIV_START = SENSOR_TRIG_COMMON_COUNT,
285 
286 	/**
287 	 * Maximum value describing a sensor trigger type.
288 	 */
289 	SENSOR_TRIG_MAX = INT16_MAX,
290 };
291 
292 /**
293  * @brief Sensor trigger spec.
294  */
295 struct sensor_trigger {
296 	/** Trigger type. */
297 	enum sensor_trigger_type type;
298 	/** Channel the trigger is set on. */
299 	enum sensor_channel chan;
300 };
301 
302 /**
303  * @brief Sensor attribute types.
304  */
305 enum sensor_attribute {
306 	/**
307 	 * Sensor sampling frequency, i.e. how many times a second the
308 	 * sensor takes a measurement.
309 	 */
310 	SENSOR_ATTR_SAMPLING_FREQUENCY,
311 	/** Lower threshold for trigger. */
312 	SENSOR_ATTR_LOWER_THRESH,
313 	/** Upper threshold for trigger. */
314 	SENSOR_ATTR_UPPER_THRESH,
315 	/** Threshold for any-motion (slope) trigger. */
316 	SENSOR_ATTR_SLOPE_TH,
317 	/**
318 	 * Duration for which the slope values needs to be
319 	 * outside the threshold for the trigger to fire.
320 	 */
321 	SENSOR_ATTR_SLOPE_DUR,
322 	/* Hysteresis for trigger thresholds. */
323 	SENSOR_ATTR_HYSTERESIS,
324 	/** Oversampling factor */
325 	SENSOR_ATTR_OVERSAMPLING,
326 	/** Sensor range, in SI units. */
327 	SENSOR_ATTR_FULL_SCALE,
328 	/**
329 	 * The sensor value returned will be altered by the amount indicated by
330 	 * offset: final_value = sensor_value + offset.
331 	 */
332 	SENSOR_ATTR_OFFSET,
333 	/**
334 	 * Calibration target. This will be used by the internal chip's
335 	 * algorithms to calibrate itself on a certain axis, or all of them.
336 	 */
337 	SENSOR_ATTR_CALIB_TARGET,
338 	/** Configure the operating modes of a sensor. */
339 	SENSOR_ATTR_CONFIGURATION,
340 	/** Set a calibration value needed by a sensor. */
341 	SENSOR_ATTR_CALIBRATION,
342 	/** Enable/disable sensor features */
343 	SENSOR_ATTR_FEATURE_MASK,
344 	/** Alert threshold or alert enable/disable */
345 	SENSOR_ATTR_ALERT,
346 	/** Free-fall duration represented in milliseconds.
347 	 *  If the sampling frequency is changed during runtime,
348 	 *  this attribute should be set to adjust freefall duration
349 	 *  to the new sampling frequency.
350 	 */
351 	SENSOR_ATTR_FF_DUR,
352 
353 	/** Hardware batch duration in ticks */
354 	SENSOR_ATTR_BATCH_DURATION,
355 	/* Configure the gain of a sensor. */
356 	SENSOR_ATTR_GAIN,
357 	/* Configure the resolution of a sensor. */
358 	SENSOR_ATTR_RESOLUTION,
359 	/**
360 	 * Number of all common sensor attributes.
361 	 */
362 	SENSOR_ATTR_COMMON_COUNT,
363 
364 	/**
365 	 * This and higher values are sensor specific.
366 	 * Refer to the sensor header file.
367 	 */
368 	SENSOR_ATTR_PRIV_START = SENSOR_ATTR_COMMON_COUNT,
369 
370 	/**
371 	 * Maximum value describing a sensor attribute type.
372 	 */
373 	SENSOR_ATTR_MAX = INT16_MAX,
374 };
375 
376 /**
377  * @typedef sensor_trigger_handler_t
378  * @brief Callback API upon firing of a trigger
379  *
380  * @param dev Pointer to the sensor device
381  * @param trigger The trigger
382  */
383 typedef void (*sensor_trigger_handler_t)(const struct device *dev,
384 					 const struct sensor_trigger *trigger);
385 
386 /**
387  * @typedef sensor_attr_set_t
388  * @brief Callback API upon setting a sensor's attributes
389  *
390  * See sensor_attr_set() for argument description
391  */
392 typedef int (*sensor_attr_set_t)(const struct device *dev,
393 				 enum sensor_channel chan,
394 				 enum sensor_attribute attr,
395 				 const struct sensor_value *val);
396 
397 /**
398  * @typedef sensor_attr_get_t
399  * @brief Callback API upon getting a sensor's attributes
400  *
401  * See sensor_attr_get() for argument description
402  */
403 typedef int (*sensor_attr_get_t)(const struct device *dev,
404 				 enum sensor_channel chan,
405 				 enum sensor_attribute attr,
406 				 struct sensor_value *val);
407 
408 /**
409  * @typedef sensor_trigger_set_t
410  * @brief Callback API for setting a sensor's trigger and handler
411  *
412  * See sensor_trigger_set() for argument description
413  */
414 typedef int (*sensor_trigger_set_t)(const struct device *dev,
415 				    const struct sensor_trigger *trig,
416 				    sensor_trigger_handler_t handler);
417 /**
418  * @typedef sensor_sample_fetch_t
419  * @brief Callback API for fetching data from a sensor
420  *
421  * See sensor_sample_fetch() for argument description
422  */
423 typedef int (*sensor_sample_fetch_t)(const struct device *dev,
424 				     enum sensor_channel chan);
425 /**
426  * @typedef sensor_channel_get_t
427  * @brief Callback API for getting a reading from a sensor
428  *
429  * See sensor_channel_get() for argument description
430  */
431 typedef int (*sensor_channel_get_t)(const struct device *dev,
432 				    enum sensor_channel chan,
433 				    struct sensor_value *val);
434 
435 /**
436  * @brief Sensor Channel Specification
437  *
438  * A sensor channel specification is a unique identifier per sensor device describing
439  * a measurement channel.
440  *
441  * @note Typically passed by value as the size of a sensor_chan_spec is a single word.
442  */
443 struct sensor_chan_spec {
444 	uint16_t chan_type; /**< A sensor channel type */
445 	uint16_t chan_idx;  /**< A sensor channel index */
446 };
447 
448 /** @cond INTERNAL_HIDDEN */
449 /* Ensure sensor_chan_spec is sensibly sized to pass by value */
450 BUILD_ASSERT(sizeof(struct sensor_chan_spec) <= sizeof(uintptr_t),
451 	     "sensor_chan_spec size should be equal or less than the size of a machine word");
452 /** @endcond */
453 
454 /**
455  * @brief Check if channel specs are equivalent
456  *
457  * @param chan_spec0 First chan spec
458  * @param chan_spec1 Second chan spec
459  * @retval true If equivalent
460  * @retval false If not equivalent
461  */
sensor_chan_spec_eq(struct sensor_chan_spec chan_spec0,struct sensor_chan_spec chan_spec1)462 static inline bool sensor_chan_spec_eq(struct sensor_chan_spec chan_spec0,
463 				       struct sensor_chan_spec chan_spec1)
464 {
465 	return chan_spec0.chan_type == chan_spec1.chan_type &&
466 		chan_spec0.chan_idx == chan_spec1.chan_idx;
467 }
468 
469 /**
470  * @brief Decodes a single raw data buffer
471  *
472  * Data buffers are provided on the @ref rtio context that's supplied to
473  * @ref sensor_read.
