1 /*
2  *  Elliptic curves over GF(p): generic functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6  */
7 
8 /*
9  * References:
10  *
11  * SEC1 https://www.secg.org/sec1-v2.pdf
12  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
13  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
14  * RFC 4492 for the related TLS structures and constants
15  * - https://www.rfc-editor.org/rfc/rfc4492
16  * RFC 7748 for the Curve448 and Curve25519 curve definitions
17  * - https://www.rfc-editor.org/rfc/rfc7748
18  *
19  * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
20  *
21  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
22  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
23  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
24  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
25  *
26  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
27  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
28  *     ePrint Archive, 2004, vol. 2004, p. 342.
29  *     <http://eprint.iacr.org/2004/342.pdf>
30  */
31 
32 #include "common.h"
33 
34 /**
35  * \brief Function level alternative implementation.
36  *
37  * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
38  * replace certain functions in this module. The alternative implementations are
39  * typically hardware accelerators and need to activate the hardware before the
40  * computation starts and deactivate it after it finishes. The
41  * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
42  * this purpose.
43  *
44  * To preserve the correct functionality the following conditions must hold:
45  *
46  * - The alternative implementation must be activated by
47  *   mbedtls_internal_ecp_init() before any of the replaceable functions is
48  *   called.
49  * - mbedtls_internal_ecp_free() must \b only be called when the alternative
50  *   implementation is activated.
51  * - mbedtls_internal_ecp_init() must \b not be called when the alternative
52  *   implementation is activated.
53  * - Public functions must not return while the alternative implementation is
54  *   activated.
55  * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
56  *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
57  *   \endcode ensures that the alternative implementation supports the current
58  *   group.
59  */
60 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
61 #endif
62 
63 #if defined(MBEDTLS_ECP_LIGHT)
64 
65 #include "mbedtls/ecp.h"
66 #include "mbedtls/threading.h"
67 #include "mbedtls/platform_util.h"
68 #include "mbedtls/error.h"
69 
70 #include "bn_mul.h"
71 #include "ecp_invasive.h"
72 
73 #include <string.h>
74 
75 #if !defined(MBEDTLS_ECP_ALT)
76 
77 #include "mbedtls/platform.h"
78 
79 #include "ecp_internal_alt.h"
80 
81 #if defined(MBEDTLS_SELF_TEST)
82 /*
83  * Counts of point addition and doubling, and field multiplications.
84  * Used to test resistance of point multiplication to simple timing attacks.
85  */
86 #if defined(MBEDTLS_ECP_C)
87 static unsigned long add_count, dbl_count;
88 #endif /* MBEDTLS_ECP_C */
89 static unsigned long mul_count;
90 #endif
91 
92 #if defined(MBEDTLS_ECP_RESTARTABLE)
93 /*
94  * Maximum number of "basic operations" to be done in a row.
95  *
96  * Default value 0 means that ECC operations will not yield.
97  * Note that regardless of the value of ecp_max_ops, always at
98  * least one step is performed before yielding.
99  *
100  * Setting ecp_max_ops=1 can be suitable for testing purposes
101  * as it will interrupt computation at all possible points.
102  */
103 static unsigned ecp_max_ops = 0;
104 
105 /*
106  * Set ecp_max_ops
107  */
mbedtls_ecp_set_max_ops(unsigned max_ops)108 void mbedtls_ecp_set_max_ops(unsigned max_ops)
109 {
110     ecp_max_ops = max_ops;
111 }
112 
113 /*
114  * Check if restart is enabled
115  */
mbedtls_ecp_restart_is_enabled(void)116 int mbedtls_ecp_restart_is_enabled(void)
117 {
118     return ecp_max_ops != 0;
119 }
120 
121 /*
122  * Restart sub-context for ecp_mul_comb()
123  */
124 struct mbedtls_ecp_restart_mul {
125     mbedtls_ecp_point R;    /* current intermediate result                  */
126     size_t i;               /* current index in various loops, 0 outside    */
127     mbedtls_ecp_point *T;   /* table for precomputed points                 */
128     unsigned char T_size;   /* number of points in table T                  */
129     enum {                  /* what were we doing last time we returned?    */
130         ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
131         ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
132         ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
133         ecp_rsm_pre_add,        /* precompute remaining points by adding    */
134         ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
135         ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
136         ecp_rsm_final_norm,     /* do the final normalization               */
137     } state;
138 };
139 
140 /*
141  * Init restart_mul sub-context
142  */
ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx * ctx)143 static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
144 {
145     mbedtls_ecp_point_init(&ctx->R);
146     ctx->i = 0;
147     ctx->T = NULL;
148     ctx->T_size = 0;
149     ctx->state = ecp_rsm_init;
150 }
151 
152 /*
153  * Free the components of a restart_mul sub-context
154  */
ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx * ctx)155 static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
156 {
157     unsigned char i;
158 
159     if (ctx == NULL) {
160         return;
161     }
162 
163     mbedtls_ecp_point_free(&ctx->R);
164 
165     if (ctx->T != NULL) {
166         for (i = 0; i < ctx->T_size; i++) {
167             mbedtls_ecp_point_free(ctx->T + i);
168         }
169         mbedtls_free(ctx->T);
170     }
171 
172     ecp_restart_rsm_init(ctx);
173 }
174 
175 /*
176  * Restart context for ecp_muladd()
177  */
178 struct mbedtls_ecp_restart_muladd {
179     mbedtls_ecp_point mP;       /* mP value                             */
180     mbedtls_ecp_point R;        /* R intermediate result                */
181     enum {                      /* what should we do next?              */
182         ecp_rsma_mul1 = 0,      /* first multiplication                 */
183         ecp_rsma_mul2,          /* second multiplication                */
184         ecp_rsma_add,           /* addition                             */
185         ecp_rsma_norm,          /* normalization                        */
186     } state;
187 };
188 
189 /*
190  * Init restart_muladd sub-context
191  */
ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx * ctx)192 static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
193 {
194     mbedtls_ecp_point_init(&ctx->mP);
195     mbedtls_ecp_point_init(&ctx->R);
196     ctx->state = ecp_rsma_mul1;
197 }
198 
199 /*
200  * Free the components of a restart_muladd sub-context
201  */
ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx * ctx)202 static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
203 {
204     if (ctx == NULL) {
205         return;
206     }
207 
208     mbedtls_ecp_point_free(&ctx->mP);
209     mbedtls_ecp_point_free(&ctx->R);
210 
211     ecp_restart_ma_init(ctx);
212 }
213 
214 /*
215  * Initialize a restart context
216  */
mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx * ctx)217 void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
218 {
219     ctx->ops_done = 0;
220     ctx->depth = 0;
221     ctx->rsm = NULL;
222     ctx->ma = NULL;
223 }
224 
225 /*
226  * Free the components of a restart context
227  */
mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx * ctx)228 void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
229 {
230     if (ctx == NULL) {
231         return;
232     }
233 
234     ecp_restart_rsm_free(ctx->rsm);
235     mbedtls_free(ctx->rsm);
236 
237     ecp_restart_ma_free(ctx->ma);
238     mbedtls_free(ctx->ma);
239 
240     mbedtls_ecp_restart_init(ctx);
241 }
242 
243 /*
244  * Check if we can do the next step
245  */
mbedtls_ecp_check_budget(const mbedtls_ecp_group * grp,mbedtls_ecp_restart_ctx * rs_ctx,unsigned ops)246 int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
247                              mbedtls_ecp_restart_ctx *rs_ctx,
248                              unsigned ops)
249 {
250     if (rs_ctx != NULL && ecp_max_ops != 0) {
251         /* scale depending on curve size: the chosen reference is 256-bit,
252          * and multiplication is quadratic. Round to the closest integer. */
253         if (grp->pbits >= 512) {
254             ops *= 4;
255         } else if (grp->pbits >= 384) {
256             ops *= 2;
257         }
258 
259         /* Avoid infinite loops: always allow first step.
260          * Because of that, however, it's not generally true
261          * that ops_done <= ecp_max_ops, so the check
262          * ops_done > ecp_max_ops below is mandatory. */
263         if ((rs_ctx->ops_done != 0) &&
264             (rs_ctx->ops_done > ecp_max_ops ||
265              ops > ecp_max_ops - rs_ctx->ops_done)) {
266             return MBEDTLS_ERR_ECP_IN_PROGRESS;
267         }
268 
269         /* update running count */
270         rs_ctx->ops_done += ops;
271     }
272 
273     return 0;
274 }
275 
276 /* Call this when entering a function that needs its own sub-context */
277 #define ECP_RS_ENTER(SUB)   do {                                      \
278         /* reset ops count for this call if top-level */                    \
279         if (rs_ctx != NULL && rs_ctx->depth++ == 0)                        \
280         rs_ctx->ops_done = 0;                                           \
281                                                                         \
282         /* set up our own sub-context if needed */                          \
283         if (mbedtls_ecp_restart_is_enabled() &&                             \
284             rs_ctx != NULL && rs_ctx->SUB == NULL)                         \
285         {                                                                   \
286             rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));      \
287             if (rs_ctx->SUB == NULL)                                       \
288             return MBEDTLS_ERR_ECP_ALLOC_FAILED;                     \
289                                                                       \
290             ecp_restart_## SUB ##_init(rs_ctx->SUB);                      \
291         }                                                                   \
292 } while (0)
293 
294 /* Call this when leaving a function that needs its own sub-context */
295 #define ECP_RS_LEAVE(SUB)   do {                                      \
296         /* clear our sub-context when not in progress (done or error) */    \
297         if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
298             ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                            \
299         {                                                                   \
300             ecp_restart_## SUB ##_free(rs_ctx->SUB);                      \
301             mbedtls_free(rs_ctx->SUB);                                    \
302             rs_ctx->SUB = NULL;                                             \
303         }                                                                   \
304                                                                         \
305         if (rs_ctx != NULL)                                                \
306         rs_ctx->depth--;                                                \
307 } while (0)
308 
309 #else /* MBEDTLS_ECP_RESTARTABLE */
310 
311 #define ECP_RS_ENTER(sub)     (void) rs_ctx;
312 #define ECP_RS_LEAVE(sub)     (void) rs_ctx;
313 
314 #endif /* MBEDTLS_ECP_RESTARTABLE */
315 
316 #if defined(MBEDTLS_ECP_C)
mpi_init_many(mbedtls_mpi * arr,size_t size)317 static void mpi_init_many(mbedtls_mpi *arr, size_t size)
318 {
319     while (size--) {
320         mbedtls_mpi_init(arr++);
321     }
322 }
323 
mpi_free_many(mbedtls_mpi * arr,size_t size)324 static void mpi_free_many(mbedtls_mpi *arr, size_t size)
325 {
326     while (size--) {
327         mbedtls_mpi_free(arr++);
328     }
329 }
330 #endif /* MBEDTLS_ECP_C */
331 
332 /*
333  * List of supported curves:
334  *  - internal ID
335  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
336  *  - size in bits
337  *  - readable name
338  *
339  * Curves are listed in order: largest curves first, and for a given size,
340  * fastest curves first.
