1 /*
2 * Copyright (c) 2018-2023, Arm Limited. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 *
6 */
7 /**
8 * \file psa/crypto_values.h
9 *
10 * \brief PSA cryptography module: macros to build and analyze integer values.
11 *
12 * \note This file may not be included directly. Applications must
13 * include psa/crypto.h. Drivers must include the appropriate driver
14 * header file.
15 *
16 * This file contains portable definitions of macros to build and analyze
17 * values of integral types that encode properties of cryptographic keys,
18 * designations of cryptographic algorithms, and error codes returned by
19 * the library.
20 *
21 * Note that many of the constants defined in this file are embedded in
22 * the persistent key store, as part of key metadata (including usage
23 * policies). As a consequence, they must not be changed (unless the storage
24 * format version changes).
25 *
26 * This header file only defines preprocessor macros.
27 */
28
29 #ifndef PSA_CRYPTO_VALUES_H
30 #define PSA_CRYPTO_VALUES_H
31
32 /** \defgroup error Error codes
33 * @{
34 */
35
36 /* PSA error codes */
37
38 /* Error codes are standardized across PSA domains (framework, crypto, storage,
39 * etc.). Do not change the values in this section or even the expansions
40 * of each macro: it must be possible to `#include` both this header
41 * and some other PSA component's headers in the same C source,
42 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
43 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
44 * to the same sequence of tokens.
45 *
46 * If you must add a new
47 * value, check with the Arm PSA framework group to pick one that other
48 * domains aren't already using. */
49
50 /* Tell uncrustify not to touch the constant definitions, otherwise
51 * it might change the spacing to something that is not PSA-compliant
52 * (e.g. adding a space after casts).
53 *
54 * *INDENT-OFF*
55 */
56
57 /** The action was completed successfully. */
58 #ifndef PSA_SUCCESS
59 #define PSA_SUCCESS ((psa_status_t)0)
60 #endif
61
62 /** An error occurred that does not correspond to any defined
63 * failure cause.
64 *
65 * Implementations may use this error code if none of the other standard
66 * error codes are applicable. */
67 #define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
68
69 /** The requested operation or a parameter is not supported
70 * by this implementation.
71 *
72 * Implementations should return this error code when an enumeration
73 * parameter such as a key type, algorithm, etc. is not recognized.
74 * If a combination of parameters is recognized and identified as
75 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
76 #define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
77
78 /** The requested action is denied by a policy.
79 *
80 * Implementations should return this error code when the parameters
81 * are recognized as valid and supported, and a policy explicitly
82 * denies the requested operation.
83 *
84 * If a subset of the parameters of a function call identify a
85 * forbidden operation, and another subset of the parameters are
86 * not valid or not supported, it is unspecified whether the function
87 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
88 * #PSA_ERROR_INVALID_ARGUMENT. */
89 #define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
90
91 /** An output buffer is too small.
92 *
93 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
94 * description to determine a sufficient buffer size.
95 *
96 * Implementations should preferably return this error code only
97 * in cases when performing the operation with a larger output
98 * buffer would succeed. However implementations may return this
99 * error if a function has invalid or unsupported parameters in addition
100 * to the parameters that determine the necessary output buffer size. */
101 #define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
102
103 /** Asking for an item that already exists
104 *
105 * Implementations should return this error, when attempting
106 * to write an item (like a key) that already exists. */
107 #define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
108
109 /** Asking for an item that doesn't exist
110 *
111 * Implementations should return this error, if a requested item (like
112 * a key) does not exist. */
113 #define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
114
115 /** The requested action cannot be performed in the current state.
116 *
117 * Multipart operations return this error when one of the
118 * functions is called out of sequence. Refer to the function
119 * descriptions for permitted sequencing of functions.
120 *
121 * Implementations shall not return this error code to indicate
122 * that a key either exists or not,
123 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
124 * as applicable.
125 *
126 * Implementations shall not return this error code to indicate that a
127 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
128 * instead. */
129 #define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
130
131 /** The parameters passed to the function are invalid.
132 *
133 * Implementations may return this error any time a parameter or
134 * combination of parameters are recognized as invalid.
135 *
136 * Implementations shall not return this error code to indicate that a
137 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
138 * instead.
139 */
140 #define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
141
142 /** There is not enough runtime memory.
143 *
144 * If the action is carried out across multiple security realms, this
145 * error can refer to available memory in any of the security realms. */
146 #define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
147
148 /** There is not enough persistent storage.
149 *
150 * Functions that modify the key storage return this error code if
151 * there is insufficient storage space on the host media. In addition,
152 * many functions that do not otherwise access storage may return this
153 * error code if the implementation requires a mandatory log entry for
154 * the requested action and the log storage space is full. */
155 #define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
156
157 /** There was a communication failure inside the implementation.
158 *
159 * This can indicate a communication failure between the application
160 * and an external cryptoprocessor or between the cryptoprocessor and
161 * an external volatile or persistent memory. A communication failure
162 * may be transient or permanent depending on the cause.
163 *
164 * \warning If a function returns this error, it is undetermined
165 * whether the requested action has completed or not. Implementations
166 * should return #PSA_SUCCESS on successful completion whenever
167 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
168 * if the requested action was completed successfully in an external
169 * cryptoprocessor but there was a breakdown of communication before
170 * the cryptoprocessor could report the status to the application.
171 */
172 #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
173
174 /** There was a storage failure that may have led to data loss.
175 *
176 * This error indicates that some persistent storage is corrupted.
177 * It should not be used for a corruption of volatile memory
178 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
179 * between the cryptoprocessor and its external storage (use
180 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
181 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
182 *
183 * Note that a storage failure does not indicate that any data that was
184 * previously read is invalid. However this previously read data may no
185 * longer be readable from storage.
186 *
187 * When a storage failure occurs, it is no longer possible to ensure
188 * the global integrity of the keystore. Depending on the global
189 * integrity guarantees offered by the implementation, access to other
190 * data may or may not fail even if the data is still readable but
191 * its integrity cannot be guaranteed.
192 *
193 * Implementations should only use this error code to report a
194 * permanent storage corruption. However application writers should
195 * keep in mind that transient errors while reading the storage may be
196 * reported using this error code. */
197 #define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
198
199 /** A hardware failure was detected.
200 *
201 * A hardware failure may be transient or permanent depending on the
202 * cause. */
203 #define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
204
205 /** A tampering attempt was detected.
206 *
207 * If an application receives this error code, there is no guarantee
208 * that previously accessed or computed data was correct and remains
209 * confidential. Applications should not perform any security function
210 * and should enter a safe failure state.
211 *
212 * Implementations may return this error code if they detect an invalid
213 * state that cannot happen during normal operation and that indicates
214 * that the implementation's security guarantees no longer hold. Depending
215 * on the implementation architecture and on its security and safety goals,
216 * the implementation may forcibly terminate the application.
217 *
218 * This error code is intended as a last resort when a security breach
219 * is detected and it is unsure whether the keystore data is still
220 * protected. Implementations shall only return this error code
221 * to report an alarm from a tampering detector, to indicate that
222 * the confidentiality of stored data can no longer be guaranteed,
223 * or to indicate that the integrity of previously returned data is now
224 * considered compromised. Implementations shall not use this error code
225 * to indicate a hardware failure that merely makes it impossible to
226 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
227 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
228 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
229 * instead).
230 *
231 * This error indicates an attack against the application. Implementations
232 * shall not return this error code as a consequence of the behavior of
233 * the application itself. */
234 #define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
235
236 /** There is not enough entropy to generate random data needed
237 * for the requested action.
238 *
239 * This error indicates a failure of a hardware random generator.
240 * Application writers should note that this error can be returned not
241 * only by functions whose purpose is to generate random data, such
242 * as key, IV or nonce generation, but also by functions that execute
243 * an algorithm with a randomized result, as well as functions that
244 * use randomization of intermediate computations as a countermeasure
245 * to certain attacks.
246 *
247 * Implementations should avoid returning this error after psa_crypto_init()
248 * has succeeded. Implementations should generate sufficient
249 * entropy during initialization and subsequently use a cryptographically
250 * secure pseudorandom generator (PRNG). However implementations may return
251 * this error at any time if a policy requires the PRNG to be reseeded
252 * during normal operation. */
253 #define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
254
255 /** The signature, MAC or hash is incorrect.
256 *
257 * Verification functions return this error if the verification
258 * calculations completed successfully, and the value to be verified
259 * was determined to be incorrect.