474  */
475 struct sensor_decoder_api {
476 	/**
477 	 * @brief Get the number of frames in the current buffer.
478 	 *
479 	 * @param[in]  buffer The buffer provided on the @ref rtio context.
480 	 * @param[in]  channel The channel to get the count for
481 	 * @param[out] frame_count The number of frames on the buffer (at least 1)
482 	 * @return 0 on success
483 	 * @return -ENOTSUP if the channel/channel_idx aren't found
484 	 */
485 	int (*get_frame_count)(const uint8_t *buffer, struct sensor_chan_spec channel,
486 			       uint16_t *frame_count);
487 
488 	/**
489 	 * @brief Get the size required to decode a given channel
490 	 *
491 	 * When decoding a single frame, use @p base_size. For every additional frame, add another
492 	 * @p frame_size. As an example, to decode 3 frames use: 'base_size + 2 * frame_size'.
493 	 *
494 	 * @param[in]  channel The channel to query
495 	 * @param[out] base_size The size of decoding the first frame
496 	 * @param[out] frame_size The additional size of every additional frame
497 	 * @return 0 on success
498 	 * @return -ENOTSUP if the channel is not supported
499 	 */
500 	int (*get_size_info)(struct sensor_chan_spec channel, size_t *base_size,
501 			     size_t *frame_size);
502 
503 	/**
504 	 * @brief Decode up to @p max_count samples from the buffer
505 	 *
506 	 * Decode samples of channel @ref sensor_channel across multiple frames. If there exist
507 	 * multiple instances of the same channel, @p channel_index is used to differentiate them.
508 	 * As an example, assume a sensor provides 2 distance measurements:
509 	 *
510 	 * @code{.c}
511 	 * // Decode the first channel instance of 'distance'
512 	 * decoder->decode(buffer, SENSOR_CHAN_DISTANCE, 0, &fit, 5, out);
513 	 * ...
514 	 *
515 	 * // Decode the second channel instance of 'distance'
516 	 * decoder->decode(buffer, SENSOR_CHAN_DISTANCE, 1, &fit, 5, out);
517 	 * @endcode
518 	 *
519 	 * @param[in]     buffer The buffer provided on the @ref rtio context
520 	 * @param[in]     channel The channel to decode
521 	 * @param[in,out] fit The current frame iterator
522 	 * @param[in]     max_count The maximum number of channels to decode.
523 	 * @param[out]    data_out The decoded data
524 	 * @return 0 no more samples to decode
525 	 * @return >0 the number of decoded frames
526 	 * @return <0 on error
527 	 */
528 	int (*decode)(const uint8_t *buffer, struct sensor_chan_spec channel, uint32_t *fit,
529 		      uint16_t max_count, void *data_out);
530 
531 	/**
532 	 * @brief Check if the given trigger type is present
533 	 *
534 	 * @param[in] buffer The buffer provided on the @ref rtio context
535 	 * @param[in] trigger The trigger type in question
536 	 * @return Whether the trigger is present in the buffer
537 	 */
538 	bool (*has_trigger)(const uint8_t *buffer, enum sensor_trigger_type trigger);
539 };
540 
541 /**
542  * @brief Used for iterating over the data frames via the sensor_decoder_api.
543  *
544  * Example usage:
545  *
546  * @code(.c)
547  *     struct sensor_decode_context ctx = SENSOR_DECODE_CONTEXT_INIT(
548  *         decoder, buffer, SENSOR_CHAN_ACCEL_XYZ, 0);
549  *
550  *     while (true) {
551  *       struct sensor_three_axis_data accel_out_data;
552  *
553  *       num_decoded_channels = sensor_decode(ctx, &accel_out_data, 1);
554  *
555  *       if (num_decoded_channels <= 0) {
556  *         printk("Done decoding buffer\n");
557  *         break;
558  *       }
559  *
560  *       printk("Decoded (%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", accel_out_data.readings[0].x,
561  *           accel_out_data.readings[0].y, accel_out_data.readings[0].z);
562  *     }
563  * @endcode
564  */
565 struct sensor_decode_context {
566 	const struct sensor_decoder_api *decoder;
567 	const uint8_t *buffer;
568 	struct sensor_chan_spec channel;
569 	uint32_t fit;
570 };
571 
572 /**
573  * @brief Initialize a sensor_decode_context
574  */
575 #define SENSOR_DECODE_CONTEXT_INIT(decoder_, buffer_, channel_type_, channel_index_)               \
576 	{                                                                                          \
577 		.decoder = (decoder_),                                                             \
578 		.buffer = (buffer_),                                                               \
579 		.channel = {.chan_type = (channel_type_), .chan_idx = (channel_index_)},           \
580 		.fit = 0,                                                                          \
581 	}
582 
583 /**
584  * @brief Decode N frames using a sensor_decode_context
585  *
586  * @param[in,out] ctx The context to use for decoding
587  * @param[out]    out The output buffer
588  * @param[in]     max_count Maximum number of frames to decode
589  * @return The decode result from sensor_decoder_api's decode function
590  */
sensor_decode(struct sensor_decode_context * ctx,void * out,uint16_t max_count)591 static inline int sensor_decode(struct sensor_decode_context *ctx, void *out, uint16_t max_count)
592 {
593 	return ctx->decoder->decode(ctx->buffer, ctx->channel, &ctx->fit, max_count, out);
594 }
595 
596 int sensor_natively_supported_channel_size_info(struct sensor_chan_spec channel, size_t *base_size,
597 						size_t *frame_size);
598 
599 /**
600  * @typedef sensor_get_decoder_t
601  * @brief Get the decoder associate with the given device
602  *
603  * @see sensor_get_decoder for more details
604  */
605 typedef int (*sensor_get_decoder_t)(const struct device *dev,
606 				    const struct sensor_decoder_api **api);
607 
608 /**
609  * @brief Options for what to do with the associated data when a trigger is consumed
610  */
611 enum sensor_stream_data_opt {
612 	/** @brief Include whatever data is associated with the trigger */
613 	SENSOR_STREAM_DATA_INCLUDE = 0,
614 	/** @brief Do nothing with the associated trigger data, it may be consumed later */
615 	SENSOR_STREAM_DATA_NOP = 1,
616 	/** @brief Flush/clear whatever data is associated with the trigger */
617 	SENSOR_STREAM_DATA_DROP = 2,
618 };
619 
620 struct sensor_stream_trigger {
621 	enum sensor_trigger_type trigger;
622 	enum sensor_stream_data_opt opt;
623 };
624 
625 #define SENSOR_STREAM_TRIGGER_PREP(_trigger, _opt)                                                 \
626 	{                                                                                          \
627 		.trigger = (_trigger), .opt = (_opt),                                              \
628 	}
629 
630 /*
631  * Internal data structure used to store information about the IODevice for async reading and
632  * streaming sensor data.
