1 /* 2 * SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD 3 * 4 * SPDX-License-Identifier: Apache-2.0 5 */ 6 7 #pragma once 8 9 #ifndef __ASSEMBLER__ 10 #include <stdint.h> 11 #include "esp_assert.h" 12 #endif 13 14 #include "esp_bit_defs.h" 15 #include "reg_base.h" 16 17 #define PRO_CPU_NUM (0) 18 19 #define REG_UHCI_BASE(i) (DR_REG_UHCI0_BASE) // only one UHCI on C6 20 #define REG_UART_BASE(i) (DR_REG_UART_BASE + (i) * 0x1000) // UART0 and UART1 21 #define REG_UART_AHB_BASE(i) (0x60000000 + (i) * 0x10000) 22 #define UART_FIFO_AHB_REG(i) (REG_UART_AHB_BASE(i) + 0x0) 23 #define REG_I2S_BASE(i) (DR_REG_I2S_BASE) // only one I2S on C6 24 #define REG_TIMG_BASE(i) (DR_REG_TIMERGROUP0_BASE + (i) * 0x1000) // TIMERG0 and TIMERG1 25 #define REG_SPI_MEM_BASE(i) (DR_REG_SPI0_BASE + (i) * 0x1000) // SPIMEM0 and SPIMEM1 26 #define REG_SPI_BASE(i) (((i)==2) ? (DR_REG_SPI2_BASE) : (0)) // only one GPSPI on C6 27 #define REG_I2C_BASE(i) (DR_REG_I2C_EXT_BASE) // only one I2C on C6 28 #define REG_MCPWM_BASE(i) (DR_REG_MCPWM_BASE) // only one MCPWM on C6 29 #define REG_TWAI_BASE(i) (DR_REG_TWAI0_BASE + (i) * 0x2000) // TWAI0 and TWAI1 30 31 //Registers Operation {{ 32 #define ETS_UNCACHED_ADDR(addr) (addr) 33 #define ETS_CACHED_ADDR(addr) (addr) 34 35 #ifndef __ASSEMBLER__ 36 37 //write value to register 38 #define REG_WRITE(_r, _v) do { \ 39 (*(volatile uint32_t *)(_r)) = (_v); \ 40 } while(0) 41 42 //read value from register 43 #define REG_READ(_r) ({ \ 44 (*(volatile uint32_t *)(_r)); \ 45 }) 46 47 //get bit or get bits from register 48 #define REG_GET_BIT(_r, _b) ({ \ 49 (*(volatile uint32_t*)(_r) & (_b)); \ 50 }) 51 52 //set bit or set bits to register 53 #define REG_SET_BIT(_r, _b) do { \ 54 *(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r)) | (_b); \ 55 } while(0) 56 57 //clear bit or clear bits of register 58 #define REG_CLR_BIT(_r, _b) do { \ 59 *(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r)) & (~(_b)); \ 60 } while(0) 61 62 //set bits of register controlled by mask 63 #define REG_SET_BITS(_r, _b, _m) do { \ 64 *(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r) & ~(_m)) | ((_b) & (_m)); \ 65 } while(0) 66 67 //get field from register, uses field _S & _V to determine mask 68 #define REG_GET_FIELD(_r, _f) ({ \ 69 ((REG_READ(_r) >> (_f##_S)) & (_f##_V)); \ 70 }) 71 72 //set field of a register from variable, uses field _S & _V to determine mask 73 #define REG_SET_FIELD(_r, _f, _v) do { \ 74 REG_WRITE((_r),((REG_READ(_r) & ~((_f##_V) << (_f##_S)))|(((_v) & (_f##_V))<<(_f##_S)))); \ 75 } while(0) 76 77 //get field value from a variable, used when _f is not left shifted by _f##_S 78 #define VALUE_GET_FIELD(_r, _f) (((_r) >> (_f##_S)) & (_f)) 79 80 //get field value from a variable, used when _f is left shifted by _f##_S 81 #define VALUE_GET_FIELD2(_r, _f) (((_r) & (_f))>> (_f##_S)) 82 83 //set field value to a variable, used when _f is not left shifted by _f##_S 84 #define VALUE_SET_FIELD(_r, _f, _v) ((_r)=(((_r) & ~((_f) << (_f##_S)))|((_v)<<(_f##_S)))) 85 86 //set field value to a variable, used when _f is left shifted by _f##_S 87 #define VALUE_SET_FIELD2(_r, _f, _v) ((_r)=(((_r) & ~(_f))|((_v)<<(_f##_S)))) 88 89 //generate a value from a field value, used when _f is not left shifted by _f##_S 90 #define FIELD_TO_VALUE(_f, _v) (((_v)&(_f))<<_f##_S) 91 92 //generate a value from a field value, used when _f is left shifted by _f##_S 93 #define FIELD_TO_VALUE2(_f, _v) (((_v)<<_f##_S) & (_f)) 94 95 //read value from register 96 #define READ_PERI_REG(addr) ({ \ 97 (*((volatile uint32_t *)ETS_UNCACHED_ADDR(addr))); \ 98 }) 99 100 //write value to register 101 #define WRITE_PERI_REG(addr, val) do { \ 102 (*((volatile uint32_t *)ETS_UNCACHED_ADDR(addr))) = (uint32_t)(val); \ 103 } while(0) 104 105 //clear bits of register controlled by mask 106 #define CLEAR_PERI_REG_MASK(reg, mask) do { \ 107 WRITE_PERI_REG((reg), (READ_PERI_REG(reg)&(~(mask)))); \ 108 } while(0) 109 110 //set bits of register controlled by mask 111 #define SET_PERI_REG_MASK(reg, mask) do { \ 112 WRITE_PERI_REG((reg), (READ_PERI_REG(reg)|(mask))); \ 113 } while(0) 114 115 //get bits of register controlled by mask 116 #define GET_PERI_REG_MASK(reg, mask) ({ \ 117 (READ_PERI_REG(reg) & (mask)); \ 118 }) 119 120 //get bits of register controlled by highest bit and lowest bit 121 #define GET_PERI_REG_BITS(reg, hipos,lowpos) ({ \ 122 ((READ_PERI_REG(reg)>>(lowpos))&((1<<((hipos)-(lowpos)+1))-1)); \ 123 }) 124 125 //set bits of register controlled by mask and shift 126 #define SET_PERI_REG_BITS(reg,bit_map,value,shift) do { \ 127 WRITE_PERI_REG((reg),(READ_PERI_REG(reg)&(~((bit_map)<<(shift))))|(((value) & (bit_map))<<(shift)) ); \ 128 } while(0) 129 130 //get field of register 131 #define GET_PERI_REG_BITS2(reg, mask,shift) ({ \ 132 ((READ_PERI_REG(reg)>>(shift))&(mask)); \ 133 }) 134 135 #endif /* !__ASSEMBLER__ */ 136 //}} 137 138 //Periheral Clock {{ 139 #define APB_CLK_FREQ_ROM ( 40*1000000 ) 140 #define CPU_CLK_FREQ_ROM APB_CLK_FREQ_ROM 141 #define EFUSE_CLK_FREQ_ROM ( 20*1000000) 142 #define CPU_CLK_FREQ_MHZ_BTLD (80) // The cpu clock frequency (in MHz) to set at 2nd stage bootloader system clock configuration 143 #define CPU_CLK_FREQ APB_CLK_FREQ 144 #define APB_CLK_FREQ ( 40*1000000 ) 145 #define MODEM_APB_CLK_FREQ ( 80*1000000 ) 146 #define REF_CLK_FREQ ( 1000000 ) 147 #define XTAL_CLK_FREQ (40*1000000) 148 #define GPIO_MATRIX_DELAY_NS 0 149 //}} 150 151 /* Overall memory map */ 152 /* Note: We should not use MACROs similar in cache_memory.h 153 * those are defined during run-time. But the MACROs here 154 * should be defined statically! 155 */ 156 157 #define SOC_IROM_LOW 0x42000000 158 #define SOC_IROM_HIGH (SOC_IROM_LOW + (CONFIG_MMU_PAGE_SIZE<<8)) 159 #define SOC_DROM_LOW SOC_IROM_LOW 160 #define SOC_DROM_HIGH SOC_IROM_HIGH 161 #define SOC_IROM_MASK_LOW 0x40000000 162 #define SOC_IROM_MASK_HIGH 0x40050000 163 #define SOC_DROM_MASK_LOW 0x40000000 164 #define SOC_DROM_MASK_HIGH 0x40050000 165 #define SOC_IRAM_LOW 0x40800000 166 #define SOC_IRAM_HIGH 0x40880000 167 #define SOC_DRAM_LOW 0x40800000 168 #define SOC_DRAM_HIGH 0x40880000 169 #define SOC_RTC_IRAM_LOW 0x50000000 // ESP32-C6 only has 16k LP memory 170 #define SOC_RTC_IRAM_HIGH 0x50004000 171 #define SOC_RTC_DRAM_LOW 0x50000000 172 #define SOC_RTC_DRAM_HIGH 0x50004000 173 #define SOC_RTC_DATA_LOW 0x50000000 174 #define SOC_RTC_DATA_HIGH 0x50004000 175 176 //First and last words of the D/IRAM region, for both the DRAM address as well as the IRAM alias. 