1 /*
2 * Copyright (c) 2011-2014, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 /**
8 * @file
9 * @brief Misc utilities
10 *
11 * Misc utilities usable by the kernel and application code.
12 */
13
14 #ifndef ZEPHYR_INCLUDE_SYS_UTIL_H_
15 #define ZEPHYR_INCLUDE_SYS_UTIL_H_
16
17 #include <zephyr/sys/util_macro.h>
18 #include <zephyr/toolchain.h>
19
20 /* needs to be outside _ASMLANGUAGE so 'true' and 'false' can turn
21 * into '1' and '0' for asm or linker scripts
22 */
23 #include <stdbool.h>
24
25 #ifndef _ASMLANGUAGE
26
27 #include <zephyr/sys/__assert.h>
28 #include <zephyr/types.h>
29 #include <stddef.h>
30 #include <stdint.h>
31
32 /** @brief Number of bits that make up a type */
33 #define NUM_BITS(t) (sizeof(t) * 8)
34
35 #ifdef __cplusplus
36 extern "C" {
37 #endif
38
39 /**
40 * @defgroup sys-util Utility Functions
41 * @since 2.4
42 * @version 0.1.0
43 * @ingroup utilities
44 * @{
45 */
46
47 /** @brief Cast @p x, a pointer, to an unsigned integer. */
48 #define POINTER_TO_UINT(x) ((uintptr_t) (x))
49 /** @brief Cast @p x, an unsigned integer, to a <tt>void*</tt>. */
50 #define UINT_TO_POINTER(x) ((void *) (uintptr_t) (x))
51 /** @brief Cast @p x, a pointer, to a signed integer. */
52 #define POINTER_TO_INT(x) ((intptr_t) (x))
53 /** @brief Cast @p x, a signed integer, to a <tt>void*</tt>. */
54 #define INT_TO_POINTER(x) ((void *) (intptr_t) (x))
55
56 #if !(defined(__CHAR_BIT__) && defined(__SIZEOF_LONG__) && defined(__SIZEOF_LONG_LONG__))
57 # error Missing required predefined macros for BITS_PER_LONG calculation
58 #endif
59
60 /** Number of bits in a long int. */
61 #define BITS_PER_LONG (__CHAR_BIT__ * __SIZEOF_LONG__)
62
63 /** Number of bits in a long long int. */
64 #define BITS_PER_LONG_LONG (__CHAR_BIT__ * __SIZEOF_LONG_LONG__)
65
66 /**
67 * @brief Create a contiguous bitmask starting at bit position @p l
68 * and ending at position @p h.
69 */
70 #define GENMASK(h, l) \
71 (((~0UL) - (1UL << (l)) + 1) & (~0UL >> (BITS_PER_LONG - 1 - (h))))
72
73 /**
74 * @brief Create a contiguous 64-bit bitmask starting at bit position @p l
75 * and ending at position @p h.
76 */
77 #define GENMASK64(h, l) \
78 (((~0ULL) - (1ULL << (l)) + 1) & (~0ULL >> (BITS_PER_LONG_LONG - 1 - (h))))
79
80 /** @brief Extract the Least Significant Bit from @p value. */
81 #define LSB_GET(value) ((value) & -(value))
82
83 /**
84 * @brief Extract a bitfield element from @p value corresponding to
85 * the field mask @p mask.
86 */
87 #define FIELD_GET(mask, value) (((value) & (mask)) / LSB_GET(mask))
88
89 /**
90 * @brief Prepare a bitfield element using @p value with @p mask representing
91 * its field position and width. The result should be combined
92 * with other fields using a logical OR.
93 */
94 #define FIELD_PREP(mask, value) (((value) * LSB_GET(mask)) & (mask))
95
96 /** @brief 0 if @p cond is true-ish; causes a compile error otherwise. */
97 #define ZERO_OR_COMPILE_ERROR(cond) ((int) sizeof(char[1 - 2 * !(cond)]) - 1)
98
99 #if defined(__cplusplus)
100
101 /* The built-in function used below for type checking in C is not
102 * supported by GNU C++.