633  */
634 struct sensor_read_config {
635 	const struct device *sensor;
636 	const bool is_streaming;
637 	union {
638 		struct sensor_chan_spec *const channels;
639 		struct sensor_stream_trigger *const triggers;
640 	};
641 	size_t count;
642 	const size_t max;
643 };
644 
645 /**
646  * @brief Define a reading instance of a sensor
647  *
648  * Use this macro to generate a @ref rtio_iodev for reading specific channels. Example:
649  *
650  * @code(.c)
651  * SENSOR_DT_READ_IODEV(icm42688_accelgyro, DT_NODELABEL(icm42688),
652  *     { SENSOR_CHAN_ACCEL_XYZ, 0 },
653  *     { SENSOR_CHAN_GYRO_XYZ, 0 });
654  *
655  * int main(void) {
656  *   sensor_read_async_mempool(&icm42688_accelgyro, &rtio);
657  * }
658  * @endcode
659  */
660 #define SENSOR_DT_READ_IODEV(name, dt_node, ...)                                                   \
661 	static struct sensor_chan_spec _CONCAT(__channel_array_, name)[] = {__VA_ARGS__};          \
662 	static struct sensor_read_config _CONCAT(__sensor_read_config_, name) = {                  \
663 		.sensor = DEVICE_DT_GET(dt_node),                                                  \
664 		.is_streaming = false,                                                             \
665 		.channels = _CONCAT(__channel_array_, name),                                       \
666 		.count = ARRAY_SIZE(_CONCAT(__channel_array_, name)),                              \
667 		.max = ARRAY_SIZE(_CONCAT(__channel_array_, name)),                                \
668 	};                                                                                         \
669 	RTIO_IODEV_DEFINE(name, &__sensor_iodev_api, _CONCAT(&__sensor_read_config_, name))
670 
671 /**
672  * @brief Define a stream instance of a sensor
673  *
674  * Use this macro to generate a @ref rtio_iodev for starting a stream that's triggered by specific
675  * interrupts. Example:
676  *
677  * @code(.c)
678  * SENSOR_DT_STREAM_IODEV(imu_stream, DT_ALIAS(imu),
679  *     {SENSOR_TRIG_FIFO_WATERMARK, SENSOR_STREAM_DATA_INCLUDE},
680  *     {SENSOR_TRIG_FIFO_FULL, SENSOR_STREAM_DATA_NOP});
681  *
682  * int main(void) {
683  *   struct rtio_sqe *handle;
684  *   sensor_stream(&imu_stream, &rtio, NULL, &handle);
685  *   k_msleep(1000);
686  *   rtio_sqe_cancel(handle);
687  * }
688  * @endcode
689  */
690 #define SENSOR_DT_STREAM_IODEV(name, dt_node, ...)                                                 \
691 	static struct sensor_stream_trigger _CONCAT(__trigger_array_, name)[] = {__VA_ARGS__};     \
692 	static struct sensor_read_config _CONCAT(__sensor_read_config_, name) = {                  \
693 		.sensor = DEVICE_DT_GET(dt_node),                                                  \
694 		.is_streaming = true,                                                              \
695 		.triggers = _CONCAT(__trigger_array_, name),                                       \
696 		.count = ARRAY_SIZE(_CONCAT(__trigger_array_, name)),                              \
697 		.max = ARRAY_SIZE(_CONCAT(__trigger_array_, name)),                                \
698 	};                                                                                         \
699 	RTIO_IODEV_DEFINE(name, &__sensor_iodev_api, &_CONCAT(__sensor_read_config_, name))
700 
701 /* Used to submit an RTIO sqe to the sensor's iodev */
702 typedef void (*sensor_submit_t)(const struct device *sensor, struct rtio_iodev_sqe *sqe);
703 
704 /* The default decoder API */
705 extern const struct sensor_decoder_api __sensor_default_decoder;
706 
707 /* The default sensor iodev API */
708 extern const struct rtio_iodev_api __sensor_iodev_api;
709 
710 __subsystem struct sensor_driver_api {
711 	sensor_attr_set_t attr_set;
712 	sensor_attr_get_t attr_get;
713 	sensor_trigger_set_t trigger_set;
714 	sensor_sample_fetch_t sample_fetch;
715 	sensor_channel_get_t channel_get;
716 	sensor_get_decoder_t get_decoder;
717 	sensor_submit_t submit;
718 };
719 
720 /**
721  * @brief Set an attribute for a sensor
722  *
723  * @param dev Pointer to the sensor device
724  * @param chan The channel the attribute belongs to, if any.  Some
725  * attributes may only be set for all channels of a device, depending on
726  * device capabilities.
727  * @param attr The attribute to set
728  * @param val The value to set the attribute to
729  *
730  * @return 0 if successful, negative errno code if failure.
731  */
732 __syscall int sensor_attr_set(const struct device *dev,
733 			      enum sensor_channel chan,
734 			      enum sensor_attribute attr,
735 			      const struct sensor_value *val);
736 
z_impl_sensor_attr_set(const struct device * dev,enum sensor_channel chan,enum sensor_attribute attr,const struct sensor_value * val)737 static inline int z_impl_sensor_attr_set(const struct device *dev,
738 					 enum sensor_channel chan,
739 					 enum sensor_attribute attr,
740 					 const struct sensor_value *val)
741 {
742 	const struct sensor_driver_api *api =
743 		(const struct sensor_driver_api *)dev->api;
744 
745 	if (api->attr_set == NULL) {
746 		return -ENOSYS;
747 	}
748 
749 	return api->attr_set(dev, chan, attr, val);
750 }
751 
752 /**
753  * @brief Get an attribute for a sensor
754  *
755  * @param dev Pointer to the sensor device
756  * @param chan The channel the attribute belongs to, if any.  Some
757  * attributes may only be set for all channels of a device, depending on
758  * device capabilities.
759  * @param attr The attribute to get
760  * @param val Pointer to where to store the attribute
761  *
762  * @return 0 if successful, negative errno code if failure.
763  */
764 __syscall int sensor_attr_get(const struct device *dev,
765 			      enum sensor_channel chan,
766 			      enum sensor_attribute attr,
767 			      struct sensor_value *val);
768 
z_impl_sensor_attr_get(const struct device * dev,enum sensor_channel chan,enum sensor_attribute attr,struct sensor_value * val)769 static inline int z_impl_sensor_attr_get(const struct device *dev,
770 					 enum sensor_channel chan,
771 					 enum sensor_attribute attr,
772 					 struct sensor_value *val)
773 {
774 	const struct sensor_driver_api *api =
775 		(const struct sensor_driver_api *)dev->api;
776 
777 	if (api->attr_get == NULL) {
778 		return -ENOSYS;
779 	}
780 
781 	return api->attr_get(dev, chan, attr, val);
782 }
783 
784 /**
785  * @brief Activate a sensor's trigger and set the trigger handler
786  *
787  * The handler will be called from a thread, so I2C or SPI operations are
788  * safe.  However, the thread's stack is limited and defined by the
789  * driver.  It is currently up to the caller to ensure that the handler
790  * does not overflow the stack.
791  *
792  * The user-allocated trigger will be stored by the driver as a pointer, rather
793  * than a copy, and passed back to the handler. This enables the handler to use
794  * CONTAINER_OF to retrieve a context pointer when the trigger is embedded in a
795  * larger struct and requires that the trigger is not allocated on the stack.
