1 /*
2  *  Elliptic curves over GF(p): curve-specific data and functions
3  *
4  *  Copyright (C) 2006-2022, ARM Limited, All Rights Reserved
5  *  Copyright (C) 2019, STMicroelectronics, All Rights Reserved
6  *  SPDX-License-Identifier: Apache-2.0
7  *
8  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
9  *  not use this file except in compliance with the License.
10  *  You may obtain a copy of the License at
11  *
12  *  http://www.apache.org/licenses/LICENSE-2.0
13  *
14  *  Unless required by applicable law or agreed to in writing, software
15  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
16  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  *  See the License for the specific language governing permissions and
18  *  limitations under the License.
19  *
20  *  This file implements STMicroelectronics EC group load
21  *  with HW services based on mbed TLS API
22  */
23 
24 #include "mbedtls/build_info.h"
25 
26 #if defined(MBEDTLS_ECP_C)
27 
28 #include "mbedtls/ecp.h"
29 #include "mbedtls/platform_util.h"
30 #include "mbedtls/error.h"
31 
32 #include <string.h>
33 
34 #if defined(MBEDTLS_ECP_ALT)
35 
36 #if defined(MBEDTLS_ECP_NIST_OPTIM)
37 #error "MBEDTLS_ECP_NIST_OPTIM defined, but it cannot coexist with ST alternative ECP implementation"
38 #endif
39 
40 /* Parameter validation macros - mbedtls/platform_util.h has deprecated them */
41 #define ECP_VALIDATE_RET( cond ) do { } while(0)
42 #define ECP_VALIDATE( cond ) do { } while(0)
43 
44 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) )  \
45     && !defined(inline) && !defined(__cplusplus)
46 #define inline __inline
47 #endif
48 
49 /*
50  * Conversion macros for embedded constants:
51  * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
52  */
53 #if defined(MBEDTLS_HAVE_INT32)
54 
55 #define BYTES_TO_T_UINT_4( a, b, c, d )                       \
56     ( (mbedtls_mpi_uint) (a) <<  0 ) |                        \
57     ( (mbedtls_mpi_uint) (b) <<  8 ) |                        \
58     ( (mbedtls_mpi_uint) (c) << 16 ) |                        \
59     ( (mbedtls_mpi_uint) (d) << 24 )
60 
61 #define BYTES_TO_T_UINT_2( a, b )                   \
62     BYTES_TO_T_UINT_4( a, b, 0, 0 )
63 
64 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
65     BYTES_TO_T_UINT_4( a, b, c, d ),                \
66     BYTES_TO_T_UINT_4( e, f, g, h )
67 
68 #else /* 64-bits */
69 
70 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
71     ( (mbedtls_mpi_uint) (a) <<  0 ) |                        \
72     ( (mbedtls_mpi_uint) (b) <<  8 ) |                        \
73     ( (mbedtls_mpi_uint) (c) << 16 ) |                        \
74     ( (mbedtls_mpi_uint) (d) << 24 ) |                        \
75     ( (mbedtls_mpi_uint) (e) << 32 ) |                        \
76     ( (mbedtls_mpi_uint) (f) << 40 ) |                        \
77     ( (mbedtls_mpi_uint) (g) << 48 ) |                        \
78     ( (mbedtls_mpi_uint) (h) << 56 )
79 
80 #define BYTES_TO_T_UINT_4( a, b, c, d )             \
81     BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
82 
83 #define BYTES_TO_T_UINT_2( a, b )                   \
84     BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
85 
86 #endif /* bits in mbedtls_mpi_uint */
87 
88 /*
89  * Note: the constants are in little-endian order
90  * to be directly usable in MPIs
91  */
92 
93 /*
94  * Domain parameters for secp192r1
95  */
96 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
97 static const mbedtls_mpi_uint secp192r1_p[] = {
98     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
99     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
100     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
101 };
102 static const mbedtls_mpi_uint secp192r1_b[] = {
103     BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
104     BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
105     BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
106 };
107 static const mbedtls_mpi_uint secp192r1_gx[] = {
108     BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
109     BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
110     BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
111 };
112 static const mbedtls_mpi_uint secp192r1_gy[] = {
113     BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
114     BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
115     BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
116 };
117 static const mbedtls_mpi_uint secp192r1_n[] = {
118     BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
119     BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
120     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
121 };
122 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
123 
124 /*
125  * Domain parameters for secp224r1
126  */
127 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
128 static const mbedtls_mpi_uint secp224r1_p[] = {
129     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
130     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
131     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
132     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
133 };
134 static const mbedtls_mpi_uint secp224r1_b[] = {
135     BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
136     BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
137     BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
138     BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
139 };
140 static const mbedtls_mpi_uint secp224r1_gx[] = {
141     BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
142     BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
143     BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
144     BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
145 };
146 static const mbedtls_mpi_uint secp224r1_gy[] = {
147     BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
148     BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
149     BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
150     BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
151 };
152 static const mbedtls_mpi_uint secp224r1_n[] = {
153     BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
154     BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
155     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
156     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
157 };
158 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
159 
160 /*
161  * Domain parameters for secp256r1
162  */
163 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
164 static const mbedtls_mpi_uint secp256r1_p[] = {
165     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
166     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
167     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
168     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
169 };
170 static const mbedtls_mpi_uint secp256r1_b[] = {
171     BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
172     BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
173     BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
174     BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
175 };
176 static const mbedtls_mpi_uint secp256r1_gx[] = {
177     BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
178     BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
179     BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
180     BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
181 };
182 static const mbedtls_mpi_uint secp256r1_gy[] = {
183     BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
184     BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
185     BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
186     BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
187 };
188 static const mbedtls_mpi_uint secp256r1_n[] = {
189     BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
190     BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
191     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
192     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
193 };
194 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
195 
196 /*
197  * Domain parameters for secp384r1
198  */
199 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
200 static const mbedtls_mpi_uint secp384r1_p[] = {
201     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
202     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
203     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
204     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
205     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
206     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
207 };
208 static const mbedtls_mpi_uint secp384r1_b[] = {
209     BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
210     BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
211     BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
212     BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
213     BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
214     BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
215 };
216 static const mbedtls_mpi_uint secp384r1_gx[] = {
217     BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
218     BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
219     BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
220     BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
221     BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
222     BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
223 };
224 static const mbedtls_mpi_uint secp384r1_gy[] = {
225     BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
226     BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
227     BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
228     BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
229     BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
230     BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
231 };
232 static const mbedtls_mpi_uint secp384r1_n[] = {
233     BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
234     BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
235     BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
236     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
237     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
238     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
239 };
240 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
241 
242 /*
243  * Domain parameters for secp521r1
244  */
245 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
246 static const mbedtls_mpi_uint secp521r1_p[] = {
247     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
248     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
249     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
250     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
251     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
252     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
253     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
254     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
255     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
256 };
257 static const mbedtls_mpi_uint secp521r1_b[] = {
258     BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
259     BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
260     BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
261     BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
262     BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
263     BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
264     BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
265     BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
266     BYTES_TO_T_UINT_2( 0x51, 0x00 ),
267 };
268 static const mbedtls_mpi_uint secp521r1_gx[] = {