103 */
104 #define ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
105
106 #else /* __cplusplus */
107
108 /**
109 * @brief Zero if @p array has an array type, a compile error otherwise
110 *
111 * This macro is available only from C, not C++.
112 */
113 #define IS_ARRAY(array) \
114 ZERO_OR_COMPILE_ERROR( \
115 !__builtin_types_compatible_p(__typeof__(array), \
116 __typeof__(&(array)[0])))
117
118 /**
119 * @brief Number of elements in the given @p array
120 *
121 * In C++, due to language limitations, this will accept as @p array
122 * any type that implements <tt>operator[]</tt>. The results may not be
123 * particularly meaningful in this case.
124 *
125 * In C, passing a pointer as @p array causes a compile error.
126 */
127 #define ARRAY_SIZE(array) \
128 ((size_t) (IS_ARRAY(array) + (sizeof(array) / sizeof((array)[0]))))
129
130 #endif /* __cplusplus */
131
132 /**
133 * @brief Whether @p ptr is an element of @p array
134 *
135 * This macro can be seen as a slightly stricter version of @ref PART_OF_ARRAY
136 * in that it also ensures that @p ptr is aligned to an array-element boundary
137 * of @p array.
138 *
139 * In C, passing a pointer as @p array causes a compile error.
140 *
141 * @param array the array in question
142 * @param ptr the pointer to check
143 *
144 * @return 1 if @p ptr is part of @p array, 0 otherwise
145 */
146 #define IS_ARRAY_ELEMENT(array, ptr) \
147 ((ptr) && POINTER_TO_UINT(array) <= POINTER_TO_UINT(ptr) && \
148 POINTER_TO_UINT(ptr) < POINTER_TO_UINT(&(array)[ARRAY_SIZE(array)]) && \
149 (POINTER_TO_UINT(ptr) - POINTER_TO_UINT(array)) % sizeof((array)[0]) == 0)
150
151 /**
152 * @brief Index of @p ptr within @p array
153 *
154 * With `CONFIG_ASSERT=y`, this macro will trigger a runtime assertion
155 * when @p ptr does not fall into the range of @p array or when @p ptr
156 * is not aligned to an array-element boundary of @p array.
157 *
158 * In C, passing a pointer as @p array causes a compile error.
159 *
160 * @param array the array in question
161 * @param ptr pointer to an element of @p array
162 *
163 * @return the array index of @p ptr within @p array, on success
164 */
165 #define ARRAY_INDEX(array, ptr) \
166 ({ \
167 __ASSERT_NO_MSG(IS_ARRAY_ELEMENT(array, ptr)); \
168 (__typeof__((array)[0]) *)(ptr) - (array); \
169 })
170
171 /**
172 * @brief Check if a pointer @p ptr lies within @p array.
173 *
174 * In C but not C++, this causes a compile error if @p array is not an array
175 * (e.g. if @p ptr and @p array are mixed up).
176 *
177 * @param array an array
178 * @param ptr a pointer
179 * @return 1 if @p ptr is part of @p array, 0 otherwise
180 */
181 #define PART_OF_ARRAY(array, ptr) \
182 ((ptr) && POINTER_TO_UINT(array) <= POINTER_TO_UINT(ptr) && \
183 POINTER_TO_UINT(ptr) < POINTER_TO_UINT(&(array)[ARRAY_SIZE(array)]))
184
185 /**
186 * @brief Array-index of @p ptr within @p array, rounded down
187 *
188 * This macro behaves much like @ref ARRAY_INDEX with the notable
189 * difference that it accepts any @p ptr in the range of @p array rather than
190 * exclusively a @p ptr aligned to an array-element boundary of @p array.
191 *
192 * With `CONFIG_ASSERT=y`, this macro will trigger a runtime assertion
193 * when @p ptr does not fall into the range of @p array.
194 *
195 * In C, passing a pointer as @p array causes a compile error.