796  *
797  * @funcprops \supervisor
798  *
799  * @param dev Pointer to the sensor device
800  * @param trig The trigger to activate
801  * @param handler The function that should be called when the trigger
802  * fires
803  *
804  * @return 0 if successful, negative errno code if failure.
805  */
sensor_trigger_set(const struct device * dev,const struct sensor_trigger * trig,sensor_trigger_handler_t handler)806 static inline int sensor_trigger_set(const struct device *dev,
807 				     const struct sensor_trigger *trig,
808 				     sensor_trigger_handler_t handler)
809 {
810 	const struct sensor_driver_api *api =
811 		(const struct sensor_driver_api *)dev->api;
812 
813 	if (api->trigger_set == NULL) {
814 		return -ENOSYS;
815 	}
816 
817 	return api->trigger_set(dev, trig, handler);
818 }
819 
820 /**
821  * @brief Fetch a sample from the sensor and store it in an internal
822  * driver buffer
823  *
824  * Read all of a sensor's active channels and, if necessary, perform any
825  * additional operations necessary to make the values useful.  The user
826  * may then get individual channel values by calling @ref
827  * sensor_channel_get.
828  *
829  * The function blocks until the fetch operation is complete.
830  *
831  * Since the function communicates with the sensor device, it is unsafe
832  * to call it in an ISR if the device is connected via I2C or SPI.
833  *
834  * @param dev Pointer to the sensor device
835  *
836  * @return 0 if successful, negative errno code if failure.
837  */
838 __syscall int sensor_sample_fetch(const struct device *dev);
839 
z_impl_sensor_sample_fetch(const struct device * dev)840 static inline int z_impl_sensor_sample_fetch(const struct device *dev)
841 {
842 	const struct sensor_driver_api *api =
843 		(const struct sensor_driver_api *)dev->api;
844 
845 	return api->sample_fetch(dev, SENSOR_CHAN_ALL);
846 }
847 
848 /**
849  * @brief Fetch a sample from the sensor and store it in an internal
850  * driver buffer
851  *
852  * Read and compute compensation for one type of sensor data (magnetometer,
853  * accelerometer, etc). The user may then get individual channel values by
854  * calling @ref sensor_channel_get.
855  *
856  * This is mostly implemented by multi function devices enabling reading at
857  * different sampling rates.
858  *
859  * The function blocks until the fetch operation is complete.
860  *
861  * Since the function communicates with the sensor device, it is unsafe
862  * to call it in an ISR if the device is connected via I2C or SPI.
863  *
864  * @param dev Pointer to the sensor device
865  * @param type The channel that needs updated
866  *
867  * @return 0 if successful, negative errno code if failure.
868  */
869 __syscall int sensor_sample_fetch_chan(const struct device *dev,
870 				       enum sensor_channel type);
871 
z_impl_sensor_sample_fetch_chan(const struct device * dev,enum sensor_channel type)872 static inline int z_impl_sensor_sample_fetch_chan(const struct device *dev,
873 						  enum sensor_channel type)
874 {
875 	const struct sensor_driver_api *api =
876 		(const struct sensor_driver_api *)dev->api;
877 
878 	return api->sample_fetch(dev, type);
879 }
880 
881 /**
882  * @brief Get a reading from a sensor device
883  *
884  * Return a useful value for a particular channel, from the driver's
885  * internal data.  Before calling this function, a sample must be
886  * obtained by calling @ref sensor_sample_fetch or
887  * @ref sensor_sample_fetch_chan. It is guaranteed that two subsequent
888  * calls of this function for the same channels will yield the same
889  * value, if @ref sensor_sample_fetch or @ref sensor_sample_fetch_chan
890  * has not been called in the meantime.
891  *
892  * For vectorial data samples you can request all axes in just one call
893  * by passing the specific channel with _XYZ suffix. The sample will be
894  * returned at val[0], val[1] and val[2] (X, Y and Z in that order).
895  *
896  * @param dev Pointer to the sensor device
897  * @param chan The channel to read
898  * @param val Where to store the value
899  *
900  * @return 0 if successful, negative errno code if failure.
901  */
902 __syscall int sensor_channel_get(const struct device *dev,
903 				 enum sensor_channel chan,
904 				 struct sensor_value *val);
905 
z_impl_sensor_channel_get(const struct device * dev,enum sensor_channel chan,struct sensor_value * val)906 static inline int z_impl_sensor_channel_get(const struct device *dev,
907 					    enum sensor_channel chan,
908 					    struct sensor_value *val)
909 {
910 	const struct sensor_driver_api *api =
911 		(const struct sensor_driver_api *)dev->api;
912 
913 	return api->channel_get(dev, chan, val);
914 }
915 
916 #if defined(CONFIG_SENSOR_ASYNC_API) || defined(__DOXYGEN__)
917 
918 /*
919  * Generic data structure used for encoding the sample timestamp and number of channels sampled.
920  */
921 struct __attribute__((__packed__)) sensor_data_generic_header {
922 	/* The timestamp at which the data was collected from the sensor */
923 	uint64_t timestamp_ns;
924 
925 	/*
926 	 * The number of channels present in the frame. This will be the true number of elements in
927 	 * channel_info and in the q31 values that follow the header.
928 	 */
929 	uint32_t num_channels;
930 
931 	/* Shift value for all samples in the frame */
932 	int8_t shift;
933 
934 	/* This padding is needed to make sure that the 'channels' field is aligned */
935 	int8_t _padding[sizeof(struct sensor_chan_spec) - 1];
936 
937 	/* Channels present in the frame */
938 	struct sensor_chan_spec channels[0];
939 };
940 
941 /**
942  * @brief checks if a given channel is a 3-axis channel
943  *
944  * @param[in] chan The channel to check
945  * @retval true if @p chan is any of @ref SENSOR_CHAN_ACCEL_XYZ, @ref SENSOR_CHAN_GYRO_XYZ, or
946  *         @ref SENSOR_CHAN_MAGN_XYZ, or @ref SENSOR_CHAN_POS_DXYZ
947  * @retval false otherwise
948  */
949 #define SENSOR_CHANNEL_3_AXIS(chan)                                                                \
950 	((chan) == SENSOR_CHAN_ACCEL_XYZ || (chan) == SENSOR_CHAN_GYRO_XYZ ||                      \
951 	 (chan) == SENSOR_CHAN_MAGN_XYZ || (chan) == SENSOR_CHAN_POS_DXYZ)
952 
953 /**
954  * @brief checks if a given channel is an Accelerometer
955  *
956  * @param[in] chan The channel to check
957  * @retval true if @p chan is any of @ref SENSOR_CHAN_ACCEL_XYZ, @ref SENSOR_CHAN_ACCEL_X, or
958  *         @ref SENSOR_CHAN_ACCEL_Y, or @ref SENSOR_CHAN_ACCEL_Z
959  * @retval false otherwise
960  */
961 #define SENSOR_CHANNEL_IS_ACCEL(chan)                                          \
962 	((chan) == SENSOR_CHAN_ACCEL_XYZ || (chan) == SENSOR_CHAN_ACCEL_X ||   \
963 	 (chan) == SENSOR_CHAN_ACCEL_Y || (chan) == SENSOR_CHAN_ACCEL_Z)
964 
965 /**
966  * @brief checks if a given channel is a Gyroscope
967  *
968  * @param[in] chan The channel to check
969  * @retval true if @p chan is any of @ref SENSOR_CHAN_GYRO_XYZ, @ref SENSOR_CHAN_GYRO_X, or
970  *         @ref SENSOR_CHAN_GYRO_Y, or @ref SENSOR_CHAN_GYRO_Z
971  * @retval false otherwise
972  */
973 #define SENSOR_CHANNEL_IS_GYRO(chan)                                           \
974 	((chan) == SENSOR_CHAN_GYRO_XYZ || (chan) == SENSOR_CHAN_GYRO_X ||     \
975 	 (chan) == SENSOR_CHAN_GYRO_Y || (chan) == SENSOR_CHAN_GYRO_Z)
976 
977 /**
978  * @brief Get the sensor's decoder API
979  *
980  * @param[in] dev The sensor device
981  * @param[in] decoder Pointer to the decoder which will be set upon success
982  * @return 0 on success
983  * @return < 0 on error
984  */
985 __syscall int sensor_get_decoder(const struct device *dev,
986 				 const struct sensor_decoder_api **decoder);
987 
z_impl_sensor_get_decoder(const struct device * dev,const struct sensor_decoder_api ** decoder)988 static inline int z_impl_sensor_get_decoder(const struct device *dev,
989 					    const struct sensor_decoder_api **decoder)
990 {
991 	const struct sensor_driver_api *api = (const struct sensor_driver_api *)dev->api;
992 
993 	__ASSERT_NO_MSG(api != NULL);
994 
995 	if (api->get_decoder == NULL) {
996 		*decoder = &__sensor_default_decoder;
997 		return 0;
998 	}
999 
1000 	return api->get_decoder(dev, decoder);
1001 }
1002 
1003 /**
1004  * @brief Reconfigure a reading iodev
1005  *
1006  * Allows a reconfiguration of the iodev associated with reading a sample from a sensor.