341  *
342  * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
343  */
344 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
345 {
346 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
347     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
348 #endif
349 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
350     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
351 #endif
352 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
353     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
354 #endif
355 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
356     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
357 #endif
358 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
359     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
360 #endif
361 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
362     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
363 #endif
364 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
365     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
366 #endif
367 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
368     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
369 #endif
370 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
371     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
372 #endif
373 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
374     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
375 #endif
376 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
377     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
378 #endif
379 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
380     { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
381 #endif
382 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
383     { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
384 #endif
385     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
386 };
387 
388 #define ECP_NB_CURVES   sizeof(ecp_supported_curves) /    \
389     sizeof(ecp_supported_curves[0])
390 
391 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
392 
393 /*
394  * List of supported curves and associated info
395  */
mbedtls_ecp_curve_list(void)396 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
397 {
398     return ecp_supported_curves;
399 }
400 
401 /*
402  * List of supported curves, group ID only
403  */
mbedtls_ecp_grp_id_list(void)404 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
405 {
406     static int init_done = 0;
407 
408     if (!init_done) {
409         size_t i = 0;
410         const mbedtls_ecp_curve_info *curve_info;
411 
412         for (curve_info = mbedtls_ecp_curve_list();
413              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
414              curve_info++) {
415             ecp_supported_grp_id[i++] = curve_info->grp_id;
416         }
417         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
418 
419         init_done = 1;
420     }
421 
422     return ecp_supported_grp_id;
423 }
424 
425 /*
426  * Get the curve info for the internal identifier
427  */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)428 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
429 {
430     const mbedtls_ecp_curve_info *curve_info;
431 
432     for (curve_info = mbedtls_ecp_curve_list();
433          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
434          curve_info++) {
435         if (curve_info->grp_id == grp_id) {
436             return curve_info;
437         }
438     }
439 
440     return NULL;
441 }
442 
443 /*
444  * Get the curve info from the TLS identifier
445  */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)446 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
447 {
448     const mbedtls_ecp_curve_info *curve_info;
449 
450     for (curve_info = mbedtls_ecp_curve_list();
451          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
452          curve_info++) {
453         if (curve_info->tls_id == tls_id) {
454             return curve_info;
455         }
456     }
457 
458     return NULL;
459 }
460 
461 /*
462  * Get the curve info from the name
463  */
mbedtls_ecp_curve_info_from_name(const char * name)464 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
465 {
466     const mbedtls_ecp_curve_info *curve_info;
467 
468     if (name == NULL) {
469         return NULL;
470     }
471 
472     for (curve_info = mbedtls_ecp_curve_list();
473          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
474          curve_info++) {
475         if (strcmp(curve_info->name, name) == 0) {
476             return curve_info;
477         }
478     }
479 
480     return NULL;
481 }
482 
483 /*
484  * Get the type of a curve
485  */
mbedtls_ecp_get_type(const mbedtls_ecp_group * grp)486 mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
487 {
488     if (grp->G.X.p == NULL) {
489         return MBEDTLS_ECP_TYPE_NONE;
490     }
491 
492     if (grp->G.Y.p == NULL) {
493         return MBEDTLS_ECP_TYPE_MONTGOMERY;
494     } else {
495         return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
496     }
497 }
498 
499 /*
500  * Initialize (the components of) a point
501  */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)502 void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
503 {
504     mbedtls_mpi_init(&pt->X);
505     mbedtls_mpi_init(&pt->Y);
506     mbedtls_mpi_init(&pt->Z);
507 }
508 
509 /*
510  * Initialize (the components of) a group
511  */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)512 void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
513 {
514     grp->id = MBEDTLS_ECP_DP_NONE;
515     mbedtls_mpi_init(&grp->P);
516     mbedtls_mpi_init(&grp->A);
517     mbedtls_mpi_init(&grp->B);
518     mbedtls_ecp_point_init(&grp->G);
519     mbedtls_mpi_init(&grp->N);
520     grp->pbits = 0;
521     grp->nbits = 0;
522     grp->h = 0;
523     grp->modp = NULL;
524     grp->t_pre = NULL;
525     grp->t_post = NULL;
526     grp->t_data = NULL;
527     grp->T = NULL;
528     grp->T_size = 0;
529 }
530 
531 /*
532  * Initialize (the components of) a key pair
533  */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)534 void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
535 {
536     mbedtls_ecp_group_init(&key->grp);
537     mbedtls_mpi_init(&key->d);
538     mbedtls_ecp_point_init(&key->Q);
539 }
540 
541 /*
542  * Unallocate (the components of) a point
543  */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)544 void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
545 {
546     if (pt == NULL) {
547         return;
548     }
549 
550     mbedtls_mpi_free(&(pt->X));
551     mbedtls_mpi_free(&(pt->Y));
552     mbedtls_mpi_free(&(pt->Z));
553 }
554 
555 /*
556  * Check that the comb table (grp->T) is static initialized.
557  */
ecp_group_is_static_comb_table(const mbedtls_ecp_group * grp)558 static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
559 {
560 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
561     return grp->T != NULL && grp->T_size == 0;
562 #else
563     (void) grp;
564     return 0;
565 #endif
566 }
567 
568 /*
569  * Unallocate (the components of) a group
570  */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)571 void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
572 {
573     size_t i;
574 
575     if (grp == NULL) {
576         return;
577     }
578 
579     if (grp->h != 1) {
580         mbedtls_mpi_free(&grp->A);
581         mbedtls_mpi_free(&grp->B);
582         mbedtls_ecp_point_free(&grp->G);
583 
584 #if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
585         mbedtls_mpi_free(&grp->N);
586         mbedtls_mpi_free(&grp->P);
587 #endif
588     }
589 
590     if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
591         for (i = 0; i < grp->T_size; i++) {
592             mbedtls_ecp_point_free(&grp->T[i]);
593         }
594         mbedtls_free(grp->T);
595     }
596 
597     mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
598 }
599 
600 /*
601  * Unallocate (the components of) a key pair
602  */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)603 void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
604 {
605     if (key == NULL) {
606         return;
607     }
608 
609     mbedtls_ecp_group_free(&key->grp);
610     mbedtls_mpi_free(&key->d);
611     mbedtls_ecp_point_free(&key->Q);
612 }
613 
614 /*
615  * Copy the contents of a point
616  */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)617 int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
618 {
619     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
620     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
621     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
622     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
623 
624 cleanup:
625     return ret;
626 }
627 
628 /*
629  * Copy the contents of a group object
630  */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)631 int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
632 {
633     return mbedtls_ecp_group_load(dst, src->id);
634 }
635 
636 /*
637  * Set point to zero
638  */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)639 int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
640 {
641     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
642     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
643     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
644     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
645 
646 cleanup:
647     return ret;
648 }
649 
650 /*
651  * Tell if a point is zero
652  */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)653 int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
654 {
655     return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
656 }
657 
658 /*
659  * Compare two points lazily
660  */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)661 int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
662                           const mbedtls_ecp_point *Q)
663 {
664     if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
665         mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
666         mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
667         return 0;
668     }
669 
670     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
671 }
672 
673 /*
674  * Import a non-zero point from ASCII strings
675  */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)676 int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
677                                   const char *x, const char *y)
678 {
679     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
680     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
681     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
682     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
683 
684 cleanup:
685     return ret;
686 }
687 
688 /*
689  * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
690  */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)691 int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
692                                    const mbedtls_ecp_point *P,
693                                    int format, size_t *olen,
694                                    unsigned char *buf, size_t buflen)
695 {
696     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
697     size_t plen;
698     if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
699         format != MBEDTLS_ECP_PF_COMPRESSED) {
700         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
701     }
702 
703     plen = mbedtls_mpi_size(&grp->P);
704 
705 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
706     (void) format; /* Montgomery curves always use the same point format */
707     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
708         *olen = plen;
709         if (buflen < *olen) {
710             return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
711         }
712 
713         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
714     }
715 #endif
716 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
717     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
718         /*
719          * Common case: P == 0
720          */
721         if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
722             if (buflen < 1) {
723                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
724             }
725 
726             buf[0] = 0x00;
727             *olen = 1;
728 
729             return 0;
730         }
731 
732         if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
733             *olen = 2 * plen + 1;
734 
735             if (buflen < *olen) {
736                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
737             }
738 
739             buf[0] = 0x04;
740             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
741             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
742         } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
743             *olen = plen + 1;
744 
745             if (buflen < *olen) {
746                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
747             }
748 
749             buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
750             MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
751         }
752     }
753 #endif
754 
755 cleanup:
756     return ret;
757 }
758 
759 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
760 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
761                                    const mbedtls_mpi *X,
762                                    mbedtls_mpi *Y,
763                                    int parity_bit);
764 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
765 
766 /*
767  * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
768  */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)769 int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
770                                   mbedtls_ecp_point *pt,
771                                   const unsigned char *buf, size_t ilen)
772 {
773     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
774     size_t plen;
775     if (ilen < 1) {
776         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
777     }
778 
779     plen = mbedtls_mpi_size(&grp->P);
780 
781 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
782     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
783         if (plen != ilen) {
784             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
785         }
786 
787         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
788         mbedtls_mpi_free(&pt->Y);
789 
790         if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
791             /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
792             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
793         }
794 
795         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
796     }
797 #endif
798 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
799     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
800         if (buf[0] == 0x00) {
801             if (ilen == 1) {
802                 return mbedtls_ecp_set_zero(pt);
803             } else {
804                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
805             }
806         }
807 
808         if (ilen < 1 + plen) {
809             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
810         }
811 
812         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
813         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
814 
815         if (buf[0] == 0x04) {
816             /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
817             if (ilen != 1 + plen * 2) {
818                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
819             }
820             return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
821         } else if (buf[0] == 0x02 || buf[0] == 0x03) {
822             /* format == MBEDTLS_ECP_PF_COMPRESSED */
823             if (ilen != 1 + plen) {
824                 return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
825             }
826             return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
827                                            (buf[0] & 1));
828         } else {
829             return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
830         }
831     }
832 #endif
833 
834 cleanup:
835     return ret;
836 }
837 
838 /*
839  * Import a point from a TLS ECPoint record (RFC 4492)
840  *      struct {
841  *          opaque point <1..2^8-1>;
842  *      } ECPoint;
843  */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)844 int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
845                                mbedtls_ecp_point *pt,
846                                const unsigned char **buf, size_t buf_len)
847 {
848     unsigned char data_len;
849     const unsigned char *buf_start;
850     /*
851      * We must have at least two bytes (1 for length, at least one for data)
852      */
853     if (buf_len < 2) {
854         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
855     }
856 
857     data_len = *(*buf)++;
858     if (data_len < 1 || data_len > buf_len - 1) {
859         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
860     }
861 
862     /*
863      * Save buffer start for read_binary and update buf
864      */
865     buf_start = *buf;
866     *buf += data_len;
867 
868     return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
869 }
870 
871 /*
872  * Export a point as a TLS ECPoint record (RFC 4492)
873  *      struct {
874  *          opaque point <1..2^8-1>;
875  *      } ECPoint;
876  */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)877 int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
878                                 int format, size_t *olen,
879                                 unsigned char *buf, size_t blen)
880 {
881     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
882     if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
883         format != MBEDTLS_ECP_PF_COMPRESSED) {
884         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
885     }
886 
887     /*
888      * buffer length must be at least one, for our length byte
889      */
890     if (blen < 1) {
891         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
892     }
893 
894     if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
895                                               olen, buf + 1, blen - 1)) != 0) {
896         return ret;
897     }
898 
899     /*
900      * write length to the first byte and update total length
901      */
902     buf[0] = (unsigned char) *olen;
903     ++*olen;
904 
905     return 0;
906 }
907 
908 /*
909  * Set a group from an ECParameters record (RFC 4492)
910  */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)911 int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
912                                const unsigned char **buf, size_t len)
913 {
914     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
915     mbedtls_ecp_group_id grp_id;
916     if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
917         return ret;
918     }
919 
920     return mbedtls_ecp_group_load(grp, grp_id);
921 }
922 
923 /*
924  * Read a group id from an ECParameters record (RFC 4492) and convert it to
925  * mbedtls_ecp_group_id.
926  */
mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id * grp,const unsigned char ** buf,size_t len)927 int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
928                                   const unsigned char **buf, size_t len)
929 {
930     uint16_t tls_id;
931     const mbedtls_ecp_curve_info *curve_info;
932     /*
933      * We expect at least three bytes (see below)
934      */
935     if (len < 3) {
936         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
937     }
938 
939     /*
940      * First byte is curve_type; only named_curve is handled
941      */
942     if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
943         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
944     }
945 
946     /*
947      * Next two bytes are the namedcurve value
948      */
949     tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
950     *buf += 2;
951 
952     if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
953         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
954     }
955 
956     *grp = curve_info->grp_id;
957 
958     return 0;
959 }
960 
961 /*
962  * Write the ECParameters record corresponding to a group (RFC 4492)
963  */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)964 int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
965                                 unsigned char *buf, size_t blen)
966 {
967     const mbedtls_ecp_curve_info *curve_info;
968     if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
969         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
970     }
971 
972     /*
973      * We are going to write 3 bytes (see below)
974      */
975     *olen = 3;
976     if (blen < *olen) {
977         return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
978     }
979 
980     /*
981      * First byte is curve_type, always named_curve
982      */
983     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
984 
985     /*
986      * Next two bytes are the namedcurve value
987      */
988     MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
989 
990     return 0;
991 }
992 
993 /*
994  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
995  * See the documentation of struct mbedtls_ecp_group.
996  *
997  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
998  */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)999 static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1000 {
1001     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1002 
1003     if (grp->modp == NULL) {
1004         return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1005     }
1006 
1007     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1008     if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1009         mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1010         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1011     }
1012 
1013     MBEDTLS_MPI_CHK(grp->modp(N));
1014 
1015     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1016     while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1017         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1018     }
1019 
1020     while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1021         /* we known P, N and the result are positive */
1022         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1023     }
1024 
1025 cleanup:
1026     return ret;
1027 }
1028 
1029 /*
1030  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1031  *
1032  * In order to guarantee that, we need to ensure that operands of
1033  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1034  * bring the result back to this range.
1035  *
1036  * The following macros are shortcuts for doing that.