196 *
197 * @param array the array in question
198 * @param ptr pointer to an element of @p array
199 *
200 * @return the array index of @p ptr within @p array, on success
201 */
202 #define ARRAY_INDEX_FLOOR(array, ptr) \
203 ({ \
204 __ASSERT_NO_MSG(PART_OF_ARRAY(array, ptr)); \
205 (POINTER_TO_UINT(ptr) - POINTER_TO_UINT(array)) / sizeof((array)[0]); \
206 })
207
208 /**
209 * @brief Iterate over members of an array using an index variable
210 *
211 * @param array the array in question
212 * @param idx name of array index variable
213 */
214 #define ARRAY_FOR_EACH(array, idx) for (size_t idx = 0; (idx) < ARRAY_SIZE(array); ++(idx))
215
216 /**
217 * @brief Iterate over members of an array using a pointer
218 *
219 * @param array the array in question
220 * @param ptr pointer to an element of @p array
221 */
222 #define ARRAY_FOR_EACH_PTR(array, ptr) \
223 for (__typeof__(*(array)) *ptr = (array); (size_t)((ptr) - (array)) < ARRAY_SIZE(array); \
224 ++(ptr))
225
226 /**
227 * @brief Validate if two entities have a compatible type
228 *
229 * @param a the first entity to be compared
230 * @param b the second entity to be compared
231 * @return 1 if the two elements are compatible, 0 if they are not
232 */
233 #define SAME_TYPE(a, b) __builtin_types_compatible_p(__typeof__(a), __typeof__(b))
234
235 /**
236 * @brief Validate CONTAINER_OF parameters, only applies to C mode.
237 */
238 #ifndef __cplusplus
239 #define CONTAINER_OF_VALIDATE(ptr, type, field) \
240 BUILD_ASSERT(SAME_TYPE(*(ptr), ((type *)0)->field) || \
241 SAME_TYPE(*(ptr), void), \
242 "pointer type mismatch in CONTAINER_OF");
243 #else
244 #define CONTAINER_OF_VALIDATE(ptr, type, field)
245 #endif
246
247 /**
248 * @brief Get a pointer to a structure containing the element
249 *
250 * Example:
251 *
252 * struct foo {
253 * int bar;
254 * };
255 *
256 * struct foo my_foo;
257 * int *ptr = &my_foo.bar;
258 *
259 * struct foo *container = CONTAINER_OF(ptr, struct foo, bar);
260 *
261 * Above, @p container points at @p my_foo.
262 *
263 * @param ptr pointer to a structure element
264 * @param type name of the type that @p ptr is an element of
265 * @param field the name of the field within the struct @p ptr points to
266 * @return a pointer to the structure that contains @p ptr
267 */
268 #define CONTAINER_OF(ptr, type, field) \
269 ({ \
270 CONTAINER_OF_VALIDATE(ptr, type, field) \
271 ((type *)(((char *)(ptr)) - offsetof(type, field))); \
272 })
273
274 /**
275 * @brief Report the size of a struct field in bytes.
276 *
277 * @param type The structure containing the field of interest.
278 * @param member The field to return the size of.
279 *
280 * @return The field size.
281 */
282 #define SIZEOF_FIELD(type, member) sizeof((((type *)0)->member))
283
284 /**
285 * @brief Concatenate input arguments
286 *
287 * Concatenate provided tokens into a combined token during the preprocessor pass.
288 * This can be used to, for ex., build an identifier out of multiple parts,
289 * where one of those parts may be, for ex, a number, another macro, or a macro argument.
290 *
291 * @param ... Tokens to concatencate
292 *
293 * @return Concatenated token.
294 */
295 #define CONCAT(...) \
296 UTIL_CAT(_CONCAT_, NUM_VA_ARGS_LESS_1(__VA_ARGS__))(__VA_ARGS__)
297
298 /**
299 * @brief Check if @p ptr is aligned to @p align alignment
300 */
301 #define IS_ALIGNED(ptr, align) (((uintptr_t)(ptr)) % (align) == 0)
302
303 /**
304 * @brief Value of @p x rounded up to the next multiple of @p align.
305 */
306 #define ROUND_UP(x, align) \
307 ((((unsigned long)(x) + ((unsigned long)(align) - 1)) / \
308 (unsigned long)(align)) * (unsigned long)(align))
309
310 /**
311 * @brief Value of @p x rounded down to the previous multiple of @p align.