1007  *
1008  * <b>Important</b>: If the iodev is currently servicing a read operation, the data will likely be
1009  * invalid. Please be sure the flush or wait for all pending operations to complete before using the
1010  * data after a configuration change.
1011  *
1012  * It is also important that the `data` field of the iodev is a @ref sensor_read_config.
1013  *
1014  * @param[in] iodev The iodev to reconfigure
1015  * @param[in] sensor The sensor to read from
1016  * @param[in] channels One or more channels to read
1017  * @param[in] num_channels The number of channels in @p channels
1018  * @return 0 on success
1019  * @return < 0 on error
1020  */
1021 __syscall int sensor_reconfigure_read_iodev(struct rtio_iodev *iodev, const struct device *sensor,
1022 					    const struct sensor_chan_spec *channels,
1023 					    size_t num_channels);
1024 
z_impl_sensor_reconfigure_read_iodev(struct rtio_iodev * iodev,const struct device * sensor,const struct sensor_chan_spec * channels,size_t num_channels)1025 static inline int z_impl_sensor_reconfigure_read_iodev(struct rtio_iodev *iodev,
1026 						       const struct device *sensor,
1027 						       const struct sensor_chan_spec *channels,
1028 						       size_t num_channels)
1029 {
1030 	struct sensor_read_config *cfg = (struct sensor_read_config *)iodev->data;
1031 
1032 	if (cfg->max < num_channels || cfg->is_streaming) {
1033 		return -ENOMEM;
1034 	}
1035 
1036 	cfg->sensor = sensor;
1037 	memcpy(cfg->channels, channels, num_channels * sizeof(struct sensor_chan_spec));
1038 	cfg->count = num_channels;
1039 	return 0;
1040 }
1041 
sensor_stream(struct rtio_iodev * iodev,struct rtio * ctx,void * userdata,struct rtio_sqe ** handle)1042 static inline int sensor_stream(struct rtio_iodev *iodev, struct rtio *ctx, void *userdata,
1043 				struct rtio_sqe **handle)
1044 {
1045 	if (IS_ENABLED(CONFIG_USERSPACE)) {
1046 		struct rtio_sqe sqe;
1047 
1048 		rtio_sqe_prep_read_multishot(&sqe, iodev, RTIO_PRIO_NORM, userdata);
1049 		rtio_sqe_copy_in_get_handles(ctx, &sqe, handle, 1);
1050 	} else {
1051 		struct rtio_sqe *sqe = rtio_sqe_acquire(ctx);
1052 
1053 		if (sqe == NULL) {
1054 			return -ENOMEM;
1055 		}
1056 		if (handle != NULL) {
1057 			*handle = sqe;
1058 		}
1059 		rtio_sqe_prep_read_multishot(sqe, iodev, RTIO_PRIO_NORM, userdata);
1060 	}
1061 	rtio_submit(ctx, 0);
1062 	return 0;
1063 }
1064 
1065 /**
1066  * @brief Blocking one shot read of samples from a sensor into a buffer
1067  *
1068  * Using @p cfg, read data from the device by using the provided RTIO context
1069  * @p ctx. This call will generate a @ref rtio_sqe that will be given the provided buffer. The call
1070  * will wait for the read to complete before returning to the caller.
1071  *
1072  * @param[in] iodev The iodev created by @ref SENSOR_DT_READ_IODEV
1073  * @param[in] ctx The RTIO context to service the read
1074  * @param[in] buf Pointer to memory to read sample data into
1075  * @param[in] buf_len Size in bytes of the given memory that are valid to read into
1076  * @return 0 on success
1077  * @return < 0 on error
1078  */
sensor_read(struct rtio_iodev * iodev,struct rtio * ctx,uint8_t * buf,size_t buf_len)1079 static inline int sensor_read(struct rtio_iodev *iodev, struct rtio *ctx, uint8_t *buf,
1080 			      size_t buf_len)
1081 {
1082 	if (IS_ENABLED(CONFIG_USERSPACE)) {
1083 		struct rtio_sqe sqe;
1084 
1085 		rtio_sqe_prep_read(&sqe, iodev, RTIO_PRIO_NORM, buf, buf_len, buf);
1086 		rtio_sqe_copy_in(ctx, &sqe, 1);
1087 	} else {
1088 		struct rtio_sqe *sqe = rtio_sqe_acquire(ctx);
1089 
1090 		if (sqe == NULL) {
1091 			return -ENOMEM;
1092 		}
1093 		rtio_sqe_prep_read(sqe, iodev, RTIO_PRIO_NORM, buf, buf_len, buf);
1094 	}
1095 	rtio_submit(ctx, 0);
1096 
1097 	struct rtio_cqe *cqe = rtio_cqe_consume_block(ctx);
1098 	int res = cqe->result;
1099 
1100 	__ASSERT(cqe->userdata == buf,
1101 		 "consumed non-matching completion for sensor read into buffer %p\n", buf);
1102 
1103 	rtio_cqe_release(ctx, cqe);
1104 
1105 	return res;
1106 }
1107 
1108 /**
1109  * @brief One shot non-blocking read with pool allocated buffer
1110  *
1111  * Using @p cfg, read one snapshot of data from the device by using the provided RTIO context
1112  * @p ctx. This call will generate a @ref rtio_sqe that will leverage the RTIO's internal
1113  * mempool when the time comes to service the read.