1037  */
1038 
1039 /*
1040  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1041  */
1042 #if defined(MBEDTLS_SELF_TEST)
1043 #define INC_MUL_COUNT   mul_count++;
1044 #else
1045 #define INC_MUL_COUNT
1046 #endif
1047 
1048 #define MOD_MUL(N)                                                    \
1049     do                                                                  \
1050     {                                                                   \
1051         MBEDTLS_MPI_CHK(ecp_modp(&(N), grp));                       \
1052         INC_MUL_COUNT                                                   \
1053     } while (0)
1054 
mbedtls_mpi_mul_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1055 static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1056                                       mbedtls_mpi *X,
1057                                       const mbedtls_mpi *A,
1058                                       const mbedtls_mpi *B)
1059 {
1060     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1061     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1062     MOD_MUL(*X);
1063 cleanup:
1064     return ret;
1065 }
1066 
1067 /*
1068  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1069  * N->s < 0 is a very fast test, which fails only if N is 0
1070  */
1071 #define MOD_SUB(N)                                                          \
1072     do {                                                                      \
1073         while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0)             \
1074         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P));      \
1075     } while (0)
1076 
1077 #if (defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1078     !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1079     defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1080     defined(MBEDTLS_ECP_ADD_MIXED_ALT))) || \
1081     (defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \
1082     !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1083     defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)))
mbedtls_mpi_sub_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1084 static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1085                                       mbedtls_mpi *X,
1086                                       const mbedtls_mpi *A,
1087                                       const mbedtls_mpi *B)
1088 {
1089     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1090     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1091     MOD_SUB(X);
1092 cleanup:
1093     return ret;
1094 }
1095 #endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */
1096 
1097 /*
1098  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1099  * We known P, N and the result are positive, so sub_abs is correct, and
1100  * a bit faster.
1101  */
1102 #define MOD_ADD(N)                                                   \
1103     while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0)                  \
1104     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1105 
mbedtls_mpi_add_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1106 static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1107                                       mbedtls_mpi *X,
1108                                       const mbedtls_mpi *A,
1109                                       const mbedtls_mpi *B)
1110 {
1111     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1112     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1113     MOD_ADD(X);
1114 cleanup:
1115     return ret;
1116 }
1117 
mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1118 static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1119                                           mbedtls_mpi *X,
1120                                           const mbedtls_mpi *A,
1121                                           mbedtls_mpi_uint c)
1122 {
1123     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1124 
1125     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1126     MOD_ADD(X);
1127 cleanup:
1128     return ret;
1129 }
1130 
mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,mbedtls_mpi_uint c)1131 static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1132                                           mbedtls_mpi *X,
1133                                           const mbedtls_mpi *A,
1134                                           mbedtls_mpi_uint c)
1135 {
1136     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1137 
1138     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1139     MOD_SUB(X);
1140 cleanup:
1141     return ret;
1142 }
1143 
1144 #define MPI_ECP_SUB_INT(X, A, c)             \
1145     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1146 
1147 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1148     !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1149     defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1150     defined(MBEDTLS_ECP_ADD_MIXED_ALT))
mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,size_t count)1151 static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1152                                           mbedtls_mpi *X,
1153                                           size_t count)
1154 {
1155     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1156     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1157     MOD_ADD(X);
1158 cleanup:
1159     return ret;
1160 }
1161 #endif \
1162     /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */
1163 
1164 /*
1165  * Macro wrappers around ECP modular arithmetic
1166  *
1167  * Currently, these wrappers are defined via the bignum module.
1168  */
1169 
1170 #define MPI_ECP_ADD(X, A, B)                                                  \
1171     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1172 
1173 #define MPI_ECP_SUB(X, A, B)                                                  \
1174     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1175 
1176 #define MPI_ECP_MUL(X, A, B)                                                  \
1177     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1178 
1179 #define MPI_ECP_SQR(X, A)                                                     \
1180     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1181 
1182 #define MPI_ECP_MUL_INT(X, A, c)                                              \
1183     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1184 
1185 #define MPI_ECP_INV(dst, src)                                                 \
1186     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
1187 
1188 #define MPI_ECP_MOV(X, A)                                                     \
1189     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1190 
1191 #define MPI_ECP_SHIFT_L(X, count)                                             \
1192     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1193 
1194 #define MPI_ECP_LSET(X, c)                                                    \
1195     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1196 
1197 #define MPI_ECP_CMP_INT(X, c)                                                 \
1198     mbedtls_mpi_cmp_int(X, c)
1199 
1200 #define MPI_ECP_CMP(X, Y)                                                     \
1201     mbedtls_mpi_cmp_mpi(X, Y)
1202 
1203 /* Needs f_rng, p_rng to be defined. */
1204 #define MPI_ECP_RAND(X)                                                       \
1205     MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1206 
1207 /* Conditional negation
1208  * Needs grp and a temporary MPI tmp to be defined. */
1209 #define MPI_ECP_COND_NEG(X, cond)                                        \
1210     do                                                                     \
1211     {                                                                      \
1212         unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0;        \
1213         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X)));      \
1214         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp,          \
1215                                                      nonzero & cond)); \
1216     } while (0)
1217 
1218 #define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1219 
1220 #define MPI_ECP_VALID(X)                      \
1221     ((X)->p != NULL)
1222 
1223 #define MPI_ECP_COND_ASSIGN(X, Y, cond)       \
1224     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1225 
1226 #define MPI_ECP_COND_SWAP(X, Y, cond)       \
1227     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1228 
1229 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1230 
1231 /*
1232  * Computes the right-hand side of the Short Weierstrass equation
1233  * RHS = X^3 + A X + B
1234  */
ecp_sw_rhs(const mbedtls_ecp_group * grp,mbedtls_mpi * rhs,const mbedtls_mpi * X)1235 static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1236                       mbedtls_mpi *rhs,
1237                       const mbedtls_mpi *X)
1238 {
1239     int ret;
1240 
1241     /* Compute X^3 + A X + B as X (X^2 + A) + B */
1242     MPI_ECP_SQR(rhs, X);
1243 
1244     /* Special case for A = -3 */
1245     if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1246         MPI_ECP_SUB_INT(rhs, rhs, 3);
1247     } else {
1248         MPI_ECP_ADD(rhs, rhs, &grp->A);
1249     }
1250 
1251     MPI_ECP_MUL(rhs, rhs, X);
1252     MPI_ECP_ADD(rhs, rhs, &grp->B);
1253 
1254 cleanup:
1255     return ret;
1256 }
1257 
1258 /*
1259  * Derive Y from X and a parity bit
1260  */
mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group * grp,const mbedtls_mpi * X,mbedtls_mpi * Y,int parity_bit)1261 static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1262                                    const mbedtls_mpi *X,
1263                                    mbedtls_mpi *Y,
1264                                    int parity_bit)
1265 {
1266     /* w = y^2 = x^3 + ax + b
1267      * y = sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4)
1268      *
1269      * Note: this method for extracting square root does not validate that w
1270      * was indeed a square so this function will return garbage in Y if X
1271      * does not correspond to a point on the curve.
1272      */
1273 
1274     /* Check prerequisite p = 3 mod 4 */
1275     if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1276         mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1277         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1278     }
1279 
1280     int ret;
1281     mbedtls_mpi exp;
1282     mbedtls_mpi_init(&exp);
1283 
1284     /* use Y to store intermediate result, actually w above */
1285     MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1286 
1287     /* w = y^2 */ /* Y contains y^2 intermediate result */
1288     /* exp = ((p+1)/4) */
1289     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1290     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1291     /* sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4) */
1292     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1293 
1294     /* check parity bit match or else invert Y */
1295     /* This quick inversion implementation is valid because Y != 0 for all
1296      * Short Weierstrass curves supported by mbedtls, as each supported curve
1297      * has an order that is a large prime, so each supported curve does not
1298      * have any point of order 2, and a point with Y == 0 would be of order 2 */
1299     if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1300         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1301     }
1302 
1303 cleanup:
1304 
1305     mbedtls_mpi_free(&exp);
1306     return ret;
1307 }
1308 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1309 
1310 #if defined(MBEDTLS_ECP_C)
1311 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1312 /*
1313  * For curves in short Weierstrass form, we do all the internal operations in
1314  * Jacobian coordinates.
1315  *
1316  * For multiplication, we'll use a comb method with countermeasures against
1317  * SPA, hence timing attacks.
1318  */
1319 
1320 /*
1321  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
1322  * Cost: 1N := 1I + 3M + 1S
1323  */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)1324 static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1325 {
1326     if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1327         return 0;
1328     }
1329 
1330 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1331     if (mbedtls_internal_ecp_grp_capable(grp)) {
1332         return mbedtls_internal_ecp_normalize_jac(grp, pt);
1333     }
1334 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1335 
1336 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1337     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1338 #else
1339     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1340     mbedtls_mpi T;
1341     mbedtls_mpi_init(&T);
1342 
1343     MPI_ECP_INV(&T,       &pt->Z);            /* T   <-          1 / Z   */
1344     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'  <- Y*T    = Y / Z   */
1345     MPI_ECP_SQR(&T,       &T);                /* T   <- T^2    = 1 / Z^2 */
1346     MPI_ECP_MUL(&pt->X,   &pt->X,     &T);    /* X   <- X  * T = X / Z^2 */
1347     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'' <- Y' * T = Y / Z^3 */
1348 
1349     MPI_ECP_LSET(&pt->Z, 1);
1350 
1351 cleanup:
1352 
1353     mbedtls_mpi_free(&T);
1354 
1355     return ret;
1356 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1357 }
1358 
1359 /*
1360  * Normalize jacobian coordinates of an array of (pointers to) points,
1361  * using Montgomery's trick to perform only one inversion mod P.
1362  * (See for example Cohen's "A Course in Computational Algebraic Number
1363  * Theory", Algorithm 10.3.4.)
1364  *
1365  * Warning: fails (returning an error) if one of the points is zero!
1366  * This should never happen, see choice of w in ecp_mul_comb().
1367  *
1368  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1369  */
ecp_normalize_jac_many(const mbedtls_ecp_group * grp,mbedtls_ecp_point * T[],size_t T_size)1370 static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1371                                   mbedtls_ecp_point *T[], size_t T_size)
1372 {
1373     if (T_size < 2) {
1374         return ecp_normalize_jac(grp, *T);
1375     }
1376 
1377 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1378     if (mbedtls_internal_ecp_grp_capable(grp)) {
1379         return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1380     }
1381 #endif
1382 
1383 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1384     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1385 #else
1386     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1387     size_t i;
1388     mbedtls_mpi *c, t;
1389 
1390     if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1391         return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1392     }
1393 
1394     mbedtls_mpi_init(&t);
1395 
1396     mpi_init_many(c, T_size);
1397     /*
1398      * c[i] = Z_0 * ... * Z_i,   i = 0,..,n := T_size-1
1399      */
1400     MPI_ECP_MOV(&c[0], &T[0]->Z);
1401     for (i = 1; i < T_size; i++) {
1402         MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1403     }
1404 
1405     /*
1406      * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1407      */
1408     MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1409 
1410     for (i = T_size - 1;; i--) {
1411         /* At the start of iteration i (note that i decrements), we have
1412          * - c[j] = Z_0 * .... * Z_j        for j  < i,
1413          * - c[j] = 1 / (Z_0 * .... * Z_j)  for j == i,
1414          *
1415          * This is maintained via
1416          * - c[i-1] <- c[i] * Z_i
1417          *
1418          * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1419          * to do the actual normalization. For i==0, we already have
1420          * c[0] = 1 / Z_0.
1421          */
1422 
1423         if (i > 0) {
1424             /* Compute 1/Z_i and establish invariant for the next iteration. */
1425             MPI_ECP_MUL(&t,      &c[i], &c[i-1]);
1426             MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1427         } else {
1428             MPI_ECP_MOV(&t, &c[0]);
1429         }
1430 
1431         /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1432         MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1433         MPI_ECP_SQR(&t,       &t);
1434         MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1435         MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1436 
1437         /*
1438          * Post-precessing: reclaim some memory by shrinking coordinates
1439          * - not storing Z (always 1)
1440          * - shrinking other coordinates, but still keeping the same number of
1441          *   limbs as P, as otherwise it will too likely be regrown too fast.