312 */
313 #define ROUND_DOWN(x, align) \
314 (((unsigned long)(x) / (unsigned long)(align)) * (unsigned long)(align))
315
316 /** @brief Value of @p x rounded up to the next word boundary. */
317 #define WB_UP(x) ROUND_UP(x, sizeof(void *))
318
319 /** @brief Value of @p x rounded down to the previous word boundary. */
320 #define WB_DN(x) ROUND_DOWN(x, sizeof(void *))
321
322 /**
323 * @brief Divide and round up.
324 *
325 * Example:
326 * @code{.c}
327 * DIV_ROUND_UP(1, 2); // 1
328 * DIV_ROUND_UP(3, 2); // 2
329 * @endcode
330 *
331 * @param n Numerator.
332 * @param d Denominator.
333 *
334 * @return The result of @p n / @p d, rounded up.
335 */
336 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
337
338 /**
339 * @brief Divide and round to the nearest integer.
340 *
341 * Example:
342 * @code{.c}
343 * DIV_ROUND_CLOSEST(5, 2); // 3
344 * DIV_ROUND_CLOSEST(5, -2); // -3
345 * DIV_ROUND_CLOSEST(5, 3); // 2
346 * @endcode
347 *
348 * @param n Numerator.
349 * @param d Denominator.
350 *
351 * @return The result of @p n / @p d, rounded to the nearest integer.
352 */
353 #define DIV_ROUND_CLOSEST(n, d) \
354 ((((n) < 0) ^ ((d) < 0)) ? ((n) - ((d) / 2)) / (d) : \
355 ((n) + ((d) / 2)) / (d))
356
357 /**
358 * @brief Ceiling function applied to @p numerator / @p divider as a fraction.
359 * @deprecated Use DIV_ROUND_UP() instead.
360 */
361 #define ceiling_fraction(numerator, divider) __DEPRECATED_MACRO \
362 DIV_ROUND_UP(numerator, divider)
363
364 #ifndef MAX
365 /**
366 * @brief Obtain the maximum of two values.
367 *
368 * @note Arguments are evaluated twice. Use Z_MAX for a GCC-only, single
369 * evaluation version
370 *
371 * @param a First value.
372 * @param b Second value.
373 *
374 * @returns Maximum value of @p a and @p b.
375 */
376 #define MAX(a, b) (((a) > (b)) ? (a) : (b))
377 #endif
378
379 #ifndef MIN
380 /**
381 * @brief Obtain the minimum of two values.
382 *
383 * @note Arguments are evaluated twice. Use Z_MIN for a GCC-only, single
384 * evaluation version
385 *
386 * @param a First value.
387 * @param b Second value.
388 *
389 * @returns Minimum value of @p a and @p b.
390 */
391 #define MIN(a, b) (((a) < (b)) ? (a) : (b))
392 #endif
393
394 #ifndef CLAMP
395 /**
396 * @brief Clamp a value to a given range.
397 *
398 * @note Arguments are evaluated multiple times. Use Z_CLAMP for a GCC-only,
399 * single evaluation version.
400 *
401 * @param val Value to be clamped.
402 * @param low Lowest allowed value (inclusive).
403 * @param high Highest allowed value (inclusive).
404 *
405 * @returns Clamped value.
406 */
407 #define CLAMP(val, low, high) (((val) <= (low)) ? (low) : MIN(val, high))
408 #endif
409
410 /**
411 * @brief Checks if a value is within range.
412 *
413 * @note @p val is evaluated twice.
414 *
415 * @param val Value to be checked.
416 * @param min Lower bound (inclusive).
417 * @param max Upper bound (inclusive).
418 *
419 * @retval true If value is within range
420 * @retval false If the value is not within range
421 */
422 #define IN_RANGE(val, min, max) ((val) >= (min) && (val) <= (max))
423
424 /**
425 * @brief Is @p x a power of two?