1114  *
1115  * @param[in] iodev The iodev created by @ref SENSOR_DT_READ_IODEV
1116  * @param[in] ctx The RTIO context to service the read
1117  * @param[in] userdata Optional userdata that will be available when the read is complete
1118  * @return 0 on success
1119  * @return < 0 on error
1120  */
sensor_read_async_mempool(struct rtio_iodev * iodev,struct rtio * ctx,void * userdata)1121 static inline int sensor_read_async_mempool(struct rtio_iodev *iodev, struct rtio *ctx,
1122 					    void *userdata)
1123 {
1124 	if (IS_ENABLED(CONFIG_USERSPACE)) {
1125 		struct rtio_sqe sqe;
1126 
1127 		rtio_sqe_prep_read_with_pool(&sqe, iodev, RTIO_PRIO_NORM, userdata);
1128 		rtio_sqe_copy_in(ctx, &sqe, 1);
1129 	} else {
1130 		struct rtio_sqe *sqe = rtio_sqe_acquire(ctx);
1131 
1132 		if (sqe == NULL) {
1133 			return -ENOMEM;
1134 		}
1135 		rtio_sqe_prep_read_with_pool(sqe, iodev, RTIO_PRIO_NORM, userdata);
1136 	}
1137 	rtio_submit(ctx, 0);
1138 	return 0;
1139 }
1140 
1141 /**
1142  * @typedef sensor_processing_callback_t
1143  * @brief Callback function used with the helper processing function.
1144  *
1145  * @see sensor_processing_with_callback
1146  *
1147  * @param[in] result The result code of the read (0 being success)
1148  * @param[in] buf The data buffer holding the sensor data
1149  * @param[in] buf_len The length (in bytes) of the @p buf
1150  * @param[in] userdata The optional userdata passed to sensor_read_async_mempool()
1151  */
1152 typedef void (*sensor_processing_callback_t)(int result, uint8_t *buf, uint32_t buf_len,
1153 					     void *userdata);
1154 
1155 /**
1156  * @brief Helper function for common processing of sensor data.
1157  *
1158  * This function can be called in a blocking manner after sensor_read() or in a standalone
1159  * thread dedicated to processing. It will wait for a cqe from the RTIO context, once received, it
1160  * will decode the userdata and call the @p cb. Once the @p cb returns, the buffer will be released
1161  * back into @p ctx's mempool if available.
1162  *
1163  * @param[in] ctx The RTIO context to wait on
1164  * @param[in] cb Callback to call when data is ready for processing
1165  */
1166 void sensor_processing_with_callback(struct rtio *ctx, sensor_processing_callback_t cb);
1167 
1168 #endif /* defined(CONFIG_SENSOR_ASYNC_API) || defined(__DOXYGEN__) */
1169 
1170 /**
1171  * @brief The value of gravitational constant in micro m/s^2.
1172  */
1173 #define SENSOR_G		9806650LL
1174 
1175 /**
1176  * @brief The value of constant PI in micros.
1177  */
1178 #define SENSOR_PI		3141592LL
1179 
1180 /**
1181  * @brief Helper function to convert acceleration from m/s^2 to Gs
1182  *
1183  * @param ms2 A pointer to a sensor_value struct holding the acceleration,
1184  *            in m/s^2.
1185  *
1186  * @return The converted value, in Gs.
1187  */
sensor_ms2_to_g(const struct sensor_value * ms2)1188 static inline int32_t sensor_ms2_to_g(const struct sensor_value *ms2)
1189 {
1190 	int64_t micro_ms2 = ms2->val1 * 1000000LL + ms2->val2;
1191 
1192 	if (micro_ms2 > 0) {
1193 		return (micro_ms2 + SENSOR_G / 2) / SENSOR_G;
1194 	} else {
1195 		return (micro_ms2 - SENSOR_G / 2) / SENSOR_G;
1196 	}
1197 }
1198 
1199 /**
1200  * @brief Helper function to convert acceleration from Gs to m/s^2
1201  *
1202  * @param g The G value to be converted.
1203  * @param ms2 A pointer to a sensor_value struct, where the result is stored.
1204  */
sensor_g_to_ms2(int32_t g,struct sensor_value * ms2)1205 static inline void sensor_g_to_ms2(int32_t g, struct sensor_value *ms2)
1206 {
1207 	ms2->val1 = ((int64_t)g * SENSOR_G) / 1000000LL;
1208 	ms2->val2 = ((int64_t)g * SENSOR_G) % 1000000LL;
1209 }
1210 
1211 /**
1212  * @brief Helper function to convert acceleration from m/s^2 to milli Gs
1213  *
1214  * @param ms2 A pointer to a sensor_value struct holding the acceleration,
1215  *            in m/s^2.
1216  *
1217  * @return The converted value, in milli Gs.
1218  */
sensor_ms2_to_mg(const struct sensor_value * ms2)1219 static inline int32_t sensor_ms2_to_mg(const struct sensor_value *ms2)
1220 {
1221 	int64_t nano_ms2 = (ms2->val1 * 1000000LL + ms2->val2) * 1000LL;
1222 
1223 	if (nano_ms2 > 0) {
1224 		return (nano_ms2 + SENSOR_G / 2) / SENSOR_G;
1225 	} else {
1226 		return (nano_ms2 - SENSOR_G / 2) / SENSOR_G;
1227 	}
1228 }
1229 
1230 /**
1231  * @brief Helper function to convert acceleration from m/s^2 to micro Gs
1232  *
1233  * @param ms2 A pointer to a sensor_value struct holding the acceleration,
1234  *            in m/s^2.
1235  *
1236  * @return The converted value, in micro Gs.
1237  */
sensor_ms2_to_ug(const struct sensor_value * ms2)1238 static inline int32_t sensor_ms2_to_ug(const struct sensor_value *ms2)
1239 {
1240 	int64_t micro_ms2 = (ms2->val1 * INT64_C(1000000)) + ms2->val2;
1241 
1242 	return (micro_ms2 * 1000000LL) / SENSOR_G;
1243 }
1244 
1245 /**
1246  * @brief Helper function to convert acceleration from micro Gs to m/s^2
1247  *
1248  * @param ug The micro G value to be converted.
1249  * @param ms2 A pointer to a sensor_value struct, where the result is stored.
1250  */
sensor_ug_to_ms2(int32_t ug,struct sensor_value * ms2)1251 static inline void sensor_ug_to_ms2(int32_t ug, struct sensor_value *ms2)
1252 {
1253 	ms2->val1 = ((int64_t)ug * SENSOR_G / 1000000LL) / 1000000LL;
1254 	ms2->val2 = ((int64_t)ug * SENSOR_G / 1000000LL) % 1000000LL;
1255 }
1256 
1257 /**
1258  * @brief Helper function for converting radians to degrees.
1259  *
1260  * @param rad A pointer to a sensor_value struct, holding the value in radians.
1261  *
1262  * @return The converted value, in degrees.