1442          */
1443         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1444         MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1445 
1446         MPI_ECP_LSET(&T[i]->Z, 1);
1447 
1448         if (i == 0) {
1449             break;
1450         }
1451     }
1452 
1453 cleanup:
1454 
1455     mbedtls_mpi_free(&t);
1456     mpi_free_many(c, T_size);
1457     mbedtls_free(c);
1458 
1459     return ret;
1460 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1461 }
1462 
1463 /*
1464  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1465  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1466  */
ecp_safe_invert_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * Q,unsigned char inv)1467 static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1468                                mbedtls_ecp_point *Q,
1469                                unsigned char inv)
1470 {
1471     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1472     mbedtls_mpi tmp;
1473     mbedtls_mpi_init(&tmp);
1474 
1475     MPI_ECP_COND_NEG(&Q->Y, inv);
1476 
1477 cleanup:
1478     mbedtls_mpi_free(&tmp);
1479     return ret;
1480 }
1481 
1482 /*
1483  * Point doubling R = 2 P, Jacobian coordinates
1484  *
1485  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1486  *
1487  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1488  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1489  *
1490  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1491  *
1492  * Cost: 1D := 3M + 4S          (A ==  0)
1493  *             4M + 4S          (A == -3)
1494  *             3M + 6S + 1a     otherwise
1495  */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,mbedtls_mpi tmp[4])1496 static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1497                           const mbedtls_ecp_point *P,
1498                           mbedtls_mpi tmp[4])
1499 {
1500 #if defined(MBEDTLS_SELF_TEST)
1501     dbl_count++;
1502 #endif
1503 
1504 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1505     if (mbedtls_internal_ecp_grp_capable(grp)) {
1506         return mbedtls_internal_ecp_double_jac(grp, R, P);
1507     }
1508 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1509 
1510 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1511     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1512 #else
1513     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1514 
1515     /* Special case for A = -3 */
1516     if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1517         /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1518         MPI_ECP_SQR(&tmp[1],  &P->Z);
1519         MPI_ECP_ADD(&tmp[2],  &P->X,  &tmp[1]);
1520         MPI_ECP_SUB(&tmp[3],  &P->X,  &tmp[1]);
1521         MPI_ECP_MUL(&tmp[1],  &tmp[2],     &tmp[3]);
1522         MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],     3);
1523     } else {
1524         /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1525         MPI_ECP_SQR(&tmp[1],  &P->X);
1526         MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],  3);
1527 
1528         /* Optimize away for "koblitz" curves with A = 0 */
1529         if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1530             /* M += A.Z^4 */
1531             MPI_ECP_SQR(&tmp[1],  &P->Z);
1532             MPI_ECP_SQR(&tmp[2],  &tmp[1]);
1533             MPI_ECP_MUL(&tmp[1],  &tmp[2],     &grp->A);
1534             MPI_ECP_ADD(&tmp[0],  &tmp[0],     &tmp[1]);
1535         }
1536     }
1537 
1538     /* tmp[1] <- S = 4.X.Y^2 */
1539     MPI_ECP_SQR(&tmp[2],  &P->Y);
1540     MPI_ECP_SHIFT_L(&tmp[2],  1);
1541     MPI_ECP_MUL(&tmp[1],  &P->X, &tmp[2]);
1542     MPI_ECP_SHIFT_L(&tmp[1],  1);
1543 
1544     /* tmp[3] <- U = 8.Y^4 */
1545     MPI_ECP_SQR(&tmp[3],  &tmp[2]);
1546     MPI_ECP_SHIFT_L(&tmp[3],  1);
1547 
1548     /* tmp[2] <- T = M^2 - 2.S */
1549     MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1550     MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1551     MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1552 
1553     /* tmp[1] <- S = M(S - T) - U */
1554     MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[2]);
1555     MPI_ECP_MUL(&tmp[1],  &tmp[1],     &tmp[0]);
1556     MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[3]);
1557 
1558     /* tmp[3] <- U = 2.Y.Z */
1559     MPI_ECP_MUL(&tmp[3],  &P->Y,  &P->Z);
1560     MPI_ECP_SHIFT_L(&tmp[3],  1);
1561 
1562     /* Store results */
1563     MPI_ECP_MOV(&R->X, &tmp[2]);
1564     MPI_ECP_MOV(&R->Y, &tmp[1]);
1565     MPI_ECP_MOV(&R->Z, &tmp[3]);
1566 
1567 cleanup:
1568 
1569     return ret;
1570 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1571 }
1572 
1573 /*
1574  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1575  *
1576  * The coordinates of Q must be normalized (= affine),
1577  * but those of P don't need to. R is not normalized.
1578  *
1579  * P,Q,R may alias, but only at the level of EC points: they must be either
1580  * equal as pointers, or disjoint (including the coordinate data buffers).
1581  * Fine-grained aliasing at the level of coordinates is not supported.
1582  *
1583  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1584  * None of these cases can happen as intermediate step in ecp_mul_comb():
1585  * - at each step, P, Q and R are multiples of the base point, the factor
1586  *   being less than its order, so none of them is zero;
1587  * - Q is an odd multiple of the base point, P an even multiple,
1588  *   due to the choice of precomputed points in the modified comb method.
1589  * So branches for these cases do not leak secret information.
1590  *
1591  * Cost: 1A := 8M + 3S
1592  */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,mbedtls_mpi tmp[4])1593 static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1594                          const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1595                          mbedtls_mpi tmp[4])
1596 {
1597 #if defined(MBEDTLS_SELF_TEST)
1598     add_count++;
1599 #endif
1600 
1601 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1602     if (mbedtls_internal_ecp_grp_capable(grp)) {
1603         return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1604     }
1605 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1606 
1607 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1608     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1609 #else
1610     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1611 
1612     /* NOTE: Aliasing between input and output is allowed, so one has to make
1613      *       sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1614      *       longer read from. */
1615     mbedtls_mpi * const X = &R->X;
1616     mbedtls_mpi * const Y = &R->Y;
1617     mbedtls_mpi * const Z = &R->Z;
1618 
1619     if (!MPI_ECP_VALID(&Q->Z)) {
1620         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1621     }
1622 
1623     /*
1624      * Trivial cases: P == 0 or Q == 0 (case 1)
1625      */
1626     if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1627         return mbedtls_ecp_copy(R, Q);
1628     }
1629 
1630     if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1631         return mbedtls_ecp_copy(R, P);
1632     }
1633 
1634     /*
1635      * Make sure Q coordinates are normalized
1636      */
1637     if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1638         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1639     }
1640 
1641     MPI_ECP_SQR(&tmp[0], &P->Z);
1642     MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1643     MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1644     MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1645     MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1646     MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1647 
1648     /* Special cases (2) and (3) */
1649     if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1650         if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1651             ret = ecp_double_jac(grp, R, P, tmp);
1652             goto cleanup;
1653         } else {
1654             ret = mbedtls_ecp_set_zero(R);
1655             goto cleanup;
1656         }
1657     }
1658 
1659     /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1660     MPI_ECP_MUL(Z,        &P->Z,    &tmp[0]);
1661     MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1662     MPI_ECP_MUL(&tmp[3],  &tmp[2],  &tmp[0]);
1663     MPI_ECP_MUL(&tmp[2],  &tmp[2],  &P->X);
1664 
1665     MPI_ECP_MOV(&tmp[0], &tmp[2]);
1666     MPI_ECP_SHIFT_L(&tmp[0], 1);
1667 
1668     /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1669     MPI_ECP_SQR(X,        &tmp[1]);
1670     MPI_ECP_SUB(X,        X,        &tmp[0]);
1671     MPI_ECP_SUB(X,        X,        &tmp[3]);
1672     MPI_ECP_SUB(&tmp[2],  &tmp[2],  X);
1673     MPI_ECP_MUL(&tmp[2],  &tmp[2],  &tmp[1]);
1674     MPI_ECP_MUL(&tmp[3],  &tmp[3],  &P->Y);
1675     /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1676     MPI_ECP_SUB(Y,     &tmp[2],     &tmp[3]);
1677 
1678 cleanup:
1679 
1680     return ret;
1681 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1682 }
1683 
1684 /*
1685  * Randomize jacobian coordinates:
1686  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1687  * This is sort of the reverse operation of ecp_normalize_jac().
1688  *
1689  * This countermeasure was first suggested in [2].
1690  */
ecp_randomize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1691 static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1692                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1693 {
1694 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1695     if (mbedtls_internal_ecp_grp_capable(grp)) {
1696         return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1697     }
1698 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1699 
1700 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1701     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1702 #else
1703     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1704     mbedtls_mpi l;
1705 
1706     mbedtls_mpi_init(&l);
1707 
1708     /* Generate l such that 1 < l < p */
1709     MPI_ECP_RAND(&l);
1710 
1711     /* Z' = l * Z */
1712     MPI_ECP_MUL(&pt->Z,   &pt->Z,     &l);
1713 
1714     /* Y' = l * Y */
1715     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1716 
1717     /* X' = l^2 * X */
1718     MPI_ECP_SQR(&l,       &l);
1719     MPI_ECP_MUL(&pt->X,   &pt->X,     &l);
1720 
1721     /* Y'' = l^2 * Y' = l^3 * Y */
1722     MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1723 
1724 cleanup:
1725     mbedtls_mpi_free(&l);
1726 
1727     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1728         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1729     }
1730     return ret;
1731 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1732 }
1733 
1734 /*
1735  * Check and define parameters used by the comb method (see below for details)
1736  */
1737 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1738 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1739 #endif
1740 
1741 /* d = ceil( n / w ) */
1742 #define COMB_MAX_D      (MBEDTLS_ECP_MAX_BITS + 1) / 2
1743 
1744 /* number of precomputed points */
1745 #define COMB_MAX_PRE    (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1746 
1747 /*
1748  * Compute the representation of m that will be used with our comb method.
1749  *
1750  * The basic comb method is described in GECC 3.44 for example. We use a
1751  * modified version that provides resistance to SPA by avoiding zero
1752  * digits in the representation as in [3]. We modify the method further by
1753  * requiring that all K_i be odd, which has the small cost that our
1754  * representation uses one more K_i, due to carries, but saves on the size of
1755  * the precomputed table.
1756  *
1757  * Summary of the comb method and its modifications:
1758  *
1759  * - The goal is to compute m*P for some w*d-bit integer m.
1760  *
1761  * - The basic comb method splits m into the w-bit integers
1762  *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
1763  *   index has residue i modulo d, and computes m * P as
1764  *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1765  *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1766  *
1767  * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1768  *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1769  *   thereby successively converting it into a form where all summands
1770  *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
1771  *
1772  * - More generally, even if x[i+1] != 0, we can first transform the sum as
1773  *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1774  *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1775  *   Performing and iterating this procedure for those x[i] that are even
1776  *   (keeping track of carry), we can transform the original sum into one of the form
1777  *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1778  *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1779  *   which is why we are only computing half of it in the first place in
1780  *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1781  *
1782  * - For the sake of compactness, only the seven low-order bits of x[i]
1783  *   are used to represent its absolute value (K_i in the paper), and the msb
1784  *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
1785  *   if s_i == -1;
1786  *
1787  * Calling conventions:
1788  * - x is an array of size d + 1
1789  * - w is the size, ie number of teeth, of the comb, and must be between
1790  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1791  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1792  *   (the result will be incorrect if these assumptions are not satisfied)
1793  */
ecp_comb_recode_core(unsigned char x[],size_t d,unsigned char w,const mbedtls_mpi * m)1794 static void ecp_comb_recode_core(unsigned char x[], size_t d,
1795                                  unsigned char w, const mbedtls_mpi *m)
1796 {
1797     size_t i, j;
1798     unsigned char c, cc, adjust;
1799 
1800     memset(x, 0, d+1);
1801 
1802     /* First get the classical comb values (except for x_d = 0) */
1803     for (i = 0; i < d; i++) {
1804         for (j = 0; j < w; j++) {
1805             x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1806         }
1807     }
1808 
1809     /* Now make sure x_1 .. x_d are odd */
1810     c = 0;
1811     for (i = 1; i <= d; i++) {
1812         /* Add carry and update it */
1813         cc   = x[i] & c;
1814         x[i] = x[i] ^ c;
1815         c = cc;
1816 
1817         /* Adjust if needed, avoiding branches */
1818         adjust = 1 - (x[i] & 0x01);
1819         c   |= x[i] & (x[i-1] * adjust);
1820         x[i] = x[i] ^ (x[i-1] * adjust);
1821         x[i-1] |= adjust << 7;
1822     }
1823 }
1824 
1825 /*
1826  * Precompute points for the adapted comb method
1827  *
1828  * Assumption: T must be able to hold 2^{w - 1} elements.
1829  *
1830  * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1831  *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1832  *
1833  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1834  *
1835  * Note: Even comb values (those where P would be omitted from the
1836  *       sum defining T[i] above) are not needed in our adaption
1837  *       the comb method. See ecp_comb_recode_core().
1838  *
1839  * This function currently works in four steps:
1840  * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
1841  * (2) [norm_dbl] Normalization of coordinates of these T[i]
1842  * (3) [add]      Computation of all T[i]
1843  * (4) [norm_add] Normalization of all T[i]
1844  *
1845  * Step 1 can be interrupted but not the others; together with the final
1846  * coordinate normalization they are the largest steps done at once, depending
1847  * on the window size. Here are operation counts for P-256:
1848  *
1849  * step     (2)     (3)     (4)
1850  * w = 5    142     165     208
1851  * w = 4    136      77     160
1852  * w = 3    130      33     136
1853  * w = 2    124      11     124
1854  *
1855  * So if ECC operations are blocking for too long even with a low max_ops
1856  * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1857  * to minimize maximum blocking time.