269     BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
270     BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
271     BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
272     BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
273     BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
274     BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
275     BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
276     BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
277     BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
278 };
279 static const mbedtls_mpi_uint secp521r1_gy[] = {
280     BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
281     BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
282     BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
283     BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
284     BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
285     BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
286     BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
287     BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
288     BYTES_TO_T_UINT_2( 0x18, 0x01 ),
289 };
290 static const mbedtls_mpi_uint secp521r1_n[] = {
291     BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
292     BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
293     BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
294     BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
295     BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
296     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
297     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
298     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
299     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
300 };
301 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
302 
303 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
304 static const mbedtls_mpi_uint secp192k1_p[] = {
305     BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
306     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
307     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
308 };
309 static const mbedtls_mpi_uint secp192k1_a[] = {
310     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
311 };
312 static const mbedtls_mpi_uint secp192k1_b[] = {
313     BYTES_TO_T_UINT_2( 0x03, 0x00 ),
314 };
315 static const mbedtls_mpi_uint secp192k1_gx[] = {
316     BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
317     BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
318     BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
319 };
320 static const mbedtls_mpi_uint secp192k1_gy[] = {
321     BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
322     BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
323     BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
324 };
325 static const mbedtls_mpi_uint secp192k1_n[] = {
326     BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
327     BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
328     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
329 };
330 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
331 
332 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
333 static const mbedtls_mpi_uint secp224k1_p[] = {
334     BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
335     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
336     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
337     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
338 };
339 static const mbedtls_mpi_uint secp224k1_a[] = {
340     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
341 };
342 static const mbedtls_mpi_uint secp224k1_b[] = {
343     BYTES_TO_T_UINT_2( 0x05, 0x00 ),
344 };
345 static const mbedtls_mpi_uint secp224k1_gx[] = {
346     BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
347     BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
348     BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
349     BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
350 };
351 static const mbedtls_mpi_uint secp224k1_gy[] = {
352     BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
353     BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
354     BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
355     BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
356 };
357 static const mbedtls_mpi_uint secp224k1_n[] = {
358     BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
359     BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
360     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
361     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
362 };
363 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
364 
365 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
366 static const mbedtls_mpi_uint secp256k1_p[] = {
367     BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
368     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
369     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
370     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
371 };
372 static const mbedtls_mpi_uint secp256k1_a[] = {
373     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
374 };
375 static const mbedtls_mpi_uint secp256k1_b[] = {
376     BYTES_TO_T_UINT_2( 0x07, 0x00 ),
377 };
378 static const mbedtls_mpi_uint secp256k1_gx[] = {
379     BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
380     BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
381     BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
382     BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
383 };
384 static const mbedtls_mpi_uint secp256k1_gy[] = {
385     BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
386     BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
387     BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
388     BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
389 };
390 static const mbedtls_mpi_uint secp256k1_n[] = {
391     BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
392     BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
393     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
394     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
395 };
396 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
397 
398 /*
399  * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
400  */
401 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
402 static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
403     BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
404     BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
405     BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
406     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
407 };
408 static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
409     BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
410     BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
411     BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
412     BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
413 };
414 static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
415     BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
416     BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
417     BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
418     BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
419 };
420 static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
421     BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
422     BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
423     BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
424     BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
425 };
426 static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
427     BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
428     BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
429     BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
430     BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
431 };
432 static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
433     BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
434     BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
435     BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
436     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
437 };
438 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
439 
440 /*
441  * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
442  */
443 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
444 static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
445     BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
446     BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
447     BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
448     BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
449     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
450     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
451 };
452 static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
453     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
454     BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
455     BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
456     BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
457     BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
458     BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
459 };
460 static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
461     BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
462     BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
463     BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
464     BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
465     BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
466     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
467 };
468 static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
469     BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
470     BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
471     BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
472     BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
473     BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
474     BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
475 };
476 static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
477     BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
478     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
479     BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
480     BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
481     BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
482     BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
483 };
484 static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
485     BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
486     BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
487     BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
488     BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
489     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
490     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
491 };
492 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
493 
494 /*
495  * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
496  */
497 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
498 static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
499     BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
500     BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
501     BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
502     BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
503     BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
504     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
505     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