426 * @param x value to check
427 * @return true if @p x is a power of two, false otherwise
428 */
is_power_of_two(unsigned int x)429 static inline bool is_power_of_two(unsigned int x)
430 {
431 return IS_POWER_OF_TWO(x);
432 }
433
434 /**
435 * @brief Is @p p equal to ``NULL``?
436 *
437 * Some macros may need to check their arguments against NULL to support
438 * multiple use-cases, but NULL checks can generate warnings if such a macro
439 * is used in contexts where that particular argument can never be NULL.
440 *
441 * The warnings can be triggered if:
442 * a) all macros are expanded (e.g. when using CONFIG_COMPILER_SAVE_TEMPS=y)
443 * or
444 * b) tracking of macro expansions are turned off (-ftrack-macro-expansion=0)
445 *
446 * The warnings can be circumvented by using this inline function for doing
447 * the NULL check within the macro. The compiler is still able to optimize the
448 * NULL check out at a later stage.
449 *
450 * @param p Pointer to check
451 * @return true if @p p is equal to ``NULL``, false otherwise
452 */
is_null_no_warn(void * p)453 static ALWAYS_INLINE bool is_null_no_warn(void *p)
454 {
455 return p == NULL;
456 }
457
458 /**
459 * @brief Arithmetic shift right
460 * @param value value to shift
461 * @param shift number of bits to shift
462 * @return @p value shifted right by @p shift; opened bit positions are
463 * filled with the sign bit
464 */
arithmetic_shift_right(int64_t value,uint8_t shift)465 static inline int64_t arithmetic_shift_right(int64_t value, uint8_t shift)
466 {
467 int64_t sign_ext;
468
469 if (shift == 0U) {
470 return value;
471 }
472
473 /* extract sign bit */
474 sign_ext = (value >> 63) & 1;
475
476 /* make all bits of sign_ext be the same as the value's sign bit */
477 sign_ext = -sign_ext;
478
479 /* shift value and fill opened bit positions with sign bit */
480 return (value >> shift) | (sign_ext << (64 - shift));
481 }
482
483 /**
484 * @brief byte by byte memcpy.
485 *
486 * Copy `size` bytes of `src` into `dest`. This is guaranteed to be done byte by byte.
487 *
488 * @param dst Pointer to the destination memory.
489 * @param src Pointer to the source of the data.
490 * @param size The number of bytes to copy.
491 */
bytecpy(void * dst,const void * src,size_t size)492 static inline void bytecpy(void *dst, const void *src, size_t size)
493 {
494 size_t i;
495
496 for (i = 0; i < size; ++i) {
497 ((volatile uint8_t *)dst)[i] = ((volatile const uint8_t *)src)[i];
498 }
499 }
500
501 /**
502 * @brief byte by byte swap.
503 *
504 * Swap @a size bytes between memory regions @a a and @a b. This is
505 * guaranteed to be done byte by byte.
506 *
507 * @param a Pointer to the first memory region.
508 * @param b Pointer to the second memory region.
509 * @param size The number of bytes to swap.
510 */
byteswp(void * a,void * b,size_t size)511 static inline void byteswp(void *a, void *b, size_t size)
512 {
513 uint8_t t;
514 uint8_t *aa = (uint8_t *)a;
515 uint8_t *bb = (uint8_t *)b;
516
517 for (; size > 0; --size) {
518 t = *aa;
519 *aa++ = *bb;
520 *bb++ = t;
521 }
522 }
523
524 /**
525 * @brief Convert a single character into a hexadecimal nibble.
526 *
527 * @param c The character to convert
528 * @param x The address of storage for the converted number.
529 *
530 * @return Zero on success or (negative) error code otherwise.
531 */
532 int char2hex(char c, uint8_t *x);
533
534 /**
535 * @brief Convert a single hexadecimal nibble into a character.
536 *
537 * @param c The number to convert
538 * @param x The address of storage for the converted character.
539 *
540 * @return Zero on success or (negative) error code otherwise.
541 */
542 int hex2char(uint8_t x, char *c);
543
544 /**
545 * @brief Convert a binary array into string representation.
546 *
547 * @param buf The binary array to convert
548 * @param buflen The length of the binary array to convert
549 * @param hex Address of where to store the string representation.