260 *
261 * If the value to verify has an invalid size, implementations may return
262 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
263 #define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
264
265 /** The decrypted padding is incorrect.
266 *
267 * \warning In some protocols, when decrypting data, it is essential that
268 * the behavior of the application does not depend on whether the padding
269 * is correct, down to precise timing. Applications should prefer
270 * protocols that use authenticated encryption rather than plain
271 * encryption. If the application must perform a decryption of
272 * unauthenticated data, the application writer should take care not
273 * to reveal whether the padding is invalid.
274 *
275 * Implementations should strive to make valid and invalid padding
276 * as close as possible to indistinguishable to an external observer.
277 * In particular, the timing of a decryption operation should not
278 * depend on the validity of the padding. */
279 #define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
280
281 /** Return this error when there's insufficient data when attempting
282 * to read from a resource. */
283 #define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
284
285 /** The key identifier is not valid. See also :ref:\`key-handles\`.
286 */
287 #define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
288
289 /** Stored data has been corrupted.
290 *
291 * This error indicates that some persistent storage has suffered corruption.
292 * It does not indicate the following situations, which have specific error
293 * codes:
294 *
295 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
296 * - A communication error between the cryptoprocessor and its external
297 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
298 * - When the storage is in a valid state but is full - use
299 * #PSA_ERROR_INSUFFICIENT_STORAGE.
300 * - When the storage fails for other reasons - use
301 * #PSA_ERROR_STORAGE_FAILURE.
302 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
303 *
304 * \note A storage corruption does not indicate that any data that was
305 * previously read is invalid. However this previously read data might no
306 * longer be readable from storage.
307 *
308 * When a storage failure occurs, it is no longer possible to ensure the
309 * global integrity of the keystore.
310 */
311 #define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
312
313 /** Data read from storage is not valid for the implementation.
314 *
315 * This error indicates that some data read from storage does not have a valid
316 * format. It does not indicate the following situations, which have specific
317 * error codes:
318 *
319 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
320 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
321 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
322 *
323 * This error is typically a result of either storage corruption on a
324 * cleartext storage backend, or an attempt to read data that was
325 * written by an incompatible version of the library.
326 */
327 #define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
328
329 /** The function that returns this status is defined as interruptible and
330 * still has work to do, thus the user should call the function again with the
331 * same operation context until it either returns #PSA_SUCCESS or any other
332 * error. This is not an error per se, more a notification of status.
333 */
334 #define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)
335
336 /* *INDENT-ON* */
337
338 /**@}*/
339
340 /** \defgroup crypto_types Key and algorithm types
341 * @{
342 */
343
344 /* Note that key type values, including ECC family and DH group values, are
345 * embedded in the persistent key store, as part of key metadata. As a
346 * consequence, they must not be changed (unless the storage format version
347 * changes).
348 */
349
350 /** An invalid key type value.
351 *
352 * Zero is not the encoding of any key type.
353 */
354 #define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
355
356 /** Vendor-defined key type flag.
357 *
358 * Key types defined by this standard will never have the
359 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
360 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
361 * respect the bitwise structure used by standard encodings whenever practical.
362 */
363 #define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
364
365 #define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
366 #define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
367 #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
368 #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
369 #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
370
371 #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
372
373 /** Whether a key type is vendor-defined.
374 *
375 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
376 */
377 #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
378 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
379
380 /** Whether a key type is an unstructured array of bytes.
381 *
382 * This encompasses both symmetric keys and non-key data.
383 */
384 #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
385 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
386 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
387
388 /** Whether a key type is asymmetric: either a key pair or a public key. */
389 #define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
390 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
391 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
392 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
393 /** Whether a key type is the public part of a key pair. */
394 #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
395 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
396 /** Whether a key type is a key pair containing a private part and a public
397 * part. */
398 #define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
399 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
400 /** The key pair type corresponding to a public key type.
401 *
402 * You may also pass a key pair type as \p type, it will be left unchanged.
403 *
404 * \param type A public key type or key pair type.
405 *
406 * \return The corresponding key pair type.
407 * If \p type is not a public key or a key pair,
408 * the return value is undefined.
409 */
410 #define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
411 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
412 /** The public key type corresponding to a key pair type.
413 *
414 * You may also pass a key pair type as \p type, it will be left unchanged.
415 *
416 * \param type A public key type or key pair type.
417 *
418 * \return The corresponding public key type.
419 * If \p type is not a public key or a key pair,
420 * the return value is undefined.
421 */
422 #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
423 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
424
425 /** Raw data.
426 *
427 * A "key" of this type cannot be used for any cryptographic operation.
428 * Applications may use this type to store arbitrary data in the keystore. */
429 #define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
430
431 /** HMAC key.
432 *
433 * The key policy determines which underlying hash algorithm the key can be
434 * used for.
435 *
436 * HMAC keys should generally have the same size as the underlying hash.
437 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
438 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
439 #define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
440
441 /** A secret for key derivation.
442 *
443 * This key type is for high-entropy secrets only. For low-entropy secrets,
444 * #PSA_KEY_TYPE_PASSWORD should be used instead.
445 *
446 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
447 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
448 *
449 * The key policy determines which key derivation algorithm the key
450 * can be used for.
451 */
452 #define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
453
454 /** A low-entropy secret for password hashing or key derivation.
455 *
456 * This key type is suitable for passwords and passphrases which are typically
457 * intended to be memorizable by humans, and have a low entropy relative to
458 * their size. It can be used for randomly generated or derived keys with
459 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
460 * for such keys. It is not suitable for passwords with extremely low entropy,
461 * such as numerical PINs.
462 *
463 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
464 * key derivation algorithms. Algorithms that accept such an input were
465 * designed to accept low-entropy secret and are known as password hashing or
466 * key stretching algorithms.
467 *
468 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
469 * key derivation algorithms, as the algorithms that take such an input expect
470 * it to be high-entropy.
471 *
472 * The key policy determines which key derivation algorithm the key can be
473 * used for, among the permissible subset defined above.
474 */
475 #define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t) 0x1203)
476
477 /** A secret value that can be used to verify a password hash.
478 *
479 * The key policy determines which key derivation algorithm the key
480 * can be used for, among the same permissible subset as for
481 * #PSA_KEY_TYPE_PASSWORD.
482 */
483 #define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t) 0x1205)
484
485 /** A secret value that can be used in when computing a password hash.
486 *
487 * The key policy determines which key derivation algorithm the key
488 * can be used for, among the subset of algorithms that can use pepper.
489 */
490 #define PSA_KEY_TYPE_PEPPER ((psa_key_type_t) 0x1206)
491
492 /** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
493 *
494 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
495 * 32 bytes (AES-256).
496 */
497 #define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
498
499 /** Key for a cipher, AEAD or MAC algorithm based on the
500 * ARIA block cipher. */
501 #define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
502
503 /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
504 *
505 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
506 * 192 bits (3-key 3DES).
507 *
508 * Note that single DES and 2-key 3DES are weak and strongly
509 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
510 * is weak and deprecated and should only be used in legacy protocols.
511 */
512 #define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
513
514 /** Key for a cipher, AEAD or MAC algorithm based on the
515 * Camellia block cipher. */
516 #define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
517
518 /** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
519 *
520 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
521 *
522 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
523 * 12-byte nonces.
524 *
525 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
526 * with the initial counter value 1, you can process and discard a
527 * 64-byte block before the real data.
528 */
529 #define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
530
531 /** RSA public key.
532 *
533 * The size of an RSA key is the bit size of the modulus.
534 */
535 #define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
536 /** RSA key pair (private and public key).
537 *
538 * The size of an RSA key is the bit size of the modulus.
539 */
540 #define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
541 /** Whether a key type is an RSA key (pair or public-only). */
542 #define PSA_KEY_TYPE_IS_RSA(type) \
543 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
544
545 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
546 #define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
547 #define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
548 /** Elliptic curve key pair.
549 *
550 * The size of an elliptic curve key is the bit size associated with the curve,
551 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
552 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
553 *
554 * \param curve A value of type ::psa_ecc_family_t that
555 * identifies the ECC curve to be used.
556 */
557 #define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
558 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
559 /** Elliptic curve public key.
560 *
561 * The size of an elliptic curve public key is the same as the corresponding
562 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
563 * `PSA_ECC_FAMILY_xxx` curve families).
564 *
565 * \param curve A value of type ::psa_ecc_family_t that
566 * identifies the ECC curve to be used.