1263  */
sensor_rad_to_degrees(const struct sensor_value * rad)1264 static inline int32_t sensor_rad_to_degrees(const struct sensor_value *rad)
1265 {
1266 	int64_t micro_rad_s = rad->val1 * 1000000LL + rad->val2;
1267 
1268 	if (micro_rad_s > 0) {
1269 		return (micro_rad_s * 180LL + SENSOR_PI / 2) / SENSOR_PI;
1270 	} else {
1271 		return (micro_rad_s * 180LL - SENSOR_PI / 2) / SENSOR_PI;
1272 	}
1273 }
1274 
1275 /**
1276  * @brief Helper function for converting degrees to radians.
1277  *
1278  * @param d The value (in degrees) to be converted.
1279  * @param rad A pointer to a sensor_value struct, where the result is stored.
1280  */
sensor_degrees_to_rad(int32_t d,struct sensor_value * rad)1281 static inline void sensor_degrees_to_rad(int32_t d, struct sensor_value *rad)
1282 {
1283 	rad->val1 = ((int64_t)d * SENSOR_PI / 180LL) / 1000000LL;
1284 	rad->val2 = ((int64_t)d * SENSOR_PI / 180LL) % 1000000LL;
1285 }
1286 
1287 /**
1288  * @brief Helper function for converting radians to 10 micro degrees.
1289  *
1290  * When the unit is 1 micro degree, the range that the int32_t can represent is
1291  * +/-2147.483 degrees. In order to increase this range, here we use 10 micro
1292  * degrees as the unit.
1293  *
1294  * @param rad A pointer to a sensor_value struct, holding the value in radians.
1295  *
1296  * @return The converted value, in 10 micro degrees.
1297  */
sensor_rad_to_10udegrees(const struct sensor_value * rad)1298 static inline int32_t sensor_rad_to_10udegrees(const struct sensor_value *rad)
1299 {
1300 	int64_t micro_rad_s = rad->val1 * 1000000LL + rad->val2;
1301 
1302 	return (micro_rad_s * 180LL * 100000LL) / SENSOR_PI;
1303 }
1304 
1305 /**
1306  * @brief Helper function for converting 10 micro degrees to radians.
1307  *
1308  * @param d The value (in 10 micro degrees) to be converted.
1309  * @param rad A pointer to a sensor_value struct, where the result is stored.
1310  */
sensor_10udegrees_to_rad(int32_t d,struct sensor_value * rad)1311 static inline void sensor_10udegrees_to_rad(int32_t d, struct sensor_value *rad)
1312 {
1313 	rad->val1 = ((int64_t)d * SENSOR_PI / 180LL / 100000LL) / 1000000LL;
1314 	rad->val2 = ((int64_t)d * SENSOR_PI / 180LL / 100000LL) % 1000000LL;
1315 }
1316 
1317 /**
1318  * @brief Helper function for converting struct sensor_value to double.
1319  *
1320  * @param val A pointer to a sensor_value struct.
1321  * @return The converted value.
1322  */
sensor_value_to_double(const struct sensor_value * val)1323 static inline double sensor_value_to_double(const struct sensor_value *val)
1324 {
1325 	return (double)val->val1 + (double)val->val2 / 1000000;
1326 }
1327 
1328 /**
1329  * @brief Helper function for converting struct sensor_value to float.
1330  *
1331  * @param val A pointer to a sensor_value struct.
1332  * @return The converted value.
1333  */
sensor_value_to_float(const struct sensor_value * val)1334 static inline float sensor_value_to_float(const struct sensor_value *val)
1335 {
1336 	return (float)val->val1 + (float)val->val2 / 1000000;
1337 }
1338 
1339 /**
1340  * @brief Helper function for converting double to struct sensor_value.
1341  *
1342  * @param val A pointer to a sensor_value struct.
1343  * @param inp The converted value.
1344  * @return 0 if successful, negative errno code if failure.
1345  */
sensor_value_from_double(struct sensor_value * val,double inp)1346 static inline int sensor_value_from_double(struct sensor_value *val, double inp)
1347 {
1348 	if (inp < INT32_MIN || inp > INT32_MAX) {
1349 		return -ERANGE;
1350 	}
1351 
1352 	double val2 = (inp - (int32_t)inp) * 1000000.0;
1353 
1354 	if (val2 < INT32_MIN || val2 > INT32_MAX) {
1355 		return -ERANGE;
1356 	}
1357 
1358 	val->val1 = (int32_t)inp;
1359 	val->val2 = (int32_t)val2;
1360 
1361 	return 0;
1362 }
1363 
1364 /**
1365  * @brief Helper function for converting float to struct sensor_value.
1366  *
1367  * @param val A pointer to a sensor_value struct.
1368  * @param inp The converted value.
1369  * @return 0 if successful, negative errno code if failure.
1370  */
sensor_value_from_float(struct sensor_value * val,float inp)1371 static inline int sensor_value_from_float(struct sensor_value *val, float inp)
1372 {
1373 	float val2 = (inp - (int32_t)inp) * 1000000.0f;
1374 
1375 	if (val2 < INT32_MIN || val2 > (float)(INT32_MAX - 1)) {
1376 		return -ERANGE;
1377 	}
1378 
1379 	val->val1 = (int32_t)inp;
1380 	val->val2 = (int32_t)val2;
1381 
1382 	return 0;
1383 }
1384 
1385 #ifdef CONFIG_SENSOR_INFO
1386 
1387 struct sensor_info {
1388 	const struct device *dev;
1389 	const char *vendor;
1390 	const char *model;
1391 	const char *friendly_name;
1392 };
1393 
1394 #define SENSOR_INFO_INITIALIZER(_dev, _vendor, _model, _friendly_name)	\
1395 	{								\
1396 		.dev = _dev,						\
1397 		.vendor = _vendor,					\
1398 		.model = _model,					\
1399 		.friendly_name = _friendly_name,			\
1400 	}
1401 
1402 #define SENSOR_INFO_DEFINE(name, ...)					\
1403 	static const STRUCT_SECTION_ITERABLE(sensor_info, name) =	\
1404 		SENSOR_INFO_INITIALIZER(__VA_ARGS__)
1405 
1406 #define SENSOR_INFO_DT_NAME(node_id)					\
1407 	_CONCAT(__sensor_info, DEVICE_DT_NAME_GET(node_id))
1408 
1409 #define SENSOR_INFO_DT_DEFINE(node_id)					\
1410 	SENSOR_INFO_DEFINE(SENSOR_INFO_DT_NAME(node_id),		\
1411 			   DEVICE_DT_GET(node_id),			\
1412 			   DT_NODE_VENDOR_OR(node_id, NULL),		\
1413 			   DT_NODE_MODEL_OR(node_id, NULL),		\
1414 			   DT_PROP_OR(node_id, friendly_name, NULL))	\
1415 
1416 #else
1417 
1418 #define SENSOR_INFO_DEFINE(name, ...)
1419 #define SENSOR_INFO_DT_DEFINE(node_id)
1420 
1421 #endif /* CONFIG_SENSOR_INFO */
1422 
1423 /**
1424  * @brief Like DEVICE_DT_DEFINE() with sensor specifics.
1425  *
1426  * @details Defines a device which implements the sensor API. May define an
1427  * element in the sensor info iterable section used to enumerate all sensor
1428  * devices.
1429  *
1430  * @param node_id The devicetree node identifier.