550 * @param hexlen Size of the storage area for string representation.
551 *
552 * @return The length of the converted string, or 0 if an error occurred.
553 */
554 size_t bin2hex(const uint8_t *buf, size_t buflen, char *hex, size_t hexlen);
555
556 /**
557 * @brief Convert a hexadecimal string into a binary array.
558 *
559 * @param hex The hexadecimal string to convert
560 * @param hexlen The length of the hexadecimal string to convert.
561 * @param buf Address of where to store the binary data
562 * @param buflen Size of the storage area for binary data
563 *
564 * @return The length of the binary array, or 0 if an error occurred.
565 */
566 size_t hex2bin(const char *hex, size_t hexlen, uint8_t *buf, size_t buflen);
567
568 /**
569 * @brief Convert a binary coded decimal (BCD 8421) value to binary.
570 *
571 * @param bcd BCD 8421 value to convert.
572 *
573 * @return Binary representation of input value.
574 */
bcd2bin(uint8_t bcd)575 static inline uint8_t bcd2bin(uint8_t bcd)
576 {
577 return ((10 * (bcd >> 4)) + (bcd & 0x0F));
578 }
579
580 /**
581 * @brief Convert a binary value to binary coded decimal (BCD 8421).
582 *
583 * @param bin Binary value to convert.
584 *
585 * @return BCD 8421 representation of input value.
586 */
bin2bcd(uint8_t bin)587 static inline uint8_t bin2bcd(uint8_t bin)
588 {
589 return (((bin / 10) << 4) | (bin % 10));
590 }
591
592 /**
593 * @brief Convert a uint8_t into a decimal string representation.
594 *
595 * Convert a uint8_t value into its ASCII decimal string representation.
596 * The string is terminated if there is enough space in buf.
597 *
598 * @param buf Address of where to store the string representation.
599 * @param buflen Size of the storage area for string representation.
600 * @param value The value to convert to decimal string
601 *
602 * @return The length of the converted string (excluding terminator if
603 * any), or 0 if an error occurred.
604 */
605 uint8_t u8_to_dec(char *buf, uint8_t buflen, uint8_t value);
606
607 /**
608 * @brief Sign extend an 8, 16 or 32 bit value using the index bit as sign bit.
609 *
610 * @param value The value to sign expand.
611 * @param index 0 based bit index to sign bit (0 to 31)
612 */
sign_extend(uint32_t value,uint8_t index)613 static inline int32_t sign_extend(uint32_t value, uint8_t index)
614 {
615 __ASSERT_NO_MSG(index <= 31);
616
617 uint8_t shift = 31 - index;
618
619 return (int32_t)(value << shift) >> shift;
620 }
621
622 /**
623 * @brief Sign extend a 64 bit value using the index bit as sign bit.
624 *
625 * @param value The value to sign expand.
626 * @param index 0 based bit index to sign bit (0 to 63)
627 */
sign_extend_64(uint64_t value,uint8_t index)628 static inline int64_t sign_extend_64(uint64_t value, uint8_t index)
629 {
630 __ASSERT_NO_MSG(index <= 63);
631
632 uint8_t shift = 63 - index;
633
634 return (int64_t)(value << shift) >> shift;
635 }
636
637 /**
638 * @brief Properly truncate a NULL-terminated UTF-8 string
639 *
640 * Take a NULL-terminated UTF-8 string and ensure that if the string has been
641 * truncated (by setting the NULL terminator) earlier by other means, that
642 * the string ends with a properly formatted UTF-8 character (1-4 bytes).
643 *
644 * @htmlonly
645 * Example:
646 * char test_str[] = "€€€";
647 * char trunc_utf8[8];
648 *
649 * printf("Original : %s\n", test_str); // €€€
650 * strncpy(trunc_utf8, test_str, sizeof(trunc_utf8));
651 * trunc_utf8[sizeof(trunc_utf8) - 1] = '\0';
652 * printf("Bad : %s\n", trunc_utf8); // €€�
653 * utf8_trunc(trunc_utf8);
654 * printf("Truncated: %s\n", trunc_utf8); // €€
655 * @endhtmlonly
656 *
657 * @param utf8_str NULL-terminated string
658 *
659 * @return Pointer to the @p utf8_str
660 */
661 char *utf8_trunc(char *utf8_str);
662
663 /**
664 * @brief Copies a UTF-8 encoded string from @p src to @p dst
665 *
666 * The resulting @p dst will always be NULL terminated if @p n is larger than 0,
667 * and the @p dst string will always be properly UTF-8 truncated.