177 #define SOC_DIRAM_IRAM_LOW 0x40800000 178 #define SOC_DIRAM_IRAM_HIGH 0x40880000 179 #define SOC_DIRAM_DRAM_LOW 0x40800000 180 #define SOC_DIRAM_DRAM_HIGH 0x40880000 181 182 #define MAP_DRAM_TO_IRAM(addr) (addr) 183 #define MAP_IRAM_TO_DRAM(addr) (addr) 184 185 // Region of memory accessible via DMA. See esp_ptr_dma_capable(). 186 #define SOC_DMA_LOW 0x40800000 187 #define SOC_DMA_HIGH 0x40880000 188 189 // Region of RAM that is byte-accessible. See esp_ptr_byte_accessible(). 190 #define SOC_BYTE_ACCESSIBLE_LOW 0x40800000 191 #define SOC_BYTE_ACCESSIBLE_HIGH 0x40880000 192 193 //Region of memory that is internal, as in on the same silicon die as the ESP32 CPUs 194 //(excluding RTC data region, that's checked separately.) See esp_ptr_internal(). 195 #define SOC_MEM_INTERNAL_LOW 0x40800000 196 #define SOC_MEM_INTERNAL_HIGH 0x40880000 197 #define SOC_MEM_INTERNAL_LOW1 0x40800000 198 #define SOC_MEM_INTERNAL_HIGH1 0x40880000 199 200 #define SOC_MAX_CONTIGUOUS_RAM_SIZE (SOC_IRAM_HIGH - SOC_IRAM_LOW) ///< Largest span of contiguous memory (DRAM or IRAM) in the address space 201 202 // Region of address space that holds peripherals 203 #define SOC_PERIPHERAL_LOW 0x60000000 204 #define SOC_PERIPHERAL_HIGH 0x60100000 205 206 // CPU sub-system region, contains interrupt config registers 207 #define SOC_CPU_SUBSYSTEM_LOW 0x20000000 208 #define SOC_CPU_SUBSYSTEM_HIGH 0x30000000 209 210 // Start (highest address) of ROM boot stack, only relevant during early boot 211 #define SOC_ROM_STACK_START 0x4087e610 212 #define SOC_ROM_STACK_SIZE 0x2000 213 214 //On RISC-V CPUs, the interrupt sources are all external interrupts, whose type, source and priority are configured by SW. 215 //There is no HW NMI conception. SW should controlled the masked levels through INT_THRESH_REG. 216 217 //CPU0 Interrupt number reserved in riscv/vector.S, not touch this. 218 #define ETS_T1_WDT_INUM 24 219 #define ETS_CACHEERR_INUM 25 220 #define ETS_MEMPROT_ERR_INUM 26 221 //CPU0 Max valid interrupt number 222 #define ETS_MAX_INUM 31 223 224 //CPU0 Interrupt number used in ROM, should be cancelled in SDK 225 #define ETS_SLC_INUM 1 226 #define ETS_UART0_INUM 5 227 #define ETS_UART1_INUM 5 228 #define ETS_SPI2_INUM 1 229 //CPU0 Interrupt number used in ROM code only when module init function called, should pay attention here. 230 #define ETS_GPIO_INUM 4 231 232 //Other interrupt number should be managed by the user 233 234 //Invalid interrupt for number interrupt matrix 235 #define ETS_INVALID_INUM 0 236 237 //Interrupt medium level, used for INT WDT for example 238 #define SOC_INTERRUPT_LEVEL_MEDIUM 4 239 240 // Interrupt number for the Interrupt watchdog 241 #define ETS_INT_WDT_INUM (ETS_T1_WDT_INUM) 242