1431  *
1432  * @param init_fn Name of the init function of the driver.
1433  *
1434  * @param pm_device PM device resources reference (NULL if device does not use
1435  * PM).
1436  *
1437  * @param data_ptr Pointer to the device's private data.
1438  *
1439  * @param cfg_ptr The address to the structure containing the configuration
1440  * information for this instance of the driver.
1441  *
1442  * @param level The initialization level. See SYS_INIT() for details.
1443  *
1444  * @param prio Priority within the selected initialization level. See
1445  * SYS_INIT() for details.
1446  *
1447  * @param api_ptr Provides an initial pointer to the API function struct used
1448  * by the driver. Can be NULL.
1449  */
1450 #define SENSOR_DEVICE_DT_DEFINE(node_id, init_fn, pm_device,		\
1451 				data_ptr, cfg_ptr, level, prio,		\
1452 				api_ptr, ...)				\
1453 	DEVICE_DT_DEFINE(node_id, init_fn, pm_device,			\
1454 			 data_ptr, cfg_ptr, level, prio,		\
1455 			 api_ptr, __VA_ARGS__);				\
1456 									\
1457 	SENSOR_INFO_DT_DEFINE(node_id);
1458 
1459 /**
1460  * @brief Like SENSOR_DEVICE_DT_DEFINE() for an instance of a DT_DRV_COMPAT
1461  * compatible
1462  *
1463  * @param inst instance number. This is replaced by
1464  * <tt>DT_DRV_COMPAT(inst)</tt> in the call to SENSOR_DEVICE_DT_DEFINE().
1465  *
1466  * @param ... other parameters as expected by SENSOR_DEVICE_DT_DEFINE().
1467  */
1468 #define SENSOR_DEVICE_DT_INST_DEFINE(inst, ...)				\
1469 	SENSOR_DEVICE_DT_DEFINE(DT_DRV_INST(inst), __VA_ARGS__)
1470 
1471 /**
1472  * @brief Helper function for converting struct sensor_value to integer milli units.
1473  *
1474  * @param val A pointer to a sensor_value struct.
1475  * @return The converted value.
1476  */
sensor_value_to_milli(const struct sensor_value * val)1477 static inline int64_t sensor_value_to_milli(const struct sensor_value *val)
1478 {
1479 	return ((int64_t)val->val1 * 1000) + val->val2 / 1000;
1480 }
1481 
1482 /**
1483  * @brief Helper function for converting struct sensor_value to integer micro units.
1484  *
1485  * @param val A pointer to a sensor_value struct.
1486  * @return The converted value.
1487  */
sensor_value_to_micro(const struct sensor_value * val)1488 static inline int64_t sensor_value_to_micro(const struct sensor_value *val)
1489 {
1490 	return ((int64_t)val->val1 * 1000000) + val->val2;
1491 }
1492 
1493 /**
1494  * @brief Helper function for converting integer milli units to struct sensor_value.
1495  *
1496  * @param val A pointer to a sensor_value struct.
1497  * @param milli The converted value.
1498  * @return 0 if successful, negative errno code if failure.
1499  */
sensor_value_from_milli(struct sensor_value * val,int64_t milli)1500 static inline int sensor_value_from_milli(struct sensor_value *val, int64_t milli)
1501 {
1502 	if (milli < ((int64_t)INT32_MIN - 1) * 1000LL ||
1503 			milli > ((int64_t)INT32_MAX + 1) * 1000LL) {
1504 		return -ERANGE;
1505 	}
1506 
1507 	val->val1 = (int32_t)(milli / 1000);
1508 	val->val2 = (int32_t)(milli % 1000) * 1000;
1509 
1510 	return 0;
1511 }
1512 
1513 /**
1514  * @brief Helper function for converting integer micro units to struct sensor_value.
1515  *
1516  * @param val A pointer to a sensor_value struct.
1517  * @param micro The converted value.
1518  * @return 0 if successful, negative errno code if failure.
1519  */
sensor_value_from_micro(struct sensor_value * val,int64_t micro)1520 static inline int sensor_value_from_micro(struct sensor_value *val, int64_t micro)
1521 {
1522 	if (micro < ((int64_t)INT32_MIN - 1) * 1000000LL ||
1523 			micro > ((int64_t)INT32_MAX + 1) * 1000000LL) {
1524 		return -ERANGE;
1525 	}
1526 
1527 	val->val1 = (int32_t)(micro / 1000000LL);
1528 	val->val2 = (int32_t)(micro % 1000000LL);
1529 
1530 	return 0;
1531 }
1532 
1533 /**
1534  * @}
1535  */
1536 
1537 /**
1538  * @brief Get the decoder name for the current driver
1539  *
1540  * This function depends on `DT_DRV_COMPAT` being defined.
1541  */
1542 #define SENSOR_DECODER_NAME() UTIL_CAT(DT_DRV_COMPAT, __decoder_api)
1543 
1544 /**
1545  * @brief Statically get the decoder for a given node
1546  *
1547  * @code{.c}
1548  * static const sensor_decoder_api *decoder = SENSOR_DECODER_DT_GET(DT_ALIAS(accel));
1549  * @endcode
1550  */
1551 #define SENSOR_DECODER_DT_GET(node_id)                                                             \
1552 	&UTIL_CAT(DT_STRING_TOKEN_BY_IDX(node_id, compatible, 0), __decoder_api)
1553 
1554 /**
1555  * @brief Define a decoder API
1556  *
1557  * This macro should be created once per compatible string of a sensor and will create a statically
1558  * referenceable decoder API.
1559  *
1560  * @code{.c}
1561  * SENSOR_DECODER_API_DT_DEFINE() = {
1562  *   .get_frame_count = my_driver_get_frame_count,
1563  *   .get_timestamp = my_driver_get_timestamp,
1564  *   .get_shift = my_driver_get_shift,
1565  *   .decode = my_driver_decode,
1566  * };
1567  * @endcode
1568  */
1569 #define SENSOR_DECODER_API_DT_DEFINE()                                                             \
1570 	COND_CODE_1(DT_HAS_COMPAT_STATUS_OKAY(DT_DRV_COMPAT), (), (static))                        \
1571 	const STRUCT_SECTION_ITERABLE(sensor_decoder_api, SENSOR_DECODER_NAME())
1572 
1573 #define Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL_IDX(node_id, prop, idx)                            \
1574 	extern const struct sensor_decoder_api UTIL_CAT(                                           \
1575 		DT_STRING_TOKEN_BY_IDX(node_id, prop, idx), __decoder_api);
1576 
1577 #define Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL(node_id)                                           \
1578 	COND_CODE_1(DT_NODE_HAS_PROP(node_id, compatible),                                         \
1579 		    (DT_FOREACH_PROP_ELEM(node_id, compatible,                                     \
1580 					  Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL_IDX)),           \
1581 		    ())
1582 
1583 DT_FOREACH_STATUS_OKAY_NODE(Z_MAYBE_SENSOR_DECODER_DECLARE_INTERNAL)
1584 
1585 #ifdef __cplusplus
1586 }
1587 #endif
1588 
1589 #include <zephyr/syscalls/sensor.h>
1590 
1591 #endif /* ZEPHYR_INCLUDE_DRIVERS_SENSOR_H_ */
1592