506     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
507 };
508 static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
509     BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
510     BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
511     BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
512     BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
513     BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
514     BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
515     BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
516     BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
517 };
518 static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
519     BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
520     BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
521     BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
522     BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
523     BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
524     BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
525     BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
526     BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
527 };
528 static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
529     BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
530     BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
531     BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
532     BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
533     BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
534     BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
535     BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
536     BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
537 };
538 static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
539     BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
540     BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
541     BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
542     BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
543     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
544     BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
545     BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
546     BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
547 };
548 static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
549     BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
550     BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
551     BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
552     BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
553     BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
554     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
555     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
556     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
557 };
558 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
559 
560 #if    defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) \
561     || defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) \
562     || defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) \
563     || defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) \
564     || defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) \
565     || defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   \
566     || defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   \
567     || defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   \
568     || defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) \
569     || defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) \
570     || defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
571 /* For these curves, we build the group parameters dynamically. */
572 #define ECP_LOAD_GROUP
573 #endif
574 
575 #if defined(ECP_LOAD_GROUP)
576 /*
577  * Create an MPI from embedded constants
578  * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
579  */
ecp_mpi_load(mbedtls_mpi * X,const mbedtls_mpi_uint * p,size_t len)580 static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
581 {
582     X->MBEDTLS_PRIVATE(s) = 1;
583     X->MBEDTLS_PRIVATE(n) = len / sizeof( mbedtls_mpi_uint );
584     X->MBEDTLS_PRIVATE(p) = (mbedtls_mpi_uint *) p;
585 }
586 
587 /*
588  * Set an MPI to static value 1
589  */
ecp_mpi_set1(mbedtls_mpi * X)590 static inline void ecp_mpi_set1( mbedtls_mpi *X )
591 {
592     static mbedtls_mpi_uint one[] = { 1 };
593     X->MBEDTLS_PRIVATE(s) = 1;
594     X->MBEDTLS_PRIVATE(n) = 1;
595     X->MBEDTLS_PRIVATE(p) = one;
596 }
597 
598 /*
599  * Make group available from embedded constants
600  *
601  * STMicroelectronics edition
602  *
603  */
ecp_group_load(mbedtls_ecp_group * grp,const mbedtls_mpi_uint * p,size_t plen,const mbedtls_mpi_uint * a,size_t alen,const mbedtls_mpi_uint * b,size_t blen,const mbedtls_mpi_uint * gx,size_t gxlen,const mbedtls_mpi_uint * gy,size_t gylen,const mbedtls_mpi_uint * n,size_t nlen)604 static int ecp_group_load( mbedtls_ecp_group *grp,
605                            const mbedtls_mpi_uint *p,  size_t plen,
606                            const mbedtls_mpi_uint *a,  size_t alen,
607                            const mbedtls_mpi_uint *b,  size_t blen,
608                            const mbedtls_mpi_uint *gx, size_t gxlen,
609                            const mbedtls_mpi_uint *gy, size_t gylen,
610                            const mbedtls_mpi_uint *n,  size_t nlen)
611 {
612     int ret = 0;
613 
614     ecp_mpi_load( &grp->P, p, plen );
615     if( a != NULL )
616         ecp_mpi_load( &grp->A, a, alen );
617     ecp_mpi_load( &grp->B, b, blen );
618     ecp_mpi_load( &grp->N, n, nlen );
619 
620     ecp_mpi_load( &grp->G.MBEDTLS_PRIVATE(X), gx, gxlen );
621     ecp_mpi_load( &grp->G.MBEDTLS_PRIVATE(Y), gy, gylen );
622     ecp_mpi_set1( &grp->G.MBEDTLS_PRIVATE(Z) );
623 
624     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
625     grp->nbits = mbedtls_mpi_bitlen( &grp->N );
626 
627     grp->h = 1;
628 
629     /* ST coefs group load:
630        ST coef tables are big endian, whereas mpi coef tables are little endian
631      */
632     grp->st_modulus_size = mbedtls_mpi_size( &grp->P );
633     grp->st_order_size = mbedtls_mpi_size( &grp->N );
634 
635     grp->st_p = mbedtls_calloc(grp->st_modulus_size, sizeof( uint8_t ));
636     MBEDTLS_MPI_CHK((grp->st_p == NULL) ? MBEDTLS_ERR_ECP_ALLOC_FAILED : 0);
637     mbedtls_mpi_write_binary(&grp->P, grp->st_p, grp->st_modulus_size);
638 
639     grp->st_a_abs = mbedtls_calloc(grp->st_modulus_size, sizeof( uint8_t ));
640     MBEDTLS_MPI_CHK((grp->st_a_abs == NULL) ? MBEDTLS_ERR_ECP_ALLOC_FAILED : 0);
641 
642     if (grp->A.MBEDTLS_PRIVATE(p) == NULL)
643     {
644         /* NIST prime curves: A coef = -3 */
645         mbedtls_platform_zeroize(grp->st_a_abs, grp->st_modulus_size);
646         grp->st_a_abs[grp->st_modulus_size - 1] = 3U;
647         /* For HW, sign is 1 for negative value and 0 for positive value */
648         grp->st_a_sign = 1U;
649     }
650     else
651     {
652         /* Other curves: A coef is positive */
653         mbedtls_mpi_write_binary(&grp->A, grp->st_a_abs, grp->st_modulus_size);
654         grp->st_a_sign = 0;
655     }
656 
657     grp->st_b = mbedtls_calloc(grp->st_modulus_size, sizeof( uint8_t ));
658     MBEDTLS_MPI_CHK((grp->st_b == NULL) ? MBEDTLS_ERR_ECP_ALLOC_FAILED : 0);
659     mbedtls_mpi_write_binary(&grp->B, grp->st_b, grp->st_modulus_size);
660 
661     grp->st_gx = mbedtls_calloc(grp->st_modulus_size, sizeof( uint8_t ));
662     MBEDTLS_MPI_CHK((grp->st_gx == NULL) ? MBEDTLS_ERR_ECP_ALLOC_FAILED : 0);
663     mbedtls_mpi_write_binary(&grp->G.MBEDTLS_PRIVATE(X), grp->st_gx, grp->st_modulus_size);
664 
665     grp->st_gy = mbedtls_calloc(grp->st_modulus_size, sizeof( uint8_t ));
666     MBEDTLS_MPI_CHK((grp->st_gy == NULL) ? MBEDTLS_ERR_ECP_ALLOC_FAILED : 0);
667     mbedtls_mpi_write_binary(&grp->G.MBEDTLS_PRIVATE(Y), grp->st_gy, grp->st_modulus_size);
668 
669     grp->st_n = mbedtls_calloc(grp->st_order_size, sizeof( uint8_t ));
670     MBEDTLS_MPI_CHK((grp->st_n == NULL) ? MBEDTLS_ERR_ECP_ALLOC_FAILED : 0);
671     mbedtls_mpi_write_binary(&grp->N, grp->st_n, grp->st_order_size);
672 
673 cleanup:
674     if( ret != 0 )
675         mbedtls_ecp_group_free( grp );
676 
677     return( ret );
678 }
679 #endif /* ECP_LOAD_GROUP */
680 
681 #if defined(MBEDTLS_ECP_NIST_OPTIM)
682 /* Forward declarations */
683 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
684 static int ecp_mod_p192( mbedtls_mpi * );
685 #endif
686 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
687 static int ecp_mod_p224( mbedtls_mpi * );
688 #endif
689 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
690 static int ecp_mod_p256( mbedtls_mpi * );
691 #endif
692 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
693 static int ecp_mod_p384( mbedtls_mpi * );
694 #endif
695 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
696 static int ecp_mod_p521( mbedtls_mpi * );
697 #endif
698 
699 #define NIST_MODP( P )      grp->modp = ecp_mod_ ## P;
700 #else
701 #define NIST_MODP( P )
702 #endif /* MBEDTLS_ECP_NIST_OPTIM */
703 
704 /* Additional forward declarations */
705 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
706 static int ecp_mod_p255( mbedtls_mpi * );
707 #endif
708 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
709 static int ecp_mod_p448( mbedtls_mpi * );
710 #endif
711 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
712 static int ecp_mod_p192k1( mbedtls_mpi * );
713 #endif
714 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
715 static int ecp_mod_p224k1( mbedtls_mpi * );
716 #endif
717 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
718 static int ecp_mod_p256k1( mbedtls_mpi * );
719 #endif
720 
721 #if defined(ECP_LOAD_GROUP)
722 #define LOAD_GROUP_A( G )   ecp_group_load( grp,            \
723                             G ## _p,  sizeof( G ## _p  ),   \
724                             G ## _a,  sizeof( G ## _a  ),   \
725                             G ## _b,  sizeof( G ## _b  ),   \
726                             G ## _gx, sizeof( G ## _gx ),   \
727                             G ## _gy, sizeof( G ## _gy ),   \
728                             G ## _n,  sizeof( G ## _n  ) )
729 
730 #define LOAD_GROUP( G )     ecp_group_load( grp,            \
731                             G ## _p,  sizeof( G ## _p  ),   \
732                             NULL,     0,                    \
733                             G ## _b,  sizeof( G ## _b  ),   \
734                             G ## _gx, sizeof( G ## _gx ),   \
735                             G ## _gy, sizeof( G ## _gy ),   \
736                             G ## _n,  sizeof( G ## _n  ) )
737 #endif /* ECP_LOAD_GROUP */
738 
739 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
740 /*
741  * Specialized function for creating the Curve25519 group
742  */
ecp_use_curve25519(mbedtls_ecp_group * grp)743 static int ecp_use_curve25519( mbedtls_ecp_group *grp )
744 {
745     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
746 
747     /* Actually ( A + 2 ) / 4 */
748     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
749 
750     /* P = 2^255 - 19 */
751     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
752     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
753     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
754     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
755 
756     /* N = 2^252 + 27742317777372353535851937790883648493 */
757     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->N, 16,
758                                               "14DEF9DEA2F79CD65812631A5CF5D3ED" ) );
759     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) );
760 
761     /* Y intentionally not set, since we use x/z coordinates.