567 */
568 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
569 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
570
571 /** Whether a key type is an elliptic curve key (pair or public-only). */
572 #define PSA_KEY_TYPE_IS_ECC(type) \
573 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
574 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
575 /** Whether a key type is an elliptic curve key pair. */
576 #define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
577 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
578 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
579 /** Whether a key type is an elliptic curve public key. */
580 #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
581 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
582 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
583
584 /** Extract the curve from an elliptic curve key type. */
585 #define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
586 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
587 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
588 0))
589
590 /** Check if the curve of given family is Weierstrass elliptic curve. */
591 #define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
592
593 /** SEC Koblitz curves over prime fields.
594 *
595 * This family comprises the following curves:
596 * secp192k1, secp224k1, secp256k1.
597 * They are defined in _Standards for Efficient Cryptography_,
598 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
599 * https://www.secg.org/sec2-v2.pdf
600 */
601 #define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
602
603 /** SEC random curves over prime fields.
604 *
605 * This family comprises the following curves:
606 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
607 * They are defined in _Standards for Efficient Cryptography_,
608 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
609 * https://www.secg.org/sec2-v2.pdf
610 */
611 #define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
612 /* SECP160R2 (SEC2 v1, obsolete) */
613 #define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
614
615 /** SEC Koblitz curves over binary fields.
616 *
617 * This family comprises the following curves:
618 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
619 * They are defined in _Standards for Efficient Cryptography_,
620 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
621 * https://www.secg.org/sec2-v2.pdf
622 */
623 #define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
624
625 /** SEC random curves over binary fields.
626 *
627 * This family comprises the following curves:
628 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
629 * They are defined in _Standards for Efficient Cryptography_,
630 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
631 * https://www.secg.org/sec2-v2.pdf
632 */
633 #define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
634
635 /** SEC additional random curves over binary fields.
636 *
637 * This family comprises the following curve:
638 * sect163r2.
639 * It is defined in _Standards for Efficient Cryptography_,
640 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
641 * https://www.secg.org/sec2-v2.pdf
642 */
643 #define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
644
645 /** Brainpool P random curves.
646 *
647 * This family comprises the following curves:
648 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
649 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
650 * It is defined in RFC 5639.
651 */
652 #define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
653
654 /** Curve25519 and Curve448.
655 *
656 * This family comprises the following Montgomery curves:
657 * - 255-bit: Bernstein et al.,
658 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
659 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
660 * - 448-bit: Hamburg,
661 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
662 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
663 */
664 #define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
665
666 /** The twisted Edwards curves Ed25519 and Ed448.
667 *
668 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
669 * #PSA_ALG_ED25519PH for the 255-bit curve,
670 * #PSA_ALG_ED448PH for the 448-bit curve).
671 *
672 * This family comprises the following twisted Edwards curves:
673 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
674 * to Curve25519.
675 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
676 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
677 * to Curve448.
678 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
679 */
680 #define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
681
682 #define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
683 #define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
684 #define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
685 /** Diffie-Hellman key pair.
686 *
687 * \param group A value of type ::psa_dh_family_t that identifies the
688 * Diffie-Hellman group to be used.
689 */
690 #define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
691 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
692 /** Diffie-Hellman public key.
693 *
694 * \param group A value of type ::psa_dh_family_t that identifies the
695 * Diffie-Hellman group to be used.
696 */
697 #define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
698 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
699
700 /** Whether a key type is a Diffie-Hellman key (pair or public-only). */
701 #define PSA_KEY_TYPE_IS_DH(type) \
702 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
703 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
704 /** Whether a key type is a Diffie-Hellman key pair. */
705 #define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
706 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
707 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
708 /** Whether a key type is a Diffie-Hellman public key. */
709 #define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
710 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
711 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
712
713 /** Extract the group from a Diffie-Hellman key type. */
714 #define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
715 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
716 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
717 0))
718
719 /** Diffie-Hellman groups defined in RFC 7919 Appendix A.
720 *
721 * This family includes groups with the following key sizes (in bits):
722 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
723 * all of these sizes or only a subset.
724 */
725 #define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
726
727 #define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
728 (((type) >> 8) & 7)
729 /** The block size of a block cipher.
730 *
731 * \param type A cipher key type (value of type #psa_key_type_t).
732 *
733 * \return The block size for a block cipher, or 1 for a stream cipher.
734 * The return value is undefined if \p type is not a supported
735 * cipher key type.
736 *
737 * \note It is possible to build stream cipher algorithms on top of a block
738 * cipher, for example CTR mode (#PSA_ALG_CTR).
739 * This macro only takes the key type into account, so it cannot be
740 * used to determine the size of the data that #psa_cipher_update()
741 * might buffer for future processing in general.
742 *
743 * \note This macro returns a compile-time constant if its argument is one.
744 *
745 * \warning This macro may evaluate its argument multiple times.
746 */
747 #define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
748 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
749 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
750 0u)
751
752 /* Note that algorithm values are embedded in the persistent key store,
753 * as part of key metadata. As a consequence, they must not be changed
754 * (unless the storage format version changes).
755 */
756
757 /** Vendor-defined algorithm flag.
758 *
759 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
760 * bit set. Vendors who define additional algorithms must use an encoding with
761 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
762 * used by standard encodings whenever practical.
763 */
764 #define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
765
766 #define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
767 #define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
768 #define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
769 #define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
770 #define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
771 #define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
772 #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
773 #define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
774 #define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
775
776 /** Whether an algorithm is vendor-defined.
777 *
778 * See also #PSA_ALG_VENDOR_FLAG.
779 */
780 #define PSA_ALG_IS_VENDOR_DEFINED(alg) \
781 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
782
783 /** Whether the specified algorithm is a hash algorithm.
784 *
785 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
786 *
787 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
788 * This macro may return either 0 or 1 if \p alg is not a supported
789 * algorithm identifier.
790 */
791 #define PSA_ALG_IS_HASH(alg) \
792 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
793
794 /** Whether the specified algorithm is a MAC algorithm.
795 *
796 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
797 *
798 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
799 * This macro may return either 0 or 1 if \p alg is not a supported
800 * algorithm identifier.
801 */
802 #define PSA_ALG_IS_MAC(alg) \
803 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
804
805 /** Whether the specified algorithm is a symmetric cipher algorithm.
806 *
807 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
808 *
809 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
810 * This macro may return either 0 or 1 if \p alg is not a supported
811 * algorithm identifier.
812 */
813 #define PSA_ALG_IS_CIPHER(alg) \
814 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
815
816 /** Whether the specified algorithm is an authenticated encryption
817 * with associated data (AEAD) algorithm.
818 *
819 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
820 *
821 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
822 * This macro may return either 0 or 1 if \p alg is not a supported
823 * algorithm identifier.
824 */
825 #define PSA_ALG_IS_AEAD(alg) \
826 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
827
828 /** Whether the specified algorithm is an asymmetric signature algorithm,
829 * also known as public-key signature algorithm.
830 *
831 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
832 *
833 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
834 * This macro may return either 0 or 1 if \p alg is not a supported
835 * algorithm identifier.
836 */
837 #define PSA_ALG_IS_SIGN(alg) \
838 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
839
840 /** Whether the specified algorithm is an asymmetric encryption algorithm,
841 * also known as public-key encryption algorithm.
842 *
843 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
844 *
845 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
846 * This macro may return either 0 or 1 if \p alg is not a supported
847 * algorithm identifier.
848 */
849 #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
850 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
851
852 /** Whether the specified algorithm is a key agreement algorithm.
853 *
854 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
855 *
856 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
857 * This macro may return either 0 or 1 if \p alg is not a supported
858 * algorithm identifier.
859 */
860 #define PSA_ALG_IS_KEY_AGREEMENT(alg) \
861 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
862
863 /** Whether the specified algorithm is a key derivation algorithm.
864 *
865 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
866 *
867 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
868 * This macro may return either 0 or 1 if \p alg is not a supported
869 * algorithm identifier.
870 */
871 #define PSA_ALG_IS_KEY_DERIVATION(alg) \
872 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
873
874 /** Whether the specified algorithm is a key stretching / password hashing
875 * algorithm.
876 *
877 * A key stretching / password hashing algorithm is a key derivation algorithm
878 * that is suitable for use with a low-entropy secret such as a password.
879 * Equivalently, it's a key derivation algorithm that uses a
880 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
881 *
882 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
883 *
884 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
885 * otherwise. This macro may return either 0 or 1 if \p alg is not a
886 * supported algorithm identifier.