1858  */
ecp_precompute_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point T[],const mbedtls_ecp_point * P,unsigned char w,size_t d,mbedtls_ecp_restart_ctx * rs_ctx)1859 static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1860                                mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1861                                unsigned char w, size_t d,
1862                                mbedtls_ecp_restart_ctx *rs_ctx)
1863 {
1864     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1865     unsigned char i;
1866     size_t j = 0;
1867     const unsigned char T_size = 1U << (w - 1);
1868     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1869 
1870     mbedtls_mpi tmp[4];
1871 
1872     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1873 
1874 #if defined(MBEDTLS_ECP_RESTARTABLE)
1875     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1876         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1877             goto dbl;
1878         }
1879         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1880             goto norm_dbl;
1881         }
1882         if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1883             goto add;
1884         }
1885         if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1886             goto norm_add;
1887         }
1888     }
1889 #else
1890     (void) rs_ctx;
1891 #endif
1892 
1893 #if defined(MBEDTLS_ECP_RESTARTABLE)
1894     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1895         rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1896 
1897         /* initial state for the loop */
1898         rs_ctx->rsm->i = 0;
1899     }
1900 
1901 dbl:
1902 #endif
1903     /*
1904      * Set T[0] = P and
1905      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1906      */
1907     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1908 
1909 #if defined(MBEDTLS_ECP_RESTARTABLE)
1910     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1911         j = rs_ctx->rsm->i;
1912     } else
1913 #endif
1914     j = 0;
1915 
1916     for (; j < d * (w - 1); j++) {
1917         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1918 
1919         i = 1U << (j / d);
1920         cur = T + i;
1921 
1922         if (j % d == 0) {
1923             MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1924         }
1925 
1926         MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1927     }
1928 
1929 #if defined(MBEDTLS_ECP_RESTARTABLE)
1930     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1931         rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1932     }
1933 
1934 norm_dbl:
1935 #endif
1936     /*
1937      * Normalize current elements in T to allow them to be used in
1938      * ecp_add_mixed() below, which requires one normalized input.
1939      *
1940      * As T has holes, use an auxiliary array of pointers to elements in T.
1941      *
1942      */
1943     j = 0;
1944     for (i = 1; i < T_size; i <<= 1) {
1945         TT[j++] = T + i;
1946     }
1947 
1948     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1949 
1950     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1951 
1952 #if defined(MBEDTLS_ECP_RESTARTABLE)
1953     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1954         rs_ctx->rsm->state = ecp_rsm_pre_add;
1955     }
1956 
1957 add:
1958 #endif
1959     /*
1960      * Compute the remaining ones using the minimal number of additions
1961      * Be careful to update T[2^l] only after using it!
1962      */
1963     MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1964 
1965     for (i = 1; i < T_size; i <<= 1) {
1966         j = i;
1967         while (j--) {
1968             MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1969         }
1970     }
1971 
1972 #if defined(MBEDTLS_ECP_RESTARTABLE)
1973     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1974         rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1975     }
1976 
1977 norm_add:
1978 #endif
1979     /*
1980      * Normalize final elements in T. Even though there are no holes now, we
1981      * still need the auxiliary array for homogeneity with the previous
1982      * call. Also, skip T[0] which is already normalised, being a copy of P.
1983      */
1984     for (j = 0; j + 1 < T_size; j++) {
1985         TT[j] = T + j + 1;
1986     }
1987 
1988     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1989 
1990     MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1991 
1992     /* Free Z coordinate (=1 after normalization) to save RAM.
1993      * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1994      * since from this point onwards, they are only accessed indirectly
1995      * via the getter function ecp_select_comb() which does set the
1996      * target's Z coordinate to 1. */
1997     for (i = 0; i < T_size; i++) {
1998         mbedtls_mpi_free(&T[i].Z);
1999     }
2000 
2001 cleanup:
2002 
2003     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2004 
2005 #if defined(MBEDTLS_ECP_RESTARTABLE)
2006     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2007         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2008         if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
2009             rs_ctx->rsm->i = j;
2010         }
2011     }
2012 #endif
2013 
2014     return ret;
2015 }
2016 
2017 /*
2018  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2019  *
2020  * See ecp_comb_recode_core() for background
2021  */
ecp_select_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,unsigned char i)2022 static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2023                            const mbedtls_ecp_point T[], unsigned char T_size,
2024                            unsigned char i)
2025 {
2026     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2027     unsigned char ii, j;
2028 
2029     /* Ignore the "sign" bit and scale down */
2030     ii =  (i & 0x7Fu) >> 1;
2031 
2032     /* Read the whole table to thwart cache-based timing attacks */
2033     for (j = 0; j < T_size; j++) {
2034         MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2035         MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2036     }
2037 
2038     /* Safely invert result if i is "negative" */
2039     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2040 
2041     MPI_ECP_LSET(&R->Z, 1);
2042 
2043 cleanup:
2044     return ret;
2045 }
2046 
2047 /*
2048  * Core multiplication algorithm for the (modified) comb method.
2049  * This part is actually common with the basic comb method (GECC 3.44)
2050  *
2051  * Cost: d A + d D + 1 R
2052  */
ecp_mul_comb_core(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,const unsigned char x[],size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2053 static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2054                              const mbedtls_ecp_point T[], unsigned char T_size,
2055                              const unsigned char x[], size_t d,
2056                              int (*f_rng)(void *, unsigned char *, size_t),
2057                              void *p_rng,
2058                              mbedtls_ecp_restart_ctx *rs_ctx)
2059 {
2060     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2061     mbedtls_ecp_point Txi;
2062     mbedtls_mpi tmp[4];
2063     size_t i;
2064 
2065     mbedtls_ecp_point_init(&Txi);
2066     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2067 
2068 #if !defined(MBEDTLS_ECP_RESTARTABLE)
2069     (void) rs_ctx;
2070 #endif
2071 
2072 #if defined(MBEDTLS_ECP_RESTARTABLE)
2073     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2074         rs_ctx->rsm->state != ecp_rsm_comb_core) {
2075         rs_ctx->rsm->i = 0;
2076         rs_ctx->rsm->state = ecp_rsm_comb_core;
2077     }
2078 
2079     /* new 'if' instead of nested for the sake of the 'else' branch */
2080     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2081         /* restore current index (R already pointing to rs_ctx->rsm->R) */
2082         i = rs_ctx->rsm->i;
2083     } else
2084 #endif
2085     {
2086         /* Start with a non-zero point and randomize its coordinates */
2087         i = d;
2088         MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2089         if (f_rng != 0) {
2090             MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2091         }
2092     }
2093 
2094     while (i != 0) {
2095         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2096         --i;
2097 
2098         MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2099         MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2100         MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2101     }
2102 
2103 cleanup:
2104 
2105     mbedtls_ecp_point_free(&Txi);
2106     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2107 
2108 #if defined(MBEDTLS_ECP_RESTARTABLE)
2109     if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2110         ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2111         rs_ctx->rsm->i = i;
2112         /* no need to save R, already pointing to rs_ctx->rsm->R */
2113     }
2114 #endif
2115 
2116     return ret;
2117 }
2118 
2119 /*
2120  * Recode the scalar to get constant-time comb multiplication
2121  *
2122  * As the actual scalar recoding needs an odd scalar as a starting point,
2123  * this wrapper ensures that by replacing m by N - m if necessary, and
2124  * informs the caller that the result of multiplication will be negated.
2125  *
2126  * This works because we only support large prime order for Short Weierstrass
2127  * curves, so N is always odd hence either m or N - m is.
2128  *
2129  * See ecp_comb_recode_core() for background.
2130  */
ecp_comb_recode_scalar(const mbedtls_ecp_group * grp,const mbedtls_mpi * m,unsigned char k[COMB_MAX_D+1],size_t d,unsigned char w,unsigned char * parity_trick)2131 static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2132                                   const mbedtls_mpi *m,
2133                                   unsigned char k[COMB_MAX_D + 1],
2134                                   size_t d,
2135                                   unsigned char w,
2136                                   unsigned char *parity_trick)
2137 {
2138     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2139     mbedtls_mpi M, mm;
2140 
2141     mbedtls_mpi_init(&M);
2142     mbedtls_mpi_init(&mm);
2143 
2144     /* N is always odd (see above), just make extra sure */
2145     if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2146         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2147     }
2148 
2149     /* do we need the parity trick? */
2150     *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2151 
2152     /* execute parity fix in constant time */
2153     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2154     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2155     MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2156 
2157     /* actual scalar recoding */
2158     ecp_comb_recode_core(k, d, w, &M);
2159 
2160 cleanup:
2161     mbedtls_mpi_free(&mm);
2162     mbedtls_mpi_free(&M);
2163 
2164     return ret;
2165 }
2166 
2167 /*
2168  * Perform comb multiplication (for short Weierstrass curves)
2169  * once the auxiliary table has been pre-computed.
2170  *
2171  * Scalar recoding may use a parity trick that makes us compute -m * P,
2172  * if that is the case we'll need to recover m * P at the end.
2173  */
ecp_mul_comb_after_precomp(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * T,unsigned char T_size,unsigned char w,size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2174 static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2175                                       mbedtls_ecp_point *R,
2176                                       const mbedtls_mpi *m,
2177                                       const mbedtls_ecp_point *T,
2178                                       unsigned char T_size,
2179                                       unsigned char w,
2180                                       size_t d,
2181                                       int (*f_rng)(void *, unsigned char *, size_t),
2182                                       void *p_rng,
2183                                       mbedtls_ecp_restart_ctx *rs_ctx)
2184 {
2185     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2186     unsigned char parity_trick;
2187     unsigned char k[COMB_MAX_D + 1];
2188     mbedtls_ecp_point *RR = R;
2189 
2190 #if defined(MBEDTLS_ECP_RESTARTABLE)
2191     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2192         RR = &rs_ctx->rsm->R;
2193 
2194         if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2195             goto final_norm;
2196         }
2197     }
2198 #endif
2199 
2200     MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2201                                            &parity_trick));
2202     MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2203                                       f_rng, p_rng, rs_ctx));
2204     MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2205 
2206 #if defined(MBEDTLS_ECP_RESTARTABLE)
2207     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2208         rs_ctx->rsm->state = ecp_rsm_final_norm;
2209     }
2210 
2211 final_norm:
2212     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2213 #endif
2214     /*
2215      * Knowledge of the jacobian coordinates may leak the last few bits of the
2216      * scalar [1], and since our MPI implementation isn't constant-flow,
2217      * inversion (used for coordinate normalization) may leak the full value
2218      * of its input via side-channels [2].
2219      *
2220      * [1] https://eprint.iacr.org/2003/191
2221      * [2] https://eprint.iacr.org/2020/055
2222      *
2223      * Avoid the leak by randomizing coordinates before we normalize them.
2224      */
2225     if (f_rng != 0) {
2226         MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
2227     }
2228 
2229     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2230 
2231 #if defined(MBEDTLS_ECP_RESTARTABLE)
2232     if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2233         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2234     }
2235 #endif
2236 
2237 cleanup:
2238     return ret;
2239 }
2240 
2241 /*
2242  * Pick window size based on curve size and whether we optimize for base point
2243  */
ecp_pick_window_size(const mbedtls_ecp_group * grp,unsigned char p_eq_g)2244 static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2245                                           unsigned char p_eq_g)
2246 {
2247     unsigned char w;
2248 
2249     /*
2250      * Minimize the number of multiplications, that is minimize
2251      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2252      * (see costs of the various parts, with 1S = 1M)
2253      */
2254     w = grp->nbits >= 384 ? 5 : 4;
2255 
2256     /*
2257      * If P == G, pre-compute a bit more, since this may be re-used later.
2258      * Just adding one avoids upping the cost of the first mul too much,
2259      * and the memory cost too.
2260      */
2261     if (p_eq_g) {
2262         w++;
2263     }
2264 
2265     /*
2266      * If static comb table may not be used (!p_eq_g) or static comb table does
2267      * not exists, make sure w is within bounds.
2268      * (The last test is useful only for very small curves in the test suite.)
2269      *
2270      * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2271      * static comb table, because the size of static comb table is fixed when
2272      * it is generated.
2273      */
2274 #if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2275     if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2276         w = MBEDTLS_ECP_WINDOW_SIZE;
2277     }
2278 #endif
2279     if (w >= grp->nbits) {
2280         w = 2;
2281     }
2282 
2283     return w;
2284 }
2285 
2286 /*
2287  * Multiplication using the comb method - for curves in short Weierstrass form
2288  *
2289  * This function is mainly responsible for administrative work:
2290  * - managing the restart context if enabled
2291  * - managing the table of precomputed points (passed between the below two
2292  *   functions): allocation, computation, ownership transfer, freeing.