762      * This is used as a marker to identify Montgomery curves! */
763     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.MBEDTLS_PRIVATE(X), 9 ) );
764     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.MBEDTLS_PRIVATE(Z), 1 ) );
765     mbedtls_mpi_free( &grp->G.MBEDTLS_PRIVATE(Y) );
766 
767     /* Actually, the required msb for private keys */
768     grp->nbits = 254;
769 
770 cleanup:
771     if( ret != 0 )
772         mbedtls_ecp_group_free( grp );
773 
774     return( ret );
775 }
776 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
777 
778 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
779 /*
780  * Specialized function for creating the Curve448 group
781  */
ecp_use_curve448(mbedtls_ecp_group * grp)782 static int ecp_use_curve448( mbedtls_ecp_group *grp )
783 {
784     mbedtls_mpi Ns;
785     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
786 
787     mbedtls_mpi_init( &Ns );
788 
789     /* Actually ( A + 2 ) / 4 */
790     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "98AA" ) );
791 
792     /* P = 2^448 - 2^224 - 1 */
793     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
794     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
795     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
796     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
797     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
798     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
799 
800     /* Y intentionally not set, since we use x/z coordinates.
801      * This is used as a marker to identify Montgomery curves! */
802     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.MBEDTLS_PRIVATE(X), 5 ) );
803     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.MBEDTLS_PRIVATE(Z), 1 ) );
804     mbedtls_mpi_free( &grp->G.MBEDTLS_PRIVATE(Y) );
805 
806     /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
807     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 446, 1 ) );
808     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &Ns, 16,
809                                               "8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D" ) );
810     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &grp->N, &grp->N, &Ns ) );
811 
812     /* Actually, the required msb for private keys */
813     grp->nbits = 447;
814 
815 cleanup:
816     mbedtls_mpi_free( &Ns );
817     if( ret != 0 )
818         mbedtls_ecp_group_free( grp );
819 
820     return( ret );
821 }
822 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
823 
824 /*
825  * Set a group using well-known domain parameters
826  */
mbedtls_ecp_group_load(mbedtls_ecp_group * grp,mbedtls_ecp_group_id id)827 int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
828 {
829     ECP_VALIDATE_RET( grp != NULL );
830     mbedtls_ecp_group_free( grp );
831 
832     grp->id = id;
833 
834     switch( id )
835     {
836 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
837         case MBEDTLS_ECP_DP_SECP192R1:
838             NIST_MODP( p192 );
839             return( LOAD_GROUP( secp192r1 ) );
840 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
841 
842 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
843         case MBEDTLS_ECP_DP_SECP224R1:
844             NIST_MODP( p224 );
845             return( LOAD_GROUP( secp224r1 ) );
846 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
847 
848 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
849         case MBEDTLS_ECP_DP_SECP256R1:
850             NIST_MODP( p256 );
851             return( LOAD_GROUP( secp256r1 ) );
852 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
853 
854 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
855         case MBEDTLS_ECP_DP_SECP384R1:
856             NIST_MODP( p384 );
857             return( LOAD_GROUP( secp384r1 ) );
858 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
859 
860 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
861         case MBEDTLS_ECP_DP_SECP521R1:
862             NIST_MODP( p521 );
863             return( LOAD_GROUP( secp521r1 ) );
864 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
865 
866 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
867         case MBEDTLS_ECP_DP_SECP192K1:
868             grp->modp = ecp_mod_p192k1;
869             return( LOAD_GROUP_A( secp192k1 ) );
870 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
871 
872 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
873         case MBEDTLS_ECP_DP_SECP224K1:
874             grp->modp = ecp_mod_p224k1;
875             return( LOAD_GROUP_A( secp224k1 ) );
876 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
877 
878 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
879         case MBEDTLS_ECP_DP_SECP256K1:
880             grp->modp = ecp_mod_p256k1;
881             return( LOAD_GROUP_A( secp256k1 ) );
882 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
883 
884 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
885         case MBEDTLS_ECP_DP_BP256R1:
886             return( LOAD_GROUP_A( brainpoolP256r1 ) );
887 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
888 
889 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
890         case MBEDTLS_ECP_DP_BP384R1:
891             return( LOAD_GROUP_A( brainpoolP384r1 ) );
892 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
893 
894 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
895         case MBEDTLS_ECP_DP_BP512R1:
896             return( LOAD_GROUP_A( brainpoolP512r1 ) );
897 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
898 
899 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
900         case MBEDTLS_ECP_DP_CURVE25519:
901             grp->modp = ecp_mod_p255;
902             return( ecp_use_curve25519( grp ) );
903 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
904 
905 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
906         case MBEDTLS_ECP_DP_CURVE448:
907             grp->modp = ecp_mod_p448;
908             return( ecp_use_curve448( grp ) );
909 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
910 
911         default:
912             mbedtls_ecp_group_free( grp );
913             return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
914     }
915 }
916 
917 #if defined(MBEDTLS_ECP_NIST_OPTIM)
918 /*
919  * Fast reduction modulo the primes used by the NIST curves.