887 */
888 #define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
889 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
890 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
891
892 /** An invalid algorithm identifier value. */
893 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
894 #define PSA_ALG_NONE ((psa_algorithm_t)0)
895 /* *INDENT-ON* */
896
897 #define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
898 /** MD5 */
899 #define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
900 /** PSA_ALG_RIPEMD160 */
901 #define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
902 /** SHA1 */
903 #define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
904 /** SHA2-224 */
905 #define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
906 /** SHA2-256 */
907 #define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
908 /** SHA2-384 */
909 #define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
910 /** SHA2-512 */
911 #define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
912 /** SHA2-512/224 */
913 #define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
914 /** SHA2-512/256 */
915 #define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
916 /** SHA3-224 */
917 #define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
918 /** SHA3-256 */
919 #define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
920 /** SHA3-384 */
921 #define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
922 /** SHA3-512 */
923 #define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
924 /** The first 512 bits (64 bytes) of the SHAKE256 output.
925 *
926 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
927 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
928 * has the same output size and a (theoretically) higher security strength.
929 */
930 #define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
931
932 /** In a hash-and-sign algorithm policy, allow any hash algorithm.
933 *
934 * This value may be used to form the algorithm usage field of a policy
935 * for a signature algorithm that is parametrized by a hash. The key
936 * may then be used to perform operations using the same signature
937 * algorithm parametrized with any supported hash.
938 *
939 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
940 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
941 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
942 * Then you may create and use a key as follows:
943 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
944 * ```
945 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
946 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
947 * ```
948 * - Import or generate key material.
949 * - Call psa_sign_hash() or psa_verify_hash(), passing
950 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
951 * call to sign or verify a message may use a different hash.
952 * ```
953 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
954 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
955 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
956 * ```
957 *
958 * This value may not be used to build other algorithms that are
959 * parametrized over a hash. For any valid use of this macro to build
960 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
961 *
962 * This value may not be used to build an algorithm specification to
963 * perform an operation. It is only valid to build policies.
964 */
965 #define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
966
967 #define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
968 #define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
969 /** Macro to build an HMAC algorithm.
970 *
971 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
972 *
973 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
974 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
975 *
976 * \return The corresponding HMAC algorithm.
977 * \return Unspecified if \p hash_alg is not a supported
978 * hash algorithm.
979 */
980 #define PSA_ALG_HMAC(hash_alg) \
981 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
982
983 #define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
984 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
985
986 /** Whether the specified algorithm is an HMAC algorithm.
987 *
988 * HMAC is a family of MAC algorithms that are based on a hash function.
989 *
990 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
991 *
992 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
993 * This macro may return either 0 or 1 if \p alg is not a supported
994 * algorithm identifier.
995 */
996 #define PSA_ALG_IS_HMAC(alg) \
997 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
998 PSA_ALG_HMAC_BASE)
999
1000 /* In the encoding of a MAC algorithm, the bits corresponding to
1001 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
1002 * truncated. As an exception, the value 0 means the untruncated algorithm,
1003 * whatever its length is. The length is encoded in 6 bits, so it can
1004 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1005 * to full length is correctly encoded as 0 and any non-trivial truncation
1006 * is correctly encoded as a value between 1 and 63. */
1007 #define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
1008 #define PSA_MAC_TRUNCATION_OFFSET 16
1009
1010 /* In the encoding of a MAC algorithm, the bit corresponding to
1011 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1012 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1013 * algorithm policy can be used with any algorithm corresponding to the
1014 * same base class and having a (potentially truncated) MAC length greater or
1015 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
1016 #define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
1017
1018 /** Macro to build a truncated MAC algorithm.
1019 *
1020 * A truncated MAC algorithm is identical to the corresponding MAC
1021 * algorithm except that the MAC value for the truncated algorithm
1022 * consists of only the first \p mac_length bytes of the MAC value
1023 * for the untruncated algorithm.
1024 *
1025 * \note This macro may allow constructing algorithm identifiers that
1026 * are not valid, either because the specified length is larger
1027 * than the untruncated MAC or because the specified length is
1028 * smaller than permitted by the implementation.
1029 *
1030 * \note It is implementation-defined whether a truncated MAC that
1031 * is truncated to the same length as the MAC of the untruncated
1032 * algorithm is considered identical to the untruncated algorithm
1033 * for policy comparison purposes.
1034 *
1035 * \param mac_alg A MAC algorithm identifier (value of type
1036 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1037 * is true). This may be a truncated or untruncated
1038 * MAC algorithm.
1039 * \param mac_length Desired length of the truncated MAC in bytes.
1040 * This must be at most the full length of the MAC
1041 * and must be at least an implementation-specified
1042 * minimum. The implementation-specified minimum
1043 * shall not be zero.
1044 *
1045 * \return The corresponding MAC algorithm with the specified
1046 * length.
1047 * \return Unspecified if \p mac_alg is not a supported
1048 * MAC algorithm or if \p mac_length is too small or
1049 * too large for the specified MAC algorithm.
1050 */
1051 #define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1052 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1053 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
1054 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1055
1056 /** Macro to build the base MAC algorithm corresponding to a truncated
1057 * MAC algorithm.
1058 *
1059 * \param mac_alg A MAC algorithm identifier (value of type
1060 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1061 * is true). This may be a truncated or untruncated
1062 * MAC algorithm.
1063 *
1064 * \return The corresponding base MAC algorithm.
1065 * \return Unspecified if \p mac_alg is not a supported
1066 * MAC algorithm.
1067 */
1068 #define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1069 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1070 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
1071
1072 /** Length to which a MAC algorithm is truncated.
1073 *
1074 * \param mac_alg A MAC algorithm identifier (value of type
1075 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1076 * is true).
1077 *
1078 * \return Length of the truncated MAC in bytes.
1079 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1080 * \return Unspecified if \p mac_alg is not a supported
1081 * MAC algorithm.
1082 */
1083 #define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1084 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
1085
1086 /** Macro to build a MAC minimum-MAC-length wildcard algorithm.
1087 *
1088 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
1089 * sharing the same base algorithm, and where the (potentially truncated) MAC
1090 * length of the specific algorithm is equal to or larger then the wildcard
1091 * algorithm's minimum MAC length.
1092 *
1093 * \note When setting the minimum required MAC length to less than the
1094 * smallest MAC length allowed by the base algorithm, this effectively
1095 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
1096 *
1097 * \param mac_alg A MAC algorithm identifier (value of type
1098 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1099 * is true).
1100 * \param min_mac_length Desired minimum length of the message authentication
1101 * code in bytes. This must be at most the untruncated
1102 * length of the MAC and must be at least 1.
1103 *
1104 * \return The corresponding MAC wildcard algorithm with the
1105 * specified minimum length.
1106 * \return Unspecified if \p mac_alg is not a supported MAC
1107 * algorithm or if \p min_mac_length is less than 1 or
1108 * too large for the specified MAC algorithm.
1109 */
1110 #define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1111 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1112 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
1113
1114 #define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
1115 /** The CBC-MAC construction over a block cipher
1116 *
1117 * \warning CBC-MAC is insecure in many cases.
1118 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1119 */
1120 #define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
1121 /** The CMAC construction over a block cipher */
1122 #define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
1123
1124 /** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1125 *
1126 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1127 *
1128 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1129 * This macro may return either 0 or 1 if \p alg is not a supported
1130 * algorithm identifier.
1131 */
1132 #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1133 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1134 PSA_ALG_CIPHER_MAC_BASE)
1135
1136 #define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
1137 #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
1138
1139 /** Whether the specified algorithm is a stream cipher.
1140 *
1141 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1142 * by applying a bitwise-xor with a stream of bytes that is generated
1143 * from a key.
1144 *
1145 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1146 *
1147 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1148 * This macro may return either 0 or 1 if \p alg is not a supported
1149 * algorithm identifier or if it is not a symmetric cipher algorithm.
1150 */
1151 #define PSA_ALG_IS_STREAM_CIPHER(alg) \
1152 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1153 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1154
1155 /** The stream cipher mode of a stream cipher algorithm.
1156 *
1157 * The underlying stream cipher is determined by the key type.
1158 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1159 */
1160 #define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
1161
1162 /** The CTR stream cipher mode.
1163 *
1164 * CTR is a stream cipher which is built from a block cipher.
1165 * The underlying block cipher is determined by the key type.