2293  *
2294  * It delegates the actual arithmetic work to:
2295  *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2296  *
2297  * See comments on ecp_comb_recode_core() regarding the computation strategy.
2298  */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2299 static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2300                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2301                         int (*f_rng)(void *, unsigned char *, size_t),
2302                         void *p_rng,
2303                         mbedtls_ecp_restart_ctx *rs_ctx)
2304 {
2305     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2306     unsigned char w, p_eq_g, i;
2307     size_t d;
2308     unsigned char T_size = 0, T_ok = 0;
2309     mbedtls_ecp_point *T = NULL;
2310 
2311     ECP_RS_ENTER(rsm);
2312 
2313     /* Is P the base point ? */
2314 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2315     p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2316               MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2317 #else
2318     p_eq_g = 0;
2319 #endif
2320 
2321     /* Pick window size and deduce related sizes */
2322     w = ecp_pick_window_size(grp, p_eq_g);
2323     T_size = 1U << (w - 1);
2324     d = (grp->nbits + w - 1) / w;
2325 
2326     /* Pre-computed table: do we have it already for the base point? */
2327     if (p_eq_g && grp->T != NULL) {
2328         /* second pointer to the same table, will be deleted on exit */
2329         T = grp->T;
2330         T_ok = 1;
2331     } else
2332 #if defined(MBEDTLS_ECP_RESTARTABLE)
2333     /* Pre-computed table: do we have one in progress? complete? */
2334     if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2335         /* transfer ownership of T from rsm to local function */
2336         T = rs_ctx->rsm->T;
2337         rs_ctx->rsm->T = NULL;
2338         rs_ctx->rsm->T_size = 0;
2339 
2340         /* This effectively jumps to the call to mul_comb_after_precomp() */
2341         T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2342     } else
2343 #endif
2344     /* Allocate table if we didn't have any */
2345     {
2346         T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2347         if (T == NULL) {
2348             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2349             goto cleanup;
2350         }
2351 
2352         for (i = 0; i < T_size; i++) {
2353             mbedtls_ecp_point_init(&T[i]);
2354         }
2355 
2356         T_ok = 0;
2357     }
2358 
2359     /* Compute table (or finish computing it) if not done already */
2360     if (!T_ok) {
2361         MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2362 
2363         if (p_eq_g) {
2364             /* almost transfer ownership of T to the group, but keep a copy of
2365              * the pointer to use for calling the next function more easily */
2366             grp->T = T;
2367             grp->T_size = T_size;
2368         }
2369     }
2370 
2371     /* Actual comb multiplication using precomputed points */
2372     MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2373                                                T, T_size, w, d,
2374                                                f_rng, p_rng, rs_ctx));
2375 
2376 cleanup:
2377 
2378     /* does T belong to the group? */
2379     if (T == grp->T) {
2380         T = NULL;
2381     }
2382 
2383     /* does T belong to the restart context? */
2384 #if defined(MBEDTLS_ECP_RESTARTABLE)
2385     if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2386         /* transfer ownership of T from local function to rsm */
2387         rs_ctx->rsm->T_size = T_size;
2388         rs_ctx->rsm->T = T;
2389         T = NULL;
2390     }
2391 #endif
2392 
2393     /* did T belong to us? then let's destroy it! */
2394     if (T != NULL) {
2395         for (i = 0; i < T_size; i++) {
2396             mbedtls_ecp_point_free(&T[i]);
2397         }
2398         mbedtls_free(T);
2399     }
2400 
2401     /* prevent caller from using invalid value */
2402     int should_free_R = (ret != 0);
2403 #if defined(MBEDTLS_ECP_RESTARTABLE)
2404     /* don't free R while in progress in case R == P */
2405     if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2406         should_free_R = 0;
2407     }
2408 #endif
2409     if (should_free_R) {
2410         mbedtls_ecp_point_free(R);
2411     }
2412 
2413     ECP_RS_LEAVE(rsm);
2414 
2415     return ret;
2416 }
2417 
2418 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2419 
2420 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2421 /*
2422  * For Montgomery curves, we do all the internal arithmetic in projective
2423  * coordinates. Import/export of points uses only the x coordinates, which is
2424  * internally represented as X / Z.
2425  *
2426  * For scalar multiplication, we'll use a Montgomery ladder.
2427  */
2428 
2429 /*
2430  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2431  * Cost: 1M + 1I
2432  */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)2433 static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2434 {
2435 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2436     if (mbedtls_internal_ecp_grp_capable(grp)) {
2437         return mbedtls_internal_ecp_normalize_mxz(grp, P);
2438     }
2439 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2440 
2441 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2442     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2443 #else
2444     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2445     MPI_ECP_INV(&P->Z, &P->Z);
2446     MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2447     MPI_ECP_LSET(&P->Z, 1);
2448 
2449 cleanup:
2450     return ret;
2451 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2452 }
2453 
2454 /*
2455  * Randomize projective x/z coordinates:
2456  * (X, Z) -> (l X, l Z) for random l
2457  * This is sort of the reverse operation of ecp_normalize_mxz().
2458  *
2459  * This countermeasure was first suggested in [2].
2460  * Cost: 2M
2461  */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2462 static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2463                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2464 {
2465 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2466     if (mbedtls_internal_ecp_grp_capable(grp)) {
2467         return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2468     }
2469 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2470 
2471 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2472     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2473 #else
2474     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2475     mbedtls_mpi l;
2476     mbedtls_mpi_init(&l);
2477 
2478     /* Generate l such that 1 < l < p */
2479     MPI_ECP_RAND(&l);
2480 
2481     MPI_ECP_MUL(&P->X, &P->X, &l);
2482     MPI_ECP_MUL(&P->Z, &P->Z, &l);
2483 
2484 cleanup:
2485     mbedtls_mpi_free(&l);
2486 
2487     if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2488         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2489     }
2490     return ret;
2491 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2492 }
2493 
2494 /*
2495  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2496  * for Montgomery curves in x/z coordinates.
2497  *
2498  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2499  * with
2500  * d =  X1
2501  * P = (X2, Z2)
2502  * Q = (X3, Z3)
2503  * R = (X4, Z4)
2504  * S = (X5, Z5)
2505  * and eliminating temporary variables tO, ..., t4.
2506  *
2507  * Cost: 5M + 4S
2508  */
ecp_double_add_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_ecp_point * S,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,const mbedtls_mpi * d,mbedtls_mpi T[4])2509 static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2510                               mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2511                               const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2512                               const mbedtls_mpi *d,
2513                               mbedtls_mpi T[4])
2514 {
2515 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2516     if (mbedtls_internal_ecp_grp_capable(grp)) {
2517         return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2518     }
2519 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2520 
2521 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2522     return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2523 #else
2524     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2525 
2526     MPI_ECP_ADD(&T[0], &P->X,   &P->Z);   /* Pp := PX + PZ                    */
2527     MPI_ECP_SUB(&T[1], &P->X,   &P->Z);   /* Pm := PX - PZ                    */
2528     MPI_ECP_ADD(&T[2], &Q->X,   &Q->Z);   /* Qp := QX + XZ                    */
2529     MPI_ECP_SUB(&T[3], &Q->X,   &Q->Z);   /* Qm := QX - QZ                    */
2530     MPI_ECP_MUL(&T[3], &T[3],   &T[0]);   /* Qm * Pp                          */
2531     MPI_ECP_MUL(&T[2], &T[2],   &T[1]);   /* Qp * Pm                          */
2532     MPI_ECP_SQR(&T[0], &T[0]);            /* Pp^2                             */
2533     MPI_ECP_SQR(&T[1], &T[1]);            /* Pm^2                             */
2534     MPI_ECP_MUL(&R->X, &T[0],   &T[1]);   /* Pp^2 * Pm^2                      */
2535     MPI_ECP_SUB(&T[0], &T[0],   &T[1]);   /* Pp^2 - Pm^2                      */
2536     MPI_ECP_MUL(&R->Z, &grp->A, &T[0]);   /* A * (Pp^2 - Pm^2)                */
2537     MPI_ECP_ADD(&R->Z, &T[1],   &R->Z);   /* [ A * (Pp^2-Pm^2) ] + Pm^2       */
2538     MPI_ECP_ADD(&S->X, &T[3],   &T[2]);   /* Qm*Pp + Qp*Pm                    */
2539     MPI_ECP_SQR(&S->X, &S->X);            /* (Qm*Pp + Qp*Pm)^2                */
2540     MPI_ECP_SUB(&S->Z, &T[3],   &T[2]);   /* Qm*Pp - Qp*Pm                    */
2541     MPI_ECP_SQR(&S->Z, &S->Z);            /* (Qm*Pp - Qp*Pm)^2                */
2542     MPI_ECP_MUL(&S->Z, d,       &S->Z);   /* d * ( Qm*Pp - Qp*Pm )^2          */
2543     MPI_ECP_MUL(&R->Z, &T[0],   &R->Z);   /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2544 
2545 cleanup:
2546 
2547     return ret;
2548 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2549 }
2550 
2551 /*
2552  * Multiplication with Montgomery ladder in x/z coordinates,
2553  * for curves in Montgomery form
2554  */
ecp_mul_mxz(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2555 static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2556                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2557                        int (*f_rng)(void *, unsigned char *, size_t),
2558                        void *p_rng)
2559 {
2560     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2561     size_t i;
2562     unsigned char b;
2563     mbedtls_ecp_point RP;
2564     mbedtls_mpi PX;
2565     mbedtls_mpi tmp[4];
2566     mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2567 
2568     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2569 
2570     if (f_rng == NULL) {
2571         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2572     }
2573 
2574     /* Save PX and read from P before writing to R, in case P == R */
2575     MPI_ECP_MOV(&PX, &P->X);
2576     MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2577 
2578     /* Set R to zero in modified x/z coordinates */
2579     MPI_ECP_LSET(&R->X, 1);
2580     MPI_ECP_LSET(&R->Z, 0);
2581     mbedtls_mpi_free(&R->Y);
2582 
2583     /* RP.X might be slightly larger than P, so reduce it */
2584     MOD_ADD(&RP.X);
2585 
2586     /* Randomize coordinates of the starting point */
2587     MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2588 
2589     /* Loop invariant: R = result so far, RP = R + P */
2590     i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2591     while (i-- > 0) {
2592         b = mbedtls_mpi_get_bit(m, i);
2593         /*
2594          *  if (b) R = 2R + P else R = 2R,
2595          * which is:
2596          *  if (b) double_add( RP, R, RP, R )
2597          *  else   double_add( R, RP, R, RP )
2598          * but using safe conditional swaps to avoid leaks
2599          */
2600         MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2601         MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2602         MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2603         MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2604         MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2605     }
2606 
2607     /*
2608      * Knowledge of the projective coordinates may leak the last few bits of the
2609      * scalar [1], and since our MPI implementation isn't constant-flow,
2610      * inversion (used for coordinate normalization) may leak the full value
2611      * of its input via side-channels [2].
2612      *
2613      * [1] https://eprint.iacr.org/2003/191
2614      * [2] https://eprint.iacr.org/2020/055
2615      *
2616      * Avoid the leak by randomizing coordinates before we normalize them.
2617      */
2618     MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
2619     MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2620 
2621 cleanup:
2622     mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2623 
2624     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2625     return ret;
2626 }
2627 
2628 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2629 
2630 /*
2631  * Restartable multiplication R = m * P
2632  *
2633  * This internal function can be called without an RNG in case where we know
2634  * the inputs are not sensitive.