920  *
921  * These functions are critical for speed, but not needed for correct
922  * operations. So, we make the choice to heavily rely on the internals of our
923  * bignum library, which creates a tight coupling between these functions and
924  * our MPI implementation.  However, the coupling between the ECP module and
925  * MPI remains loose, since these functions can be deactivated at will.
926  */
927 
928 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
929 /*
930  * Compared to the way things are presented in FIPS 186-3 D.2,
931  * we proceed in columns, from right (least significant chunk) to left,
932  * adding chunks to N in place, and keeping a carry for the next chunk.
933  * This avoids moving things around in memory, and uselessly adding zeros,
934  * compared to the more straightforward, line-oriented approach.
935  *
936  * For this prime we need to handle data in chunks of 64 bits.
937  * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
938  * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
939  */
940 
941 /* Add 64-bit chunks (dst += src) and update carry */
add64(mbedtls_mpi_uint * dst,mbedtls_mpi_uint * src,mbedtls_mpi_uint * carry)942 static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
943 {
944     unsigned char i;
945     mbedtls_mpi_uint c = 0;
946     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
947     {
948         *dst += c;      c  = ( *dst < c );
949         *dst += *src;   c += ( *dst < *src );
950     }
951     *carry += c;
952 }
953 
954 /* Add carry to a 64-bit chunk and update carry */
carry64(mbedtls_mpi_uint * dst,mbedtls_mpi_uint * carry)955 static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
956 {
957     unsigned char i;
958     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
959     {
960         *dst += *carry;
961         *carry  = ( *dst < *carry );
962     }
963 }
964 
965 #define WIDTH       8 / sizeof( mbedtls_mpi_uint )
966 #define A( i )      N->MBEDTLS_PRIVATE(p) + (i) * WIDTH
967 #define ADD( i )    add64( p, A( i ), &c )
968 #define NEXT        p += WIDTH; carry64( p, &c )
969 #define LAST        p += WIDTH; *p = c; while( ++p < end ) *p = 0
970 
971 /*
972  * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
973  */
ecp_mod_p192(mbedtls_mpi * N)974 static int ecp_mod_p192( mbedtls_mpi *N )
975 {
976     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
977     mbedtls_mpi_uint c = 0;
978     mbedtls_mpi_uint *p, *end;
979 
980     /* Make sure we have enough blocks so that A(5) is legal */
981     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
982 
983     p = N->MBEDTLS_PRIVATE(p);
984     end = p + N->MBEDTLS_PRIVATE(n);
985 
986     ADD( 3 ); ADD( 5 );             NEXT; // A0 += A3 + A5
987     ADD( 3 ); ADD( 4 ); ADD( 5 );   NEXT; // A1 += A3 + A4 + A5
988     ADD( 4 ); ADD( 5 );             LAST; // A2 += A4 + A5
989 
990 cleanup:
991     return( ret );
992 }
993 
994 #undef WIDTH
995 #undef A
996 #undef ADD
997 #undef NEXT
998 #undef LAST
999 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
1000 
1001 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)       \
1002     || defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)    \
1003     || defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1004 /*
1005  * The reader is advised to first understand ecp_mod_p192() since the same
1006  * general structure is used here, but with additional complications:
1007  * (1) chunks of 32 bits, and (2) subtractions.
1008  */
1009 
1010 /*
1011  * For these primes, we need to handle data in chunks of 32 bits.
1012  * This makes it more complicated if we use 64 bits limbs in MPI,
1013  * which prevents us from using a uniform access method as for p192.
1014  *
1015  * So, we define a mini abstraction layer to access 32 bit chunks,
1016  * load them in 'cur' for work, and store them back from 'cur' when done.
1017  *
1018  * While at it, also define the size of N in terms of 32-bit chunks.
1019  */
1020 #define LOAD32      cur = A( i );
1021 
1022 #if defined(MBEDTLS_HAVE_INT32)
1023 /* 32 bit */
1024 
1025 #define MAX32       N->MBEDTLS_PRIVATE(n)
1026 #define A( j )      N->MBEDTLS_PRIVATE(p)[j]
1027 #define STORE32     N->MBEDTLS_PRIVATE(p)[i] = cur;
1028 
1029 #else                               /* 64-bit */
1030 
1031 #define MAX32       N->MBEDTLS_PRIVATE(n) * 2
1032 #define A( j ) (j) % 2 ? (uint32_t)( N->MBEDTLS_PRIVATE(p)[(j)/2] >> 32 ) : \
1033                          (uint32_t)( N->MBEDTLS_PRIVATE(p)[(j)/2] )
1034 #define STORE32                                   \
1035     if( i % 2 ) {                                 \
1036         N->MBEDTLS_PRIVATE(p)[i/2] &= 0x00000000FFFFFFFF;          \
1037         N->MBEDTLS_PRIVATE(p)[i/2] |= ((mbedtls_mpi_uint) cur) << 32;        \
1038     } else {                                      \
1039         N->MBEDTLS_PRIVATE(p)[i/2] &= 0xFFFFFFFF00000000;          \
1040         N->MBEDTLS_PRIVATE(p)[i/2] |= (mbedtls_mpi_uint) cur;                \
1041     }
1042 
1043 #endif /* sizeof( mbedtls_mpi_uint ) */
1044 
1045 /*
1046  * Helpers for addition and subtraction of chunks, with signed carry.