1166 * For example, to use AES-128-CTR, use this algorithm with
1167 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1168 */
1169 #define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
1170
1171 /** The CFB stream cipher mode.
1172 *
1173 * The underlying block cipher is determined by the key type.
1174 */
1175 #define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
1176
1177 /** The OFB stream cipher mode.
1178 *
1179 * The underlying block cipher is determined by the key type.
1180 */
1181 #define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
1182
1183 /** The XTS cipher mode.
1184 *
1185 * XTS is a cipher mode which is built from a block cipher. It requires at
1186 * least one full block of input, but beyond this minimum the input
1187 * does not need to be a whole number of blocks.
1188 */
1189 #define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
1190
1191 /** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1192 *
1193 * \warning ECB mode does not protect the confidentiality of the encrypted data
1194 * except in extremely narrow circumstances. It is recommended that applications
1195 * only use ECB if they need to construct an operating mode that the
1196 * implementation does not provide. Implementations are encouraged to provide
1197 * the modes that applications need in preference to supporting direct access
1198 * to ECB.
1199 *
1200 * The underlying block cipher is determined by the key type.
1201 *
1202 * This symmetric cipher mode can only be used with messages whose lengths are a
1203 * multiple of the block size of the chosen block cipher.
1204 *
1205 * ECB mode does not accept an initialization vector (IV). When using a
1206 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1207 * and psa_cipher_set_iv() must not be called.
1208 */
1209 #define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
1210
1211 /** The CBC block cipher chaining mode, with no padding.
1212 *
1213 * The underlying block cipher is determined by the key type.
1214 *
1215 * This symmetric cipher mode can only be used with messages whose lengths
1216 * are whole number of blocks for the chosen block cipher.
1217 */
1218 #define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
1219
1220 /** The CBC block cipher chaining mode with PKCS#7 padding.
1221 *
1222 * The underlying block cipher is determined by the key type.
1223 *
1224 * This is the padding method defined by PKCS#7 (RFC 2315) §10.3.
1225 */
1226 #define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
1227
1228 #define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
1229
1230 /** Whether the specified algorithm is an AEAD mode on a block cipher.
1231 *
1232 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1233 *
1234 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1235 * a block cipher, 0 otherwise.
1236 * This macro may return either 0 or 1 if \p alg is not a supported
1237 * algorithm identifier.
1238 */
1239 #define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1240 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1241 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1242
1243 /** The CCM authenticated encryption algorithm.
1244 *
1245 * The underlying block cipher is determined by the key type.
1246 */
1247 #define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
1248
1249 /** The CCM* cipher mode without authentication.
1250 *
1251 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1252 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1253 *
1254 * The underlying block cipher is determined by the key type.
1255 *
1256 * Currently only 13-byte long IV's are supported.
1257 */
1258 #define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t) 0x04c01300)
1259
1260 /** The GCM authenticated encryption algorithm.
1261 *
1262 * The underlying block cipher is determined by the key type.
1263 */
1264 #define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
1265
1266 /** The Chacha20-Poly1305 AEAD algorithm.
1267 *
1268 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
1269 *
1270 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1271 * and should reject other sizes.
1272 *
1273 * Implementations must support 16-byte tags and should reject other sizes.
1274 */
1275 #define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
1276
1277 /* In the encoding of an AEAD algorithm, the bits corresponding to
1278 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1279 * The constants for default lengths follow this encoding.
1280 */
1281 #define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
1282 #define PSA_AEAD_TAG_LENGTH_OFFSET 16
1283
1284 /* In the encoding of an AEAD algorithm, the bit corresponding to
1285 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1286 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1287 * algorithm policy can be used with any algorithm corresponding to the
1288 * same base class and having a tag length greater than or equal to the one
1289 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1290 #define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
1291
1292 /** Macro to build a shortened AEAD algorithm.
1293 *
1294 * A shortened AEAD algorithm is similar to the corresponding AEAD
1295 * algorithm, but has an authentication tag that consists of fewer bytes.
1296 * Depending on the algorithm, the tag length may affect the calculation
1297 * of the ciphertext.
1298 *
1299 * \param aead_alg An AEAD algorithm identifier (value of type
1300 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1301 * is true).
1302 * \param tag_length Desired length of the authentication tag in bytes.
1303 *
1304 * \return The corresponding AEAD algorithm with the specified
1305 * length.
1306 * \return Unspecified if \p aead_alg is not a supported
1307 * AEAD algorithm or if \p tag_length is not valid
1308 * for the specified AEAD algorithm.
1309 */
1310 #define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
1311 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1312 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
1313 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1314 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1315
1316 /** Retrieve the tag length of a specified AEAD algorithm
1317 *
1318 * \param aead_alg An AEAD algorithm identifier (value of type
1319 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1320 * is true).
1321 *
1322 * \return The tag length specified by the input algorithm.
1323 * \return Unspecified if \p aead_alg is not a supported
1324 * AEAD algorithm.
1325 */
1326 #define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1327 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1328 PSA_AEAD_TAG_LENGTH_OFFSET)
1329
1330 /** Calculate the corresponding AEAD algorithm with the default tag length.
1331 *
1332 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1333 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1334 *
1335 * \return The corresponding AEAD algorithm with the default
1336 * tag length for that algorithm.
1337 */
1338 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
1339 ( \
1340 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1341 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1342 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
1343 0)
1344 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1345 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1346 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
1347 ref :
1348
1349 /** Macro to build an AEAD minimum-tag-length wildcard algorithm.
1350 *
1351 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
1352 * sharing the same base algorithm, and where the tag length of the specific
1353 * algorithm is equal to or larger then the minimum tag length specified by the
1354 * wildcard algorithm.
1355 *
1356 * \note When setting the minimum required tag length to less than the
1357 * smallest tag length allowed by the base algorithm, this effectively
1358 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
1359 *
1360 * \param aead_alg An AEAD algorithm identifier (value of type
1361 * #psa_algorithm_t such that
1362 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1363 * \param min_tag_length Desired minimum length of the authentication tag in
1364 * bytes. This must be at least 1 and at most the largest
1365 * allowed tag length of the algorithm.
1366 *
1367 * \return The corresponding AEAD wildcard algorithm with the
1368 * specified minimum length.
1369 * \return Unspecified if \p aead_alg is not a supported
1370 * AEAD algorithm or if \p min_tag_length is less than 1
1371 * or too large for the specified AEAD algorithm.
1372 */
1373 #define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
1374 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1375 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
1376
1377 #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
1378 /** RSA PKCS#1 v1.5 signature with hashing.
1379 *
1380 * This is the signature scheme defined by RFC 8017
1381 * (PKCS#1: RSA Cryptography Specifications) under the name
1382 * RSASSA-PKCS1-v1_5.
1383 *
1384 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1385 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1386 * This includes #PSA_ALG_ANY_HASH
1387 * when specifying the algorithm in a usage policy.
1388 *
1389 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
1390 * \return Unspecified if \p hash_alg is not a supported
1391 * hash algorithm.
1392 */
1393 #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1394 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1395 /** Raw PKCS#1 v1.5 signature.
1396 *
1397 * The input to this algorithm is the DigestInfo structure used by
1398 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2
1399 * steps 3–6.
1400 */
1401 #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1402 #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1403 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1404
1405 #define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
1406 #define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
1407 /** RSA PSS signature with hashing.
1408 *
1409 * This is the signature scheme defined by RFC 8017
1410 * (PKCS#1: RSA Cryptography Specifications) under the name
1411 * RSASSA-PSS, with the message generation function MGF1, and with
1412 * a salt length equal to the length of the hash, or the largest
1413 * possible salt length for the algorithm and key size if that is
1414 * smaller than the hash length. The specified hash algorithm is
1415 * used to hash the input message, to create the salted hash, and
1416 * for the mask generation.
1417 *
1418 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1419 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1420 * This includes #PSA_ALG_ANY_HASH
1421 * when specifying the algorithm in a usage policy.
1422 *
1423 * \return The corresponding RSA PSS signature algorithm.
1424 * \return Unspecified if \p hash_alg is not a supported
1425 * hash algorithm.
1426 */
1427 #define PSA_ALG_RSA_PSS(hash_alg) \
1428 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1429
1430 /** RSA PSS signature with hashing with relaxed verification.
1431 *
1432 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1433 * but allows an arbitrary salt length (including \c 0) when verifying a
1434 * signature.
1435 *
1436 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1437 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1438 * This includes #PSA_ALG_ANY_HASH
1439 * when specifying the algorithm in a usage policy.