2635  */
ecp_mul_restartable_internal(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2636 static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2637                                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2638                                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2639                                         mbedtls_ecp_restart_ctx *rs_ctx)
2640 {
2641     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2642 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2643     char is_grp_capable = 0;
2644 #endif
2645 
2646 #if defined(MBEDTLS_ECP_RESTARTABLE)
2647     /* reset ops count for this call if top-level */
2648     if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2649         rs_ctx->ops_done = 0;
2650     }
2651 #else
2652     (void) rs_ctx;
2653 #endif
2654 
2655 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2656     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2657         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2658     }
2659 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2660 
2661     int restarting = 0;
2662 #if defined(MBEDTLS_ECP_RESTARTABLE)
2663     restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2664 #endif
2665     /* skip argument check when restarting */
2666     if (!restarting) {
2667         /* check_privkey is free */
2668         MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2669 
2670         /* Common sanity checks */
2671         MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2672         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2673     }
2674 
2675     ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2676 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2677     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2678         MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2679     }
2680 #endif
2681 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2682     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2683         MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2684     }
2685 #endif
2686 
2687 cleanup:
2688 
2689 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2690     if (is_grp_capable) {
2691         mbedtls_internal_ecp_free(grp);
2692     }
2693 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2694 
2695 #if defined(MBEDTLS_ECP_RESTARTABLE)
2696     if (rs_ctx != NULL) {
2697         rs_ctx->depth--;
2698     }
2699 #endif
2700 
2701     return ret;
2702 }
2703 
2704 /*
2705  * Restartable multiplication R = m * P
2706  */
mbedtls_ecp_mul_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2707 int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2708                                 const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2709                                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2710                                 mbedtls_ecp_restart_ctx *rs_ctx)
2711 {
2712     if (f_rng == NULL) {
2713         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2714     }
2715 
2716     return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2717 }
2718 
2719 /*
2720  * Multiplication R = m * P
2721  */
mbedtls_ecp_mul(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2722 int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2723                     const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2724                     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2725 {
2726     return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2727 }
2728 #endif /* MBEDTLS_ECP_C */
2729 
2730 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2731 /*
2732  * Check that an affine point is valid as a public key,
2733  * short weierstrass curves (SEC1 3.2.3.1)
2734  */
ecp_check_pubkey_sw(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2735 static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2736 {
2737     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2738     mbedtls_mpi YY, RHS;
2739 
2740     /* pt coordinates must be normalized for our checks */
2741     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2742         mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2743         mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2744         mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2745         return MBEDTLS_ERR_ECP_INVALID_KEY;
2746     }
2747 
2748     mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2749 
2750     /*
2751      * YY = Y^2
2752      * RHS = X^3 + A X + B
2753      */
2754     MPI_ECP_SQR(&YY,  &pt->Y);
2755     MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2756 
2757     if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2758         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2759     }
2760 
2761 cleanup:
2762 
2763     mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2764 
2765     return ret;
2766 }
2767 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2768 
2769 #if defined(MBEDTLS_ECP_C)
2770 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2771 /*
2772  * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2773  * NOT constant-time - ONLY for short Weierstrass!
2774  */
mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,mbedtls_ecp_restart_ctx * rs_ctx)2775 static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2776                                      mbedtls_ecp_point *R,
2777                                      const mbedtls_mpi *m,
2778                                      const mbedtls_ecp_point *P,
2779                                      mbedtls_ecp_restart_ctx *rs_ctx)
2780 {
2781     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2782     mbedtls_mpi tmp;
2783     mbedtls_mpi_init(&tmp);
2784 
2785     if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2786         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2787         MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2788     } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2789         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2790         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2791     } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2792         MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2793         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2794         MPI_ECP_NEG(&R->Y);
2795     } else {
2796         MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2797                                                      NULL, NULL, rs_ctx));
2798     }
2799 
2800 cleanup:
2801     mbedtls_mpi_free(&tmp);
2802 
2803     return ret;
2804 }
2805 
2806 /*
2807  * Restartable linear combination
2808  * NOT constant-time
2809  */
mbedtls_ecp_muladd_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q,mbedtls_ecp_restart_ctx * rs_ctx)2810 int mbedtls_ecp_muladd_restartable(
2811     mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2812     const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2813     const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2814     mbedtls_ecp_restart_ctx *rs_ctx)
2815 {
2816     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2817     mbedtls_ecp_point mP;
2818     mbedtls_ecp_point *pmP = &mP;
2819     mbedtls_ecp_point *pR = R;
2820     mbedtls_mpi tmp[4];
2821 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2822     char is_grp_capable = 0;
2823 #endif
2824     if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2825         return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2826     }
2827 
2828     mbedtls_ecp_point_init(&mP);
2829     mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2830 
2831     ECP_RS_ENTER(ma);
2832 
2833 #if defined(MBEDTLS_ECP_RESTARTABLE)
2834     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2835         /* redirect intermediate results to restart context */
2836         pmP = &rs_ctx->ma->mP;
2837         pR  = &rs_ctx->ma->R;
2838 
2839         /* jump to next operation */
2840         if (rs_ctx->ma->state == ecp_rsma_mul2) {
2841             goto mul2;
2842         }
2843         if (rs_ctx->ma->state == ecp_rsma_add) {
2844             goto add;
2845         }
2846         if (rs_ctx->ma->state == ecp_rsma_norm) {
2847             goto norm;
2848         }
2849     }
2850 #endif /* MBEDTLS_ECP_RESTARTABLE */
2851 
2852     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2853 #if defined(MBEDTLS_ECP_RESTARTABLE)
2854     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2855         rs_ctx->ma->state = ecp_rsma_mul2;
2856     }
2857 
2858 mul2:
2859 #endif
2860     MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR,  n, Q, rs_ctx));
2861 
2862 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2863     if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2864         MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2865     }
2866 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2867 
2868 #if defined(MBEDTLS_ECP_RESTARTABLE)
2869     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2870         rs_ctx->ma->state = ecp_rsma_add;
2871     }
2872 
2873 add:
2874 #endif
2875     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2876     MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2877 #if defined(MBEDTLS_ECP_RESTARTABLE)
2878     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2879         rs_ctx->ma->state = ecp_rsma_norm;
2880     }
2881 
2882 norm:
2883 #endif
2884     MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2885     MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2886 
2887 #if defined(MBEDTLS_ECP_RESTARTABLE)
2888     if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2889         MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2890     }
2891 #endif
2892 
2893 cleanup:
2894 
2895     mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2896 
2897 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2898     if (is_grp_capable) {
2899         mbedtls_internal_ecp_free(grp);
2900     }
2901 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2902 
2903     mbedtls_ecp_point_free(&mP);
2904 
2905     ECP_RS_LEAVE(ma);
2906 
2907     return ret;
2908 }
2909 
2910 /*
2911  * Linear combination
2912  * NOT constant-time
2913  */
mbedtls_ecp_muladd(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q)2914 int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2915                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2916                        const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2917 {
2918     return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2919 }
2920 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2921 #endif /* MBEDTLS_ECP_C */
2922 
2923 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2924 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2925 #define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
2926 #define ECP_MPI_INIT_ARRAY(x)   \
2927     ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
2928 /*
2929  * Constants for the two points other than 0, 1, -1 (mod p) in
2930  * https://cr.yp.to/ecdh.html#validate
2931  * See ecp_check_pubkey_x25519().
2932  */
2933 static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2934     MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2935     MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2936     MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2937     MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2938 };
2939 static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2940     MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2941     MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2942     MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2943     MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2944 };
2945 static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2946     x25519_bad_point_1);
2947 static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2948     x25519_bad_point_2);
2949 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2950 
2951 /*
2952  * Check that the input point is not one of the low-order points.
2953  * This is recommended by the "May the Fourth" paper:
2954  * https://eprint.iacr.org/2017/806.pdf
2955  * Those points are never sent by an honest peer.
2956  */
ecp_check_bad_points_mx(const mbedtls_mpi * X,const mbedtls_mpi * P,const mbedtls_ecp_group_id grp_id)2957 static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2958                                    const mbedtls_ecp_group_id grp_id)
2959 {
2960     int ret;
2961     mbedtls_mpi XmP;
2962 
2963     mbedtls_mpi_init(&XmP);
2964 
2965     /* Reduce X mod P so that we only need to check values less than P.
2966      * We know X < 2^256 so we can proceed by subtraction. */
2967     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2968     while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2969         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2970     }
2971 
2972     /* Check against the known bad values that are less than P. For Curve448
2973      * these are 0, 1 and -1. For Curve25519 we check the values less than P
2974      * from the following list: https://cr.yp.to/ecdh.html#validate */
2975     if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) {  /* takes care of 0 and 1 */
2976         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2977         goto cleanup;
2978     }
2979 
2980 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2981     if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2982         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2983             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2984             goto cleanup;
2985         }
2986 
2987         if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2988             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2989             goto cleanup;
2990         }
2991     }
2992 #else
2993     (void) grp_id;
2994 #endif
2995 
2996     /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2997     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2998     if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2999         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
3000         goto cleanup;
3001     }
3002 
3003     ret = 0;
3004 
3005 cleanup:
3006     mbedtls_mpi_free(&XmP);
3007 
3008     return ret;
3009 }
3010 
3011 /*
3012  * Check validity of a public key for Montgomery curves with x-only schemes
3013  */
ecp_check_pubkey_mx(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3014 static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
3015 {
3016     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
3017     /* Allow any public value, if it's too big then we'll just reduce it mod p
3018      * (RFC 7748 sec. 5 para. 3). */
3019     if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
3020         return MBEDTLS_ERR_ECP_INVALID_KEY;
3021     }
3022 
3023     /* Implicit in all standards (as they don't consider negative numbers):
3024      * X must be non-negative. This is normally ensured by the way it's
3025      * encoded for transmission, but let's be extra sure. */
3026     if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
3027         return MBEDTLS_ERR_ECP_INVALID_KEY;
3028     }
3029 
3030     return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
3031 }
3032 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3033 
3034 /*
3035  * Check that a point is valid as a public key
3036  */
mbedtls_ecp_check_pubkey(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)3037 int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3038                              const mbedtls_ecp_point *pt)
3039 {
3040     /* Must use affine coordinates */
3041     if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3042         return MBEDTLS_ERR_ECP_INVALID_KEY;
3043     }
3044 
3045 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3046     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3047         return ecp_check_pubkey_mx(grp, pt);
3048     }
3049 #endif
3050 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3051     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3052         return ecp_check_pubkey_sw(grp, pt);
3053     }
3054 #endif
3055     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3056 }
3057 
3058 /*
3059  * Check that an mbedtls_mpi is valid as a private key
3060  */
mbedtls_ecp_check_privkey(const mbedtls_ecp_group * grp,const mbedtls_mpi * d)3061 int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3062                               const mbedtls_mpi *d)
3063 {
3064 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3065     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3066         /* see RFC 7748 sec. 5 para. 5 */
3067         if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3068             mbedtls_mpi_get_bit(d, 1) != 0 ||
3069             mbedtls_mpi_bitlen(d) - 1 != grp->nbits) {  /* mbedtls_mpi_bitlen is one-based! */
3070             return MBEDTLS_ERR_ECP_INVALID_KEY;
3071         }
3072 
3073         /* see [Curve25519] page 5 */
3074         if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3075             return MBEDTLS_ERR_ECP_INVALID_KEY;
3076         }
3077 
3078         return 0;
3079     }
3080 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3081 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3082     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3083         /* see SEC1 3.2 */
3084         if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3085             mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3086             return MBEDTLS_ERR_ECP_INVALID_KEY;
3087         } else {
3088             return 0;
3089         }
3090     }
3091 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3092 
3093     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3094 }
3095 
3096 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3097 MBEDTLS_STATIC_TESTABLE
mbedtls_ecp_gen_privkey_mx(size_t high_bit,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3098 int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3099                                mbedtls_mpi *d,
3100                                int (*f_rng)(void *, unsigned char *, size_t),
3101                                void *p_rng)
3102 {
3103     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3104     size_t n_random_bytes = high_bit / 8 + 1;
3105 
3106     /* [Curve25519] page 5 */
3107     /* Generate a (high_bit+1)-bit random number by generating just enough
3108      * random bytes, then shifting out extra bits from the top (necessary
3109      * when (high_bit+1) is not a multiple of 8). */
3110     MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3111                                             f_rng, p_rng));
3112     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3113 
3114     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3115 
3116     /* Make sure the last two bits are unset for Curve448, three bits for
3117        Curve25519 */
3118     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3119     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3120     if (high_bit == 254) {
3121         MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3122     }
3123 
3124 cleanup:
3125     return ret;
3126 }
3127 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3128 
3129 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
mbedtls_ecp_gen_privkey_sw(const mbedtls_mpi * N,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3130 static int mbedtls_ecp_gen_privkey_sw(
3131     const mbedtls_mpi *N, mbedtls_mpi *d,
3132     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3133 {
3134     int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3135     switch (ret) {
3136         case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3137             return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3138         default:
3139             return ret;
3140     }
3141 }
3142 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3143 
3144 /*
3145  * Generate a private key
3146  */
mbedtls_ecp_gen_privkey(const mbedtls_ecp_group * grp,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3147 int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3148                             mbedtls_mpi *d,
3149                             int (*f_rng)(void *, unsigned char *, size_t),
3150                             void *p_rng)
3151 {
3152 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3153     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3154         return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3155     }
3156 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3157 
3158 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3159     if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3160         return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3161     }
3162 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3163 
3164     return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3165 }
3166 
3167 #if defined(MBEDTLS_ECP_C)
3168 /*
3169  * Generate a keypair with configurable base point
3170  */
mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group * grp,const mbedtls_ecp_point * G,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3171 int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3172                                  const mbedtls_ecp_point *G,
3173                                  mbedtls_mpi *d, mbedtls_ecp_point *Q,
3174                                  int (*f_rng)(void *, unsigned char *, size_t),
3175                                  void *p_rng)
3176 {
3177     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3178     MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3179     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3180 
3181 cleanup:
3182     return ret;
3183 }
3184 
3185 /*
3186  * Generate key pair, wrapper for conventional base point
3187  */
mbedtls_ecp_gen_keypair(mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3188 int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3189                             mbedtls_mpi *d, mbedtls_ecp_point *Q,
3190                             int (*f_rng)(void *, unsigned char *, size_t),
3191                             void *p_rng)
3192 {
3193     return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3194 }
3195 
3196 /*
3197  * Generate a keypair, prettier wrapper
3198  */
mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3199 int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3200                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3201 {
3202     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3203     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3204         return ret;
3205     }
3206 
3207     return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3208 }
3209 #endif /* MBEDTLS_ECP_C */
3210 
3211 #define ECP_CURVE25519_KEY_SIZE 32
3212 #define ECP_CURVE448_KEY_SIZE   56
3213 /*
3214  * Read a private key.