668 *
669 * @param dst The destination of the UTF-8 string.
670 * @param src The source string
671 * @param n The size of the @p dst buffer. Maximum number of characters copied
672 * is @p n - 1. If 0 nothing will be done, and the @p dst will not be
673 * NULL terminated.
674 *
675 * @return Pointer to the @p dst
676 */
677 char *utf8_lcpy(char *dst, const char *src, size_t n);
678
679 #define __z_log2d(x) (32 - __builtin_clz(x) - 1)
680 #define __z_log2q(x) (64 - __builtin_clzll(x) - 1)
681 #define __z_log2(x) (sizeof(__typeof__(x)) > 4 ? __z_log2q(x) : __z_log2d(x))
682
683 /**
684 * @brief Compute log2(x)
685 *
686 * @note This macro expands its argument multiple times (to permit use
687 * in constant expressions), which must not have side effects.
688 *
689 * @param x An unsigned integral value to compute logarithm of (positive only)
690 *
691 * @return log2(x) when 1 <= x <= max(x), -1 when x < 1
692 */
693 #define LOG2(x) ((x) < 1 ? -1 : __z_log2(x))
694
695 /**
696 * @brief Compute ceil(log2(x))
697 *
698 * @note This macro expands its argument multiple times (to permit use
699 * in constant expressions), which must not have side effects.
700 *
701 * @param x An unsigned integral value
702 *
703 * @return ceil(log2(x)) when 1 <= x <= max(type(x)), 0 when x < 1
704 */
705 #define LOG2CEIL(x) ((x) < 1 ? 0 : __z_log2((x)-1) + 1)
706
707 /**
708 * @brief Compute next highest power of two
709 *
710 * Equivalent to 2^ceil(log2(x))
711 *
712 * @note This macro expands its argument multiple times (to permit use
713 * in constant expressions), which must not have side effects.
714 *
715 * @param x An unsigned integral value
716 *
717 * @return 2^ceil(log2(x)) or 0 if 2^ceil(log2(x)) would saturate 64-bits
718 */
719 #define NHPOT(x) ((x) < 1 ? 1 : ((x) > (1ULL<<63) ? 0 : 1ULL << LOG2CEIL(x)))
720
721 /**
722 * @brief Determine if a buffer exceeds highest address
723 *
724 * This macro determines if a buffer identified by a starting address @a addr
725 * and length @a buflen spans a region of memory that goes beyond the highest
726 * possible address (thereby resulting in a pointer overflow).
727 *
728 * @param addr Buffer starting address
729 * @param buflen Length of the buffer
730 *
731 * @return true if pointer overflow detected, false otherwise
732 */
733 #define Z_DETECT_POINTER_OVERFLOW(addr, buflen) \
734 (((buflen) != 0) && \
735 ((UINTPTR_MAX - (uintptr_t)(addr)) <= ((uintptr_t)((buflen) - 1))))
736
737 /**
738 * @brief XOR n bytes
739 *
740 * @param dst Destination of where to store result. Shall be @p len bytes.
741 * @param src1 First source. Shall be @p len bytes.
742 * @param src2 Second source. Shall be @p len bytes.
743 * @param len Number of bytes to XOR.
744 */
mem_xor_n(uint8_t * dst,const uint8_t * src1,const uint8_t * src2,size_t len)745 static inline void mem_xor_n(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, size_t len)
746 {
747 while (len--) {
748 *dst++ = *src1++ ^ *src2++;
749 }
750 }
751
752 /**
753 * @brief XOR 32 bits
754 *
755 * @param dst Destination of where to store result. Shall be 32 bits.