1440 *
1441 * \return The corresponding RSA PSS signature algorithm.
1442 * \return Unspecified if \p hash_alg is not a supported
1443 * hash algorithm.
1444 */
1445 #define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1446 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1447
1448 /** Whether the specified algorithm is RSA PSS with standard salt.
1449 *
1450 * \param alg An algorithm value or an algorithm policy wildcard.
1451 *
1452 * \return 1 if \p alg is of the form
1453 * #PSA_ALG_RSA_PSS(\c hash_alg),
1454 * where \c hash_alg is a hash algorithm or
1455 * #PSA_ALG_ANY_HASH. 0 otherwise.
1456 * This macro may return either 0 or 1 if \p alg is not
1457 * a supported algorithm identifier or policy.
1458 */
1459 #define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
1460 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1461
1462 /** Whether the specified algorithm is RSA PSS with any salt.
1463 *
1464 * \param alg An algorithm value or an algorithm policy wildcard.
1465 *
1466 * \return 1 if \p alg is of the form
1467 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1468 * where \c hash_alg is a hash algorithm or
1469 * #PSA_ALG_ANY_HASH. 0 otherwise.
1470 * This macro may return either 0 or 1 if \p alg is not
1471 * a supported algorithm identifier or policy.
1472 */
1473 #define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1474 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1475
1476 /** Whether the specified algorithm is RSA PSS.
1477 *
1478 * This includes any of the RSA PSS algorithm variants, regardless of the
1479 * constraints on salt length.
1480 *
1481 * \param alg An algorithm value or an algorithm policy wildcard.
1482 *
1483 * \return 1 if \p alg is of the form
1484 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1485 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1486 * where \c hash_alg is a hash algorithm or
1487 * #PSA_ALG_ANY_HASH. 0 otherwise.
1488 * This macro may return either 0 or 1 if \p alg is not
1489 * a supported algorithm identifier or policy.
1490 */
1491 #define PSA_ALG_IS_RSA_PSS(alg) \
1492 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1493 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
1494
1495 #define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
1496 /** ECDSA signature with hashing.
1497 *
1498 * This is the ECDSA signature scheme defined by ANSI X9.62,
1499 * with a random per-message secret number (*k*).
1500 *
1501 * The representation of the signature as a byte string consists of
1502 * the concatenation of the signature values *r* and *s*. Each of
1503 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1504 * of the base point of the curve in octets. Each value is represented
1505 * in big-endian order (most significant octet first).
1506 *
1507 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1508 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1509 * This includes #PSA_ALG_ANY_HASH
1510 * when specifying the algorithm in a usage policy.
1511 *
1512 * \return The corresponding ECDSA signature algorithm.
1513 * \return Unspecified if \p hash_alg is not a supported
1514 * hash algorithm.
1515 */
1516 #define PSA_ALG_ECDSA(hash_alg) \
1517 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1518 /** ECDSA signature without hashing.
1519 *
1520 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1521 * without specifying a hash algorithm. This algorithm may only be
1522 * used to sign or verify a sequence of bytes that should be an
1523 * already-calculated hash. Note that the input is padded with
1524 * zeros on the left or truncated on the left as required to fit
1525 * the curve size.
1526 */
1527 #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1528 #define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
1529 /** Deterministic ECDSA signature with hashing.
1530 *
1531 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1532 *
1533 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1534 *
1535 * Note that when this algorithm is used for verification, signatures
1536 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1537 * same private key are accepted. In other words,
1538 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1539 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1540 *
1541 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1542 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1543 * This includes #PSA_ALG_ANY_HASH
1544 * when specifying the algorithm in a usage policy.
1545 *
1546 * \return The corresponding deterministic ECDSA signature
1547 * algorithm.
1548 * \return Unspecified if \p hash_alg is not a supported
1549 * hash algorithm.
1550 */
1551 #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1552 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1553 #define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
1554 #define PSA_ALG_IS_ECDSA(alg) \
1555 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
1556 PSA_ALG_ECDSA_BASE)
1557 #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1558 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
1559 #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1560 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1561 #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1562 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1563
1564 /** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1565 * using standard parameters.
1566 *
1567 * Contexts are not supported in the current version of this specification
1568 * because there is no suitable signature interface that can take the
1569 * context as a parameter. A future version of this specification may add
1570 * suitable functions and extend this algorithm to support contexts.
1571 *
1572 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1573 * In this specification, the following curves are supported:
1574 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1575 * in RFC 8032.
1576 * The curve is Edwards25519.
1577 * The hash function used internally is SHA-512.
1578 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1579 * in RFC 8032.
1580 * The curve is Edwards448.
1581 * The hash function used internally is the first 114 bytes of the
1582 * SHAKE256 output.
1583 *
1584 * This algorithm can be used with psa_sign_message() and
1585 * psa_verify_message(). Since there is no prehashing, it cannot be used
1586 * with psa_sign_hash() or psa_verify_hash().
1587 *
1588 * The signature format is the concatenation of R and S as defined by
1589 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1590 * string for Ed448).
1591 */
1592 #define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
1593
1594 #define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
1595 #define PSA_ALG_IS_HASH_EDDSA(alg) \
1596 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1597
1598 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1599 * using SHA-512 and the Edwards25519 curve.
1600 *
1601 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1602 *
1603 * This algorithm is Ed25519 as specified in RFC 8032.
1604 * The curve is Edwards25519.
1605 * The prehash is SHA-512.
1606 * The hash function used internally is SHA-512.
1607 *
1608 * This is a hash-and-sign algorithm: to calculate a signature,
1609 * you can either:
1610 * - call psa_sign_message() on the message;
1611 * - or calculate the SHA-512 hash of the message
1612 * with psa_hash_compute()
1613 * or with a multi-part hash operation started with psa_hash_setup(),
1614 * using the hash algorithm #PSA_ALG_SHA_512,
1615 * then sign the calculated hash with psa_sign_hash().
1616 * Verifying a signature is similar, using psa_verify_message() or
1617 * psa_verify_hash() instead of the signature function.
1618 */
1619 #define PSA_ALG_ED25519PH \
1620 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1621
1622 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1623 * using SHAKE256 and the Edwards448 curve.
1624 *
1625 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1626 *
1627 * This algorithm is Ed448 as specified in RFC 8032.
1628 * The curve is Edwards448.
1629 * The prehash is the first 64 bytes of the SHAKE256 output.
1630 * The hash function used internally is the first 114 bytes of the
1631 * SHAKE256 output.
1632 *
1633 * This is a hash-and-sign algorithm: to calculate a signature,
1634 * you can either:
1635 * - call psa_sign_message() on the message;
1636 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1637 * with psa_hash_compute()
1638 * or with a multi-part hash operation started with psa_hash_setup(),
1639 * using the hash algorithm #PSA_ALG_SHAKE256_512,
1640 * then sign the calculated hash with psa_sign_hash().
1641 * Verifying a signature is similar, using psa_verify_message() or
1642 * psa_verify_hash() instead of the signature function.
1643 */
1644 #define PSA_ALG_ED448PH \
1645 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
1646
1647 /* Default definition, to be overridden if the library is extended with
1648 * more hash-and-sign algorithms that we want to keep out of this header
1649 * file. */
1650 #define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1651
1652 /** Whether the specified algorithm is a signature algorithm that can be used
1653 * with psa_sign_hash() and psa_verify_hash().
1654 *
1655 * This encompasses all strict hash-and-sign algorithms categorized by
1656 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1657 * paradigm more loosely:
1658 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1659 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1660 *
1661 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1662 *
1663 * \return 1 if alg is a signature algorithm that can be used to sign a
1664 * hash. 0 if alg is a signature algorithm that can only be used
1665 * to sign a message. 0 if alg is not a signature algorithm.
1666 * This macro can return either 0 or 1 if alg is not a
1667 * supported algorithm identifier.
1668 */
1669 #define PSA_ALG_IS_SIGN_HASH(alg) \
1670 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1671 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1672 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1673
1674 /** Whether the specified algorithm is a signature algorithm that can be used
1675 * with psa_sign_message() and psa_verify_message().
1676 *
1677 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1678 *
1679 * \return 1 if alg is a signature algorithm that can be used to sign a
1680 * message. 0 if \p alg is a signature algorithm that can only be used
1681 * to sign an already-calculated hash. 0 if \p alg is not a signature
1682 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1683 * supported algorithm identifier.