3215  */
mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,const unsigned char * buf,size_t buflen)3216 int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3217                          const unsigned char *buf, size_t buflen)
3218 {
3219     int ret = 0;
3220 
3221     if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3222         return ret;
3223     }
3224 
3225     ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3226 
3227 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3228     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3229         /*
3230          * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3231          */
3232         if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3233             if (buflen != ECP_CURVE25519_KEY_SIZE) {
3234                 return MBEDTLS_ERR_ECP_INVALID_KEY;
3235             }
3236 
3237             MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3238 
3239             /* Set the three least significant bits to 0 */
3240             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3241             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3242             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3243 
3244             /* Set the most significant bit to 0 */
3245             MBEDTLS_MPI_CHK(
3246                 mbedtls_mpi_set_bit(&key->d,
3247                                     ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3248                 );
3249 
3250             /* Set the second most significant bit to 1 */
3251             MBEDTLS_MPI_CHK(
3252                 mbedtls_mpi_set_bit(&key->d,
3253                                     ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3254                 );
3255         } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3256             if (buflen != ECP_CURVE448_KEY_SIZE) {
3257                 return MBEDTLS_ERR_ECP_INVALID_KEY;
3258             }
3259 
3260             MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3261 
3262             /* Set the two least significant bits to 0 */
3263             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3264             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3265 
3266             /* Set the most significant bit to 1 */
3267             MBEDTLS_MPI_CHK(
3268                 mbedtls_mpi_set_bit(&key->d,
3269                                     ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3270                 );
3271         }
3272     }
3273 #endif
3274 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3275     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3276         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3277     }
3278 #endif
3279     MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3280 
3281 cleanup:
3282 
3283     if (ret != 0) {
3284         mbedtls_mpi_free(&key->d);
3285     }
3286 
3287     return ret;
3288 }
3289 
3290 /*
3291  * Write a private key.
3292  */
mbedtls_ecp_write_key(mbedtls_ecp_keypair * key,unsigned char * buf,size_t buflen)3293 int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3294                           unsigned char *buf, size_t buflen)
3295 {
3296     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3297 
3298 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3299     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3300         if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3301             if (buflen < ECP_CURVE25519_KEY_SIZE) {
3302                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3303             }
3304 
3305         } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3306             if (buflen < ECP_CURVE448_KEY_SIZE) {
3307                 return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3308             }
3309         }
3310         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3311     }
3312 #endif
3313 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3314     if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3315         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3316     }
3317 
3318 #endif
3319 cleanup:
3320 
3321     return ret;
3322 }
3323 
3324 #if defined(MBEDTLS_ECP_C)
3325 /*
3326  * Check a public-private key pair
3327  */
mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair * pub,const mbedtls_ecp_keypair * prv,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3328 int mbedtls_ecp_check_pub_priv(
3329     const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3330     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3331 {
3332     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3333     mbedtls_ecp_point Q;
3334     mbedtls_ecp_group grp;
3335     if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3336         pub->grp.id != prv->grp.id ||
3337         mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3338         mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3339         mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3340         return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3341     }
3342 
3343     mbedtls_ecp_point_init(&Q);
3344     mbedtls_ecp_group_init(&grp);
3345 
3346     /* mbedtls_ecp_mul() needs a non-const group... */
3347     mbedtls_ecp_group_copy(&grp, &prv->grp);
3348 
3349     /* Also checks d is valid */
3350     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3351 
3352     if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3353         mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3354         mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3355         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3356         goto cleanup;
3357     }
3358 
3359 cleanup:
3360     mbedtls_ecp_point_free(&Q);
3361     mbedtls_ecp_group_free(&grp);
3362 
3363     return ret;
3364 }
3365 #endif /* MBEDTLS_ECP_C */
3366 
3367 /*
3368  * Export generic key-pair parameters.
3369  */
mbedtls_ecp_export(const mbedtls_ecp_keypair * key,mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q)3370 int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3371                        mbedtls_mpi *d, mbedtls_ecp_point *Q)
3372 {
3373     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3374 
3375     if ((ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3376         return ret;
3377     }
3378 
3379     if ((ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3380         return ret;
3381     }
3382 
3383     if ((ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3384         return ret;
3385     }
3386 
3387     return 0;
3388 }
3389 
3390 #if defined(MBEDTLS_SELF_TEST)
3391 
3392 #if defined(MBEDTLS_ECP_C)
3393 /*
3394  * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3395  *
3396  * This is the linear congruential generator from numerical recipes,
3397  * except we only use the low byte as the output. See
3398  * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3399  */
self_test_rng(void * ctx,unsigned char * out,size_t len)3400 static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3401 {
3402     static uint32_t state = 42;
3403 
3404     (void) ctx;
3405 
3406     for (size_t i = 0; i < len; i++) {
3407         state = state * 1664525u + 1013904223u;
3408         out[i] = (unsigned char) state;
3409     }
3410 
3411     return 0;
3412 }
3413 
3414 /* Adjust the exponent to be a valid private point for the specified curve.
3415  * This is sometimes necessary because we use a single set of exponents
3416  * for all curves but the validity of values depends on the curve. */
self_test_adjust_exponent(const mbedtls_ecp_group * grp,mbedtls_mpi * m)3417 static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3418                                      mbedtls_mpi *m)
3419 {
3420     int ret = 0;
3421     switch (grp->id) {
3422     /* If Curve25519 is available, then that's what we use for the
3423      * Montgomery test, so we don't need the adjustment code. */
3424 #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3425 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3426         case MBEDTLS_ECP_DP_CURVE448:
3427             /* Move highest bit from 254 to N-1. Setting bit N-1 is
3428              * necessary to enforce the highest-bit-set constraint. */
3429             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3430             MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3431             /* Copy second-highest bit from 253 to N-2. This is not
3432              * necessary but improves the test variety a bit. */
3433             MBEDTLS_MPI_CHK(
3434                 mbedtls_mpi_set_bit(m, grp->nbits - 1,
3435                                     mbedtls_mpi_get_bit(m, 253)));
3436             break;
3437 #endif
3438 #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3439         default:
3440             /* Non-Montgomery curves and Curve25519 need no adjustment. */
3441             (void) grp;
3442             (void) m;
3443             goto cleanup;
3444     }
3445 cleanup:
3446     return ret;
3447 }
3448 
3449 /* Calculate R = m.P for each m in exponents. Check that the number of
3450  * basic operations doesn't depend on the value of m. */
self_test_point(int verbose,mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_mpi * m,const mbedtls_ecp_point * P,const char * const * exponents,size_t n_exponents)3451 static int self_test_point(int verbose,
3452                            mbedtls_ecp_group *grp,
3453                            mbedtls_ecp_point *R,
3454                            mbedtls_mpi *m,
3455                            const mbedtls_ecp_point *P,
3456                            const char *const *exponents,
3457                            size_t n_exponents)
3458 {
3459     int ret = 0;
3460     size_t i = 0;
3461     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3462     add_count = 0;
3463     dbl_count = 0;
3464     mul_count = 0;
3465 
3466     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3467     MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3468     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3469 
3470     for (i = 1; i < n_exponents; i++) {
3471         add_c_prev = add_count;
3472         dbl_c_prev = dbl_count;
3473         mul_c_prev = mul_count;
3474         add_count = 0;
3475         dbl_count = 0;
3476         mul_count = 0;
3477 
3478         MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3479         MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3480         MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3481 
3482         if (add_count != add_c_prev ||
3483             dbl_count != dbl_c_prev ||
3484             mul_count != mul_c_prev) {
3485             ret = 1;
3486             break;
3487         }
3488     }
3489 
3490 cleanup:
3491     if (verbose != 0) {
3492         if (ret != 0) {
3493             mbedtls_printf("failed (%u)\n", (unsigned int) i);
3494         } else {
3495             mbedtls_printf("passed\n");
3496         }
3497     }
3498     return ret;
3499 }
3500 #endif /* MBEDTLS_ECP_C */
3501 
3502 /*
3503  * Checkup routine
3504  */
mbedtls_ecp_self_test(int verbose)3505 int mbedtls_ecp_self_test(int verbose)
3506 {
3507 #if defined(MBEDTLS_ECP_C)
3508     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3509     mbedtls_ecp_group grp;
3510     mbedtls_ecp_point R, P;
3511     mbedtls_mpi m;
3512 
3513 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3514     /* Exponents especially adapted for secp192k1, which has the lowest
3515      * order n of all supported curves (secp192r1 is in a slightly larger
3516      * field but the order of its base point is slightly smaller). */
3517     const char *sw_exponents[] =
3518     {
3519         "000000000000000000000000000000000000000000000001", /* one */
3520         "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3521         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3522         "400000000000000000000000000000000000000000000000", /* one and zeros */
3523         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3524         "555555555555555555555555555555555555555555555555", /* 101010... */
3525     };
3526 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3527 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3528     const char *m_exponents[] =
3529     {
3530         /* Valid private values for Curve25519. In a build with Curve448
3531          * but not Curve25519, they will be adjusted in
3532          * self_test_adjust_exponent(). */
3533         "4000000000000000000000000000000000000000000000000000000000000000",
3534         "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3535         "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3536         "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3537         "5555555555555555555555555555555555555555555555555555555555555550",
3538         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3539     };
3540 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3541 
3542     mbedtls_ecp_group_init(&grp);
3543     mbedtls_ecp_point_init(&R);
3544     mbedtls_ecp_point_init(&P);
3545     mbedtls_mpi_init(&m);
3546 
3547 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3548     /* Use secp192r1 if available, or any available curve */
3549 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3550     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3551 #else
3552     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3553 #endif
3554 
3555     if (verbose != 0) {
3556         mbedtls_printf("  ECP SW test #1 (constant op_count, base point G): ");
3557     }
3558     /* Do a dummy multiplication first to trigger precomputation */
3559     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3560     MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3561     ret = self_test_point(verbose,
3562                           &grp, &R, &m, &grp.G,
3563                           sw_exponents,
3564                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3565     if (ret != 0) {
3566         goto cleanup;
3567     }
3568 
3569     if (verbose != 0) {
3570         mbedtls_printf("  ECP SW test #2 (constant op_count, other point): ");
3571     }
3572     /* We computed P = 2G last time, use it */
3573     ret = self_test_point(verbose,
3574                           &grp, &R, &m, &P,
3575                           sw_exponents,
3576                           sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3577     if (ret != 0) {
3578         goto cleanup;
3579     }
3580 
3581     mbedtls_ecp_group_free(&grp);
3582     mbedtls_ecp_point_free(&R);
3583 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3584 
3585 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3586     if (verbose != 0) {
3587         mbedtls_printf("  ECP Montgomery test (constant op_count): ");
3588     }
3589 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3590     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3591 #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3592     MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3593 #else
3594 #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3595 #endif
3596     ret = self_test_point(verbose,
3597                           &grp, &R, &m, &grp.G,
3598                           m_exponents,
3599                           sizeof(m_exponents) / sizeof(m_exponents[0]));
3600     if (ret != 0) {
3601         goto cleanup;
3602     }
3603 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3604 
3605 cleanup:
3606 
3607     if (ret < 0 && verbose != 0) {
3608         mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3609     }
3610 
3611     mbedtls_ecp_group_free(&grp);
3612     mbedtls_ecp_point_free(&R);
3613     mbedtls_ecp_point_free(&P);
3614     mbedtls_mpi_free(&m);
3615 
3616     if (verbose != 0) {
3617         mbedtls_printf("\n");
3618     }
3619 
3620     return ret;
3621 #else /* MBEDTLS_ECP_C */
3622     (void) verbose;
3623     return 0;
3624 #endif /* MBEDTLS_ECP_C */
3625 }
3626 
3627 #endif /* MBEDTLS_SELF_TEST */
3628 
3629 #endif /* !MBEDTLS_ECP_ALT */
3630 
3631 #endif /* MBEDTLS_ECP_LIGHT */
3632