756 * @param src1 First source. Shall be 32 bits.
757 * @param src2 Second source. Shall be 32 bits.
758 */
mem_xor_32(uint8_t dst[4],const uint8_t src1[4],const uint8_t src2[4])759 static inline void mem_xor_32(uint8_t dst[4], const uint8_t src1[4], const uint8_t src2[4])
760 {
761 mem_xor_n(dst, src1, src2, 4U);
762 }
763
764 /**
765 * @brief XOR 128 bits
766 *
767 * @param dst Destination of where to store result. Shall be 128 bits.
768 * @param src1 First source. Shall be 128 bits.
769 * @param src2 Second source. Shall be 128 bits.
770 */
mem_xor_128(uint8_t dst[16],const uint8_t src1[16],const uint8_t src2[16])771 static inline void mem_xor_128(uint8_t dst[16], const uint8_t src1[16], const uint8_t src2[16])
772 {
773 mem_xor_n(dst, src1, src2, 16);
774 }
775
776 #ifdef __cplusplus
777 }
778 #endif
779
780 /* This file must be included at the end of the !_ASMLANGUAGE guard.
781 * It depends on macros defined in this file above which cannot be forward declared.
782 */
783 #include <zephyr/sys/time_units.h>
784
785 #endif /* !_ASMLANGUAGE */
786
787 /** @brief Number of bytes in @p x kibibytes */
788 #ifdef _LINKER
789 /* This is used in linker scripts so need to avoid type casting there */
790 #define KB(x) ((x) << 10)
791 #else
792 #define KB(x) (((size_t)(x)) << 10)
793 #endif
794 /** @brief Number of bytes in @p x mebibytes */
795 #define MB(x) (KB(x) << 10)
796 /** @brief Number of bytes in @p x gibibytes */
797 #define GB(x) (MB(x) << 10)
798
799 /** @brief Number of Hz in @p x kHz */
800 #define KHZ(x) ((x) * 1000)
801 /** @brief Number of Hz in @p x MHz */
802 #define MHZ(x) (KHZ(x) * 1000)
803
804 /**
805 * @brief For the POSIX architecture add a minimal delay in a busy wait loop.
806 * For other architectures this is a no-op.
807 *
808 * In the POSIX ARCH, code takes zero simulated time to execute,
809 * so busy wait loops become infinite loops, unless we
810 * force the loop to take a bit of time.
811 * Include this macro in all busy wait/spin loops
812 * so they will also work when building for the POSIX architecture.
813 *
814 * @param t Time in microseconds we will busy wait
815 */
816 #if defined(CONFIG_ARCH_POSIX)
817 #define Z_SPIN_DELAY(t) k_busy_wait(t)
818 #else
819 #define Z_SPIN_DELAY(t)
820 #endif
821
822 /**
823 * @brief Wait for an expression to return true with a timeout
824 *
825 * Spin on an expression with a timeout and optional delay between iterations
826 *
827 * Commonly needed when waiting on hardware to complete an asynchronous
828 * request to read/write/initialize/reset, but useful for any expression.
829 *
830 * @param expr Truth expression upon which to poll, e.g.: XYZREG & XYZREG_EN
831 * @param timeout Timeout to wait for in microseconds, e.g.: 1000 (1ms)
832 * @param delay_stmt Delay statement to perform each poll iteration
833 * e.g.: NULL, k_yield(), k_msleep(1) or k_busy_wait(1)
834 *
835 * @retval expr As a boolean return, if false then it has timed out.
836 */
837 #define WAIT_FOR(expr, timeout, delay_stmt) \
838 ({ \
839 uint32_t _wf_cycle_count = k_us_to_cyc_ceil32(timeout); \
840 uint32_t _wf_start = k_cycle_get_32(); \
841 while (!(expr) && (_wf_cycle_count > (k_cycle_get_32() - _wf_start))) { \
842 delay_stmt; \
843 Z_SPIN_DELAY(10); \
844 } \
845 (expr); \
846 })
847
848 /**
849 * @}
850 */
851
852 #endif /* ZEPHYR_INCLUDE_SYS_UTIL_H_ */
853