1684 */
1685 #define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1686 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
1687
1688 /** Whether the specified algorithm is a hash-and-sign algorithm.
1689 *
1690 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1691 * structured in two parts: first the calculation of a hash in a way that
1692 * does not depend on the key, then the calculation of a signature from the
1693 * hash value and the key. Hash-and-sign algorithms encode the hash
1694 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1695 * to extract this algorithm.
1696 *
1697 * Thus, for a hash-and-sign algorithm,
1698 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1699 * ```
1700 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1701 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1702 * ```
1703 * Most usefully, separating the hash from the signature allows the hash
1704 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1705 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1706 * calculating the hash and then calling psa_verify_hash().
1707 *
1708 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1709 *
1710 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1711 * This macro may return either 0 or 1 if \p alg is not a supported
1712 * algorithm identifier.
1713 */
1714 #define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1715 (PSA_ALG_IS_SIGN_HASH(alg) && \
1716 ((alg) & PSA_ALG_HASH_MASK) != 0)
1717
1718 /** Get the hash used by a hash-and-sign signature algorithm.
1719 *
1720 * A hash-and-sign algorithm is a signature algorithm which is
1721 * composed of two phases: first a hashing phase which does not use
1722 * the key and produces a hash of the input message, then a signing
1723 * phase which only uses the hash and the key and not the message
1724 * itself.
1725 *
1726 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1727 * #PSA_ALG_IS_SIGN(\p alg) is true).
1728 *
1729 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1730 * algorithm.
1731 * \return 0 if \p alg is a signature algorithm that does not
1732 * follow the hash-and-sign structure.
1733 * \return Unspecified if \p alg is not a signature algorithm or
1734 * if it is not supported by the implementation.
1735 */
1736 #define PSA_ALG_SIGN_GET_HASH(alg) \
1737 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1738 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1739 0)
1740
1741 /** RSA PKCS#1 v1.5 encryption.
1742 */
1743 #define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
1744
1745 #define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
1746 /** RSA OAEP encryption.
1747 *
1748 * This is the encryption scheme defined by RFC 8017
1749 * (PKCS#1: RSA Cryptography Specifications) under the name
1750 * RSAES-OAEP, with the message generation function MGF1.
1751 *
1752 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1753 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1754 * for MGF1.
1755 *
1756 * \return The corresponding RSA OAEP encryption algorithm.
1757 * \return Unspecified if \p hash_alg is not a supported
1758 * hash algorithm.
1759 */
1760 #define PSA_ALG_RSA_OAEP(hash_alg) \
1761 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1762 #define PSA_ALG_IS_RSA_OAEP(alg) \
1763 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1764 #define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1765 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1766 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1767 0)
1768
1769 #define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
1770 /** Macro to build an HKDF algorithm.
1771 *
1772 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
1773 *
1774 * This key derivation algorithm uses the following inputs:
1775 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
1776 * It is optional; if omitted, the derivation uses an empty salt.
1777 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1778 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1779 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1780 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
1781 * starting to generate output.
1782 *
1783 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1784 * if the salt is longer than the block size of the hash algorithm; then
1785 * pad with null bytes up to the block size. As a result, it is possible
1786 * for distinct salt inputs to result in the same outputs. To ensure
1787 * unique outputs, it is recommended to use a fixed length for salt values.
1788 *
1789 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1790 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1791 *
1792 * \return The corresponding HKDF algorithm.
1793 * \return Unspecified if \p hash_alg is not a supported
1794 * hash algorithm.
1795 */
1796 #define PSA_ALG_HKDF(hash_alg) \
1797 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1798 /** Whether the specified algorithm is an HKDF algorithm.
1799 *
1800 * HKDF is a family of key derivation algorithms that are based on a hash
1801 * function and the HMAC construction.
1802 *
1803 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1804 *
1805 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1806 * This macro may return either 0 or 1 if \c alg is not a supported
1807 * key derivation algorithm identifier.
1808 */
1809 #define PSA_ALG_IS_HKDF(alg) \
1810 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1811 #define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1812 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1813
1814 #define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t) 0x08000400)
1815 /** Macro to build an HKDF-Extract algorithm.
1816 *
1817 * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
1818 * HKDF-Extract using HMAC-SHA-256.
1819 *
1820 * This key derivation algorithm uses the following inputs:
1821 * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1822 * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1823 * "extract" step.
1824 * The inputs are mandatory and must be passed in the order above.
1825 * Each input may only be passed once.
1826 *
1827 * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1828 * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1829 * as a separate algorithm for the sake of protocols that use it as a
1830 * building block. It may also be a slight performance optimization
1831 * in applications that use HKDF with the same salt and key but many
1832 * different info strings.
1833 *
1834 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1835 * if the salt is longer than the block size of the hash algorithm; then
1836 * pad with null bytes up to the block size. As a result, it is possible
1837 * for distinct salt inputs to result in the same outputs. To ensure
1838 * unique outputs, it is recommended to use a fixed length for salt values.
1839 *
1840 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1841 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1842 *
1843 * \return The corresponding HKDF-Extract algorithm.
1844 * \return Unspecified if \p hash_alg is not a supported
1845 * hash algorithm.
1846 */
1847 #define PSA_ALG_HKDF_EXTRACT(hash_alg) \
1848 (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1849 /** Whether the specified algorithm is an HKDF-Extract algorithm.
1850 *
1851 * HKDF-Extract is a family of key derivation algorithms that are based
1852 * on a hash function and the HMAC construction.
1853 *
1854 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1855 *
1856 * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1857 * This macro may return either 0 or 1 if \c alg is not a supported
1858 * key derivation algorithm identifier.
1859 */
1860 #define PSA_ALG_IS_HKDF_EXTRACT(alg) \
1861 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1862
1863 #define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t) 0x08000500)
1864 /** Macro to build an HKDF-Expand algorithm.
1865 *
1866 * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
1867 * HKDF-Expand using HMAC-SHA-256.
1868 *
1869 * This key derivation algorithm uses the following inputs:
1870 * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
1871 * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1872 *
1873 * The inputs are mandatory and must be passed in the order above.
1874 * Each input may only be passed once.
1875 *
1876 * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1877 * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1878 * a separate algorithm for the sake of protocols that use it as a building
1879 * block. It may also be a slight performance optimization in applications
1880 * that use HKDF with the same salt and key but many different info strings.
1881 *
1882 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1883 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1884 *
1885 * \return The corresponding HKDF-Expand algorithm.
1886 * \return Unspecified if \p hash_alg is not a supported
1887 * hash algorithm.
1888 */
1889 #define PSA_ALG_HKDF_EXPAND(hash_alg) \
1890 (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1891 /** Whether the specified algorithm is an HKDF-Expand algorithm.
1892 *
1893 * HKDF-Expand is a family of key derivation algorithms that are based
1894 * on a hash function and the HMAC construction.
1895 *
1896 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1897 *
1898 * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1899 * This macro may return either 0 or 1 if \c alg is not a supported
1900 * key derivation algorithm identifier.
1901 */
1902 #define PSA_ALG_IS_HKDF_EXPAND(alg) \
1903 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1904
1905 /** Whether the specified algorithm is an HKDF or HKDF-Extract or
1906 * HKDF-Expand algorithm.
1907 *
1908 *
1909 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1910 *
1911 * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1912 * This macro may return either 0 or 1 if \c alg is not a supported
1913 * key derivation algorithm identifier.
1914 */
1915 #define PSA_ALG_IS_ANY_HKDF(alg) \
1916 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
1917 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
1918 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1919
1920 #define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
1921 /** Macro to build a TLS-1.2 PRF algorithm.
1922 *
1923 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1924 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1925 * used with either SHA-256 or SHA-384.
1926 *
1927 * This key derivation algorithm uses the following inputs, which must be
1928 * passed in the order given here:
1929 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1930 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1931 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1932 *
1933 * For the application to TLS-1.2 key expansion, the seed is the
1934 * concatenation of ServerHello.Random + ClientHello.Random,
1935 * and the label is "key expansion".
1936 *
1937 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
1938 * TLS 1.2 PRF using HMAC-SHA-256.
1939 *
1940 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1941 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1942 *
1943 * \return The corresponding TLS-1.2 PRF algorithm.
1944 * \return Unspecified if \p hash_alg is not a supported
1945 * hash algorithm.