1047  */
add32(uint32_t * dst,uint32_t src,signed char * carry)1048 static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
1049 {
1050     *dst += src;
1051     *carry += ( *dst < src );
1052 }
1053 
sub32(uint32_t * dst,uint32_t src,signed char * carry)1054 static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
1055 {
1056     *carry -= ( *dst < src );
1057     *dst -= src;
1058 }
1059 
1060 #define ADD( j )    add32( &cur, A( j ), &c );
1061 #define SUB( j )    sub32( &cur, A( j ), &c );
1062 
1063 /*
1064  * Helpers for the main 'loop'
1065  * (see fix_negative for the motivation of C)
1066  */
1067 #define INIT( b )                                                       \
1068     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;                    \
1069     signed char c = 0, cc;                                              \
1070     uint32_t cur;                                                       \
1071     size_t i = 0, bits = (b);                                           \
1072     mbedtls_mpi C;                                                      \
1073     mbedtls_mpi_uint Cp[ (b) / 8 / sizeof( mbedtls_mpi_uint) + 1 ];     \
1074                                                                         \
1075     C.MBEDTLS_PRIVATE(s) = 1;                                                            \
1076     C.MBEDTLS_PRIVATE(n) = (b) / 8 / sizeof( mbedtls_mpi_uint) + 1;                      \
1077     C.MBEDTLS_PRIVATE(p) = Cp;                                                           \
1078     memset( Cp, 0, C.MBEDTLS_PRIVATE(n) * sizeof( mbedtls_mpi_uint ) );                  \
1079                                                                         \
1080     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, (b) * 2 / 8 /                 \
1081                                        sizeof( mbedtls_mpi_uint ) ) );  \
1082     LOAD32;
1083 
1084 #define NEXT                    \
1085     STORE32; i++; LOAD32;       \
1086     cc = c; c = 0;              \
1087     if( cc < 0 )                \
1088         sub32( &cur, -cc, &c ); \
1089     else                        \
1090         add32( &cur, cc, &c );  \
1091 
1092 #define LAST                                    \
1093     STORE32; i++;                               \
1094     cur = c > 0 ? c : 0; STORE32;               \
1095     cur = 0; while( ++i < MAX32 ) { STORE32; }  \
1096     if( c < 0 ) fix_negative( N, c, &C, bits );
1097 
1098 /*
1099  * If the result is negative, we get it in the form
1100  * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
1101  */
fix_negative(mbedtls_mpi * N,signed char c,mbedtls_mpi * C,size_t bits)1102 static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
1103 {
1104     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1105 
1106     /* C = - c * 2^(bits + 32) */
1107 #if !defined(MBEDTLS_HAVE_INT64)
1108     ((void) bits);
1109 #else
1110     if( bits == 224 )
1111         C->MBEDTLS_PRIVATE(p)[ C->MBEDTLS_PRIVATE(n) - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
1112     else
1113 #endif
1114         C->MBEDTLS_PRIVATE(p)[ C->MBEDTLS_PRIVATE(n) - 1 ] = (mbedtls_mpi_uint) -c;
1115 
1116     /* N = - ( C - N ) */
1117     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
1118     N->MBEDTLS_PRIVATE(s) = -1;
1119 
1120 cleanup:
1121 
1122     return( ret );
1123 }
1124 
1125 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
1126 /*
1127  * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
1128  */
ecp_mod_p224(mbedtls_mpi * N)1129 static int ecp_mod_p224( mbedtls_mpi *N )
1130 {
1131     INIT( 224 );
1132 
1133     SUB(  7 ); SUB( 11 );               NEXT; // A0 += -A7 - A11
1134     SUB(  8 ); SUB( 12 );               NEXT; // A1 += -A8 - A12
1135     SUB(  9 ); SUB( 13 );               NEXT; // A2 += -A9 - A13
1136     SUB( 10 ); ADD(  7 ); ADD( 11 );    NEXT; // A3 += -A10 + A7 + A11
1137     SUB( 11 ); ADD(  8 ); ADD( 12 );    NEXT; // A4 += -A11 + A8 + A12
1138     SUB( 12 ); ADD(  9 ); ADD( 13 );    NEXT; // A5 += -A12 + A9 + A13
1139     SUB( 13 ); ADD( 10 );               LAST; // A6 += -A13 + A10
1140 
1141 cleanup:
1142     return( ret );
1143 }
1144 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
1145 
1146 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
1147 /*
1148  * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1149  */
ecp_mod_p256(mbedtls_mpi * N)1150 static int ecp_mod_p256( mbedtls_mpi *N )
1151 {
1152     INIT( 256 );
1153 
1154     ADD(  8 ); ADD(  9 );
1155     SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 );             NEXT; // A0
1156 
1157     ADD(  9 ); ADD( 10 );
1158     SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 );             NEXT; // A1
1159 
1160     ADD( 10 ); ADD( 11 );
1161     SUB( 13 ); SUB( 14 ); SUB( 15 );                        NEXT; // A2
1162 
1163     ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1164     SUB( 15 ); SUB(  8 ); SUB(  9 );                        NEXT; // A3
1165 
1166     ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1167     SUB(  9 ); SUB( 10 );                                   NEXT; // A4
1168 
1169     ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1170     SUB( 10 ); SUB( 11 );                                   NEXT; // A5
1171 
1172     ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1173     SUB(  8 ); SUB(  9 );                                   NEXT; // A6
1174 
1175     ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1176     SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 );             LAST; // A7
1177 
1178 cleanup:
1179     return( ret );
1180 }
1181 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1182 
1183 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1184 /*
1185  * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1186  */
ecp_mod_p384(mbedtls_mpi * N)1187 static int ecp_mod_p384( mbedtls_mpi *N )
1188 {
1189     INIT( 384 );
1190 
1191     ADD( 12 ); ADD( 21 ); ADD( 20 );
1192     SUB( 23 );                                              NEXT; // A0
1193 
1194     ADD( 13 ); ADD( 22 ); ADD( 23 );
1195     SUB( 12 ); SUB( 20 );                                   NEXT; // A2
1196 
1197     ADD( 14 ); ADD( 23 );
1198     SUB( 13 ); SUB( 21 );                                   NEXT; // A2
1199 
1200     ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1201     SUB( 14 ); SUB( 22 ); SUB( 23 );                        NEXT; // A3
1202 
1203     ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1204     SUB( 15 ); SUB( 23 ); SUB( 23 );                        NEXT; // A4
1205 
1206     ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1207     SUB( 16 );                                              NEXT; // A5
1208 
1209     ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1210     SUB( 17 );                                              NEXT; // A6
1211 
1212     ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1213     SUB( 18 );                                              NEXT; // A7
1214 
1215     ADD( 20 ); ADD( 17 ); ADD( 16 );
1216     SUB( 19 );                                              NEXT; // A8
1217 
1218     ADD( 21 ); ADD( 18 ); ADD( 17 );
1219     SUB( 20 );                                              NEXT; // A9
1220 
1221     ADD( 22 ); ADD( 19 ); ADD( 18 );
1222     SUB( 21 );                                              NEXT; // A10
1223 
1224     ADD( 23 ); ADD( 20 ); ADD( 19 );
1225     SUB( 22 );                                              LAST; // A11
1226 
1227 cleanup:
1228     return( ret );
1229 }
1230 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1231 
1232 #undef A
1233 #undef LOAD32
1234 #undef STORE32
1235 #undef MAX32
1236 #undef INIT
1237 #undef NEXT
1238 #undef LAST
1239 
1240 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1241           MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1242           MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1243 
1244 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1245 /*
1246  * Here we have an actual Mersenne prime, so things are more straightforward.
1247  * However, chunks are aligned on a 'weird' boundary (521 bits).
1248  */
1249 
1250 /* Size of p521 in terms of mbedtls_mpi_uint */
1251 #define P521_WIDTH      ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1252 
1253 /* Bits to keep in the most significant mbedtls_mpi_uint */
1254 #define P521_MASK       0x01FF
1255 
1256 /*
1257  * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1258  * Write N as A1 + 2^521 A0, return A0 + A1
1259  */
ecp_mod_p521(mbedtls_mpi * N)1260 static int ecp_mod_p521( mbedtls_mpi *N )
1261 {
1262     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1263     size_t i;
1264     mbedtls_mpi M;
1265     mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1266     /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1267      * we need to hold bits 513 to 1056, which is 34 limbs, that is
1268      * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1269 
1270     if( N->MBEDTLS_PRIVATE(n) < P521_WIDTH )
1271         return( 0 );
1272 
1273     /* M = A1 */
1274     M.MBEDTLS_PRIVATE(s) = 1;
1275     M.MBEDTLS_PRIVATE(n) = N->MBEDTLS_PRIVATE(n) - ( P521_WIDTH - 1 );
1276     if( M.MBEDTLS_PRIVATE(n) > P521_WIDTH + 1 )
1277         M.MBEDTLS_PRIVATE(n) = P521_WIDTH + 1;
1278     M.MBEDTLS_PRIVATE(p) = Mp;
1279     memcpy( Mp, N->MBEDTLS_PRIVATE(p) + P521_WIDTH - 1, M.MBEDTLS_PRIVATE(n) * sizeof( mbedtls_mpi_uint ) );
1280     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1281 
1282     /* N = A0 */
1283     N->MBEDTLS_PRIVATE(p)[P521_WIDTH - 1] &= P521_MASK;
1284     for( i = P521_WIDTH; i < N->MBEDTLS_PRIVATE(n); i++ )
1285         N->MBEDTLS_PRIVATE(p)[i] = 0;
1286 
1287     /* N = A0 + A1 */
1288     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1289 
1290 cleanup:
1291     return( ret );
1292 }
1293 
1294 #undef P521_WIDTH
1295 #undef P521_MASK
1296 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1297 
1298 #endif /* MBEDTLS_ECP_NIST_OPTIM */
1299 
1300 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1301 
1302 /* Size of p255 in terms of mbedtls_mpi_uint */
1303 #define P255_WIDTH      ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1304 
1305 /*
1306  * Fast quasi-reduction modulo p255 = 2^255 - 19
1307  * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1308  */
ecp_mod_p255(mbedtls_mpi * N)1309 static int ecp_mod_p255( mbedtls_mpi *N )
1310 {
1311     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1312     size_t i;
1313     mbedtls_mpi M;
1314     mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1315 
1316     if( N->MBEDTLS_PRIVATE(n) < P255_WIDTH )
1317         return( 0 );
1318 
1319     /* M = A1 */
1320     M.MBEDTLS_PRIVATE(s) = 1;
1321     M.MBEDTLS_PRIVATE(n) = N->MBEDTLS_PRIVATE(n) - ( P255_WIDTH - 1 );
1322     if( M.MBEDTLS_PRIVATE(n) > P255_WIDTH + 1 )
1323         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1324     M.MBEDTLS_PRIVATE(p) = Mp;
1325     memset( Mp, 0, sizeof Mp );
1326     memcpy( Mp, N->MBEDTLS_PRIVATE(p) + P255_WIDTH - 1, M.MBEDTLS_PRIVATE(n) * sizeof( mbedtls_mpi_uint ) );
1327     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1328     M.MBEDTLS_PRIVATE(n)++; /* Make room for multiplication by 19 */
1329 
1330     /* N = A0 */
1331     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1332     for( i = P255_WIDTH; i < N->MBEDTLS_PRIVATE(n); i++ )
1333         N->MBEDTLS_PRIVATE(p)[i] = 0;
1334 
1335     /* N = A0 + 19 * A1 */
1336     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1337     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1338 
1339 cleanup:
1340     return( ret );
1341 }
1342 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1343 
1344 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
1345 
1346 /* Size of p448 in terms of mbedtls_mpi_uint */
1347 #define P448_WIDTH      ( 448 / 8 / sizeof( mbedtls_mpi_uint ) )
1348 
1349 /* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
1350 #define DIV_ROUND_UP( X, Y ) ( ( ( X ) + ( Y ) - 1 ) / ( Y ) )
1351 #define P224_WIDTH_MIN   ( 28 / sizeof( mbedtls_mpi_uint ) )
1352 #define P224_WIDTH_MAX   DIV_ROUND_UP( 28, sizeof( mbedtls_mpi_uint ) )
1353 #define P224_UNUSED_BITS ( ( P224_WIDTH_MAX * sizeof( mbedtls_mpi_uint ) * 8 ) - 224 )
1354 
1355 /*
1356  * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
1357  * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
1358  * A0 + A1 + B1 + (B0 + B1) * 2^224.  This is different to the reference
1359  * implementation of Curve448, which uses its own special 56-bit limbs rather
1360  * than a generic bignum library.  We could squeeze some extra speed out on
1361  * 32-bit machines by splitting N up into 32-bit limbs and doing the
1362  * arithmetic using the limbs directly as we do for the NIST primes above,
1363  * but for 64-bit targets it should use half the number of operations if we do
1364  * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
1365  */
ecp_mod_p448(mbedtls_mpi * N)1366 static int ecp_mod_p448( mbedtls_mpi *N )
1367 {
1368     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1369     size_t i;
1370     mbedtls_mpi M, Q;
1371     mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
1372 
1373     if( N->MBEDTLS_PRIVATE(n) <= P448_WIDTH )
1374         return( 0 );
1375 
1376     /* M = A1 */
1377     M.MBEDTLS_PRIVATE(s) = 1;
1378     M.MBEDTLS_PRIVATE(n) = N->MBEDTLS_PRIVATE(n) - ( P448_WIDTH );
1379     if( M.MBEDTLS_PRIVATE(n) > P448_WIDTH )
1380         /* Shouldn't be called with N larger than 2^896! */
1381         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1382     M.MBEDTLS_PRIVATE(p) = Mp;
1383     memset( Mp, 0, sizeof( Mp ) );
1384     memcpy( Mp, N->MBEDTLS_PRIVATE(p) + P448_WIDTH, M.MBEDTLS_PRIVATE(n) * sizeof( mbedtls_mpi_uint ) );
1385 
1386     /* N = A0 */
1387     for( i = P448_WIDTH; i < N->MBEDTLS_PRIVATE(n); i++ )
1388         N->MBEDTLS_PRIVATE(p)[i] = 0;
1389 
1390     /* N += A1 */
1391     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1392 
1393     /* Q = B1, N += B1 */
1394     Q = M;
1395     Q.MBEDTLS_PRIVATE(p) = Qp;
1396     memcpy( Qp, Mp, sizeof( Qp ) );
1397     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Q, 224 ) );
1398     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &Q ) );
1399 
1400     /* M = (B0 + B1) * 2^224, N += M */
1401     if( sizeof( mbedtls_mpi_uint ) > 4 )
1402         Mp[P224_WIDTH_MIN] &= ( (mbedtls_mpi_uint)-1 ) >> ( P224_UNUSED_BITS );
1403     for( i = P224_WIDTH_MAX; i < M.MBEDTLS_PRIVATE(n); ++i )
1404         Mp[i] = 0;
1405     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &Q ) );
1406     M.MBEDTLS_PRIVATE(n) = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
1407     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &M, 224 ) );
1408     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1409 
1410 cleanup:
1411     return( ret );
1412 }
1413 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
1414 
1415 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)       \
1416     || defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)    \
1417     || defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1418 /*
1419  * Fast quasi-reduction modulo P = 2^s - R,
1420  * with R about 33 bits, used by the Koblitz curves.
1421  *
1422  * Write N as A0 + 2^224 A1, return A0 + R * A1.
1423  * Actually do two passes, since R is big.
1424  */
1425 #define P_KOBLITZ_MAX   ( 256 / 8 / sizeof( mbedtls_mpi_uint ) )  // Max limbs in P
1426 #define P_KOBLITZ_R     ( 8 / sizeof( mbedtls_mpi_uint ) )        // Limbs in R
ecp_mod_koblitz(mbedtls_mpi * N,mbedtls_mpi_uint * Rp,size_t p_limbs,size_t adjust,size_t shift,mbedtls_mpi_uint mask)1427 static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1428                                    size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1429 {
1430     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1431     size_t i;
1432     mbedtls_mpi M, R;
1433     mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1434 
1435     if( N->MBEDTLS_PRIVATE(n) < p_limbs )
1436         return( 0 );
1437 
1438     /* Init R */
1439     R.MBEDTLS_PRIVATE(s) = 1;
1440     R.MBEDTLS_PRIVATE(p) = Rp;
1441     R.MBEDTLS_PRIVATE(n) = P_KOBLITZ_R;
1442 
1443     /* Common setup for M */
1444     M.MBEDTLS_PRIVATE(s) = 1;
1445     M.MBEDTLS_PRIVATE(p) = Mp;
1446 
1447     /* M = A1 */
1448     M.MBEDTLS_PRIVATE(n) = N->MBEDTLS_PRIVATE(n) - ( p_limbs - adjust );
1449     if( M.MBEDTLS_PRIVATE(n) > p_limbs + adjust )
1450         M.MBEDTLS_PRIVATE(n) = p_limbs + adjust;
1451     memset( Mp, 0, sizeof Mp );
1452     memcpy( Mp, N->MBEDTLS_PRIVATE(p) + p_limbs - adjust, M.MBEDTLS_PRIVATE(n) * sizeof( mbedtls_mpi_uint ) );
1453     if( shift != 0 )
1454         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1455     M.MBEDTLS_PRIVATE(n) += R.MBEDTLS_PRIVATE(n); /* Make room for multiplication by R */
1456 
1457     /* N = A0 */
1458     if( mask != 0 )
1459         N->MBEDTLS_PRIVATE(p)[p_limbs - 1] &= mask;
1460     for( i = p_limbs; i < N->MBEDTLS_PRIVATE(n); i++ )
1461         N->MBEDTLS_PRIVATE(p)[i] = 0;
1462 
1463     /* N = A0 + R * A1 */
1464     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1465     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1466 
1467     /* Second pass */
1468 
1469     /* M = A1 */
1470     M.MBEDTLS_PRIVATE(n) = N->MBEDTLS_PRIVATE(n) - ( p_limbs - adjust );
1471     if( M.MBEDTLS_PRIVATE(n) > p_limbs + adjust )
1472         M.MBEDTLS_PRIVATE(n) = p_limbs + adjust;
1473     memset( Mp, 0, sizeof Mp );
1474     memcpy( Mp, N->MBEDTLS_PRIVATE(p) + p_limbs - adjust, M.MBEDTLS_PRIVATE(n) * sizeof( mbedtls_mpi_uint ) );
1475     if( shift != 0 )
1476         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1477     M.MBEDTLS_PRIVATE(n) += R.MBEDTLS_PRIVATE(n); /* Make room for multiplication by R */
1478 
1479     /* N = A0 */
1480     if( mask != 0 )
1481         N->MBEDTLS_PRIVATE(p)[p_limbs - 1] &= mask;
1482     for( i = p_limbs; i < N->MBEDTLS_PRIVATE(n); i++ )
1483         N->MBEDTLS_PRIVATE(p)[i] = 0;
1484 
1485     /* N = A0 + R * A1 */
1486     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1487     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1488 
1489 cleanup:
1490     return( ret );
1491 }
1492 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1493           MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1494           MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1495 
1496 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1497 /*
1498  * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1499  * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1500  */
ecp_mod_p192k1(mbedtls_mpi * N)1501 static int ecp_mod_p192k1( mbedtls_mpi *N )
1502 {
1503     static mbedtls_mpi_uint Rp[] = {
1504         BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1505 
1506     return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1507 }
1508 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1509 
1510 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1511 /*
1512  * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1513  * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1514  */
ecp_mod_p224k1(mbedtls_mpi * N)1515 static int ecp_mod_p224k1( mbedtls_mpi *N )
1516 {
1517     static mbedtls_mpi_uint Rp[] = {
1518         BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1519 
1520 #if defined(MBEDTLS_HAVE_INT64)
1521     return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1522 #else
1523     return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1524 #endif
1525 }
1526 
1527 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1528 
1529 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1530 /*
1531  * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1532  * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1533  */
ecp_mod_p256k1(mbedtls_mpi * N)1534 static int ecp_mod_p256k1( mbedtls_mpi *N )
1535 {
1536     static mbedtls_mpi_uint Rp[] = {
1537         BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1538     return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1539 }
1540 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1541 
1542 #endif /* !MBEDTLS_ECP_ALT */
1543 
1544 #endif /* MBEDTLS_ECP_C */
1545