1946 */
1947 #define PSA_ALG_TLS12_PRF(hash_alg) \
1948 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1949
1950 /** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1951 *
1952 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1953 *
1954 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1955 * This macro may return either 0 or 1 if \c alg is not a supported
1956 * key derivation algorithm identifier.
1957 */
1958 #define PSA_ALG_IS_TLS12_PRF(alg) \
1959 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1960 #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1961 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1962
1963 #define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
1964 /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1965 *
1966 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1967 * from the PreSharedKey (PSK) through the application of padding
1968 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1969 * The latter is based on HMAC and can be used with either SHA-256
1970 * or SHA-384.
1971 *
1972 * This key derivation algorithm uses the following inputs, which must be
1973 * passed in the order given here:
1974 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1975 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1976 * computation of the premaster secret. This input is optional;
1977 * if omitted, it defaults to a string of null bytes with the same length
1978 * as the secret (PSK) input.
1979 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1980 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1981 *
1982 * For the application to TLS-1.2, the seed (which is
1983 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1984 * ClientHello.Random + ServerHello.Random,
1985 * the label is "master secret" or "extended master secret" and
1986 * the other secret depends on the key exchange specified in the cipher suite:
1987 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1988 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1989 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1990 * (RFC 5489, Section 2), the other secret should be the output of the
1991 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
1992 * The recommended way to pass this input is to use a key derivation
1993 * algorithm constructed as
1994 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
1995 * and to call psa_key_derivation_key_agreement(). Alternatively,
1996 * this input may be an output of `psa_raw_key_agreement()` passed with
1997 * psa_key_derivation_input_bytes(), or an equivalent input passed with
1998 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
1999 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
2000 * should be the 48-byte client challenge (the PreMasterSecret of
2001 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2002 * a 46-byte random string chosen by the client. On the server, this is
2003 * typically an output of psa_asymmetric_decrypt() using
2004 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2005 * with `psa_key_derivation_input_bytes()`.
2006 *
2007 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
2008 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2009 *
2010 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2011 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2012 *
2013 * \return The corresponding TLS-1.2 PSK to MS algorithm.
2014 * \return Unspecified if \p hash_alg is not a supported
2015 * hash algorithm.
2016 */
2017 #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
2018 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2019
2020 /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2021 *
2022 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2023 *
2024 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2025 * This macro may return either 0 or 1 if \c alg is not a supported
2026 * key derivation algorithm identifier.
2027 */
2028 #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
2029 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2030 #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
2031 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2032
2033 /* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2034 * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2035 * will use to derive the session secret, as defined by step 2 of
2036 * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2037 * Uses PSA_ALG_SHA_256.
2038 * This function takes a single input:
2039 * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2040 * The only supported curve is secp256r1 (the 256-bit curve in
2041 * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
2042 * The output has to be read as a single chunk of 32 bytes, defined as
2043 * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
2044 */
2045 #define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t) 0x08000609)
2046
2047 /* This flag indicates whether the key derivation algorithm is suitable for
2048 * use on low-entropy secrets such as password - these algorithms are also
2049 * known as key stretching or password hashing schemes. These are also the
2050 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
2051 *
2052 * Those algorithms cannot be combined with a key agreement algorithm.
2053 */
2054 #define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t) 0x00800000)
2055
2056 #define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t) 0x08800100)
2057 /** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
2058 *
2059 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2060 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2061 * HMAC with the specified hash.
2062 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
2063 * using the PRF HMAC-SHA-256.
2064 *
2065 * This key derivation algorithm uses the following inputs, which must be
2066 * provided in the following order:
2067 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
2068 * This input step must be used exactly once.
2069 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2070 * This input step must be used one or more times; if used several times, the
2071 * inputs will be concatenated. This can be used to build the final salt
2072 * from multiple sources, both public and secret (also known as pepper).
2073 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
2074 * This input step must be used exactly once.
2075 *
2076 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2077 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2078 *
2079 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
2080 * \return Unspecified if \p hash_alg is not a supported
2081 * hash algorithm.
2082 */
2083 #define PSA_ALG_PBKDF2_HMAC(hash_alg) \
2084 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2085
2086 /** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2087 *
2088 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2089 *
2090 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2091 * This macro may return either 0 or 1 if \c alg is not a supported
2092 * key derivation algorithm identifier.
2093 */
2094 #define PSA_ALG_IS_PBKDF2_HMAC(alg) \
2095 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
2096
2097 /** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2098 *
2099 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2100 * This macro specifies the PBKDF2 algorithm constructed using the
2101 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2102 *
2103 * This key derivation algorithm uses the same inputs as
2104 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
2105 */
2106 #define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t) 0x08800200)
2107
2108 #define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
2109 #define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
2110
2111 /** Macro to build a combined algorithm that chains a key agreement with
2112 * a key derivation.
2113 *
2114 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
2115 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2116 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
2117 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
2118 *
2119 * \return The corresponding key agreement and derivation
2120 * algorithm.
2121 * \return Unspecified if \p ka_alg is not a supported
2122 * key agreement algorithm or \p kdf_alg is not a
2123 * supported key derivation algorithm.
2124 */
2125 #define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
2126 ((ka_alg) | (kdf_alg))
2127
2128 #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
2129 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2130
2131 #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
2132 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
2133
2134 /** Whether the specified algorithm is a raw key agreement algorithm.
2135 *
2136 * A raw key agreement algorithm is one that does not specify
2137 * a key derivation function.
2138 * Usually, raw key agreement algorithms are constructed directly with
2139 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
2140 * constructed with #PSA_ALG_KEY_AGREEMENT().
2141 *
2142 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2143 *
2144 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2145 * This macro may return either 0 or 1 if \p alg is not a supported
2146 * algorithm identifier.
2147 */
2148 #define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
2149 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
2150 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
2151
2152 #define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
2153 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2154
2155 /** The finite-field Diffie-Hellman (DH) key agreement algorithm.
2156 *
2157 * The shared secret produced by key agreement is
2158 * `g^{ab}` in big-endian format.
2159 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2160 * in bits.
2161 */
2162 #define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
2163
2164 /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2165 *
2166 * This includes the raw finite field Diffie-Hellman algorithm as well as
2167 * finite-field Diffie-Hellman followed by any supporter key derivation
2168 * algorithm.
2169 *
2170 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2171 *
2172 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2173 * This macro may return either 0 or 1 if \c alg is not a supported
2174 * key agreement algorithm identifier.
2175 */
2176 #define PSA_ALG_IS_FFDH(alg) \
2177 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
2178
2179 /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2180 *
2181 * The shared secret produced by key agreement is the x-coordinate of
2182 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2183 * `m` is the bit size associated with the curve, i.e. the bit size of the
2184 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2185 * the byte containing the most significant bit of the shared secret
2186 * is padded with zero bits. The byte order is either little-endian
2187 * or big-endian depending on the curve type.
2188 *
2189 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
2190 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2191 * in little-endian byte order.
2192 * The bit size is 448 for Curve448 and 255 for Curve25519.
2193 * - For Weierstrass curves over prime fields (curve types
2194 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
2195 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2196 * in big-endian byte order.
2197 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2198 * - For Weierstrass curves over binary fields (curve types
2199 * `PSA_ECC_FAMILY_SECTXXX`),
2200 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2201 * in big-endian byte order.
2202 * The bit size is `m` for the field `F_{2^m}`.
2203 */
2204 #define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
2205
2206 /** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2207 * algorithm.
2208 *
2209 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2210 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2211 * algorithm.
2212 *
2213 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2214 *
2215 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2216 * 0 otherwise.
2217 * This macro may return either 0 or 1 if \c alg is not a supported
2218 * key agreement algorithm identifier.
2219 */
2220 #define PSA_ALG_IS_ECDH(alg) \
2221 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
2222
2223 /** Whether the specified algorithm encoding is a wildcard.
2224 *
2225 * Wildcard values may only be used to set the usage algorithm field in
2226 * a policy, not to perform an operation.
2227 *
2228 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2229 *
2230 * \return 1 if \c alg is a wildcard algorithm encoding.
2231 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2232 * an operation).
2233 * \return This macro may return either 0 or 1 if \c alg is not a supported
2234 * algorithm identifier.
2235 */
2236 #define PSA_ALG_IS_WILDCARD(alg) \
2237 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2238 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2239 PSA_ALG_IS_MAC(alg) ? \
2240 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2241 PSA_ALG_IS_AEAD(alg) ? \
2242 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2243 (alg) == PSA_ALG_ANY_HASH)
2244
2245 /** Get the hash used by a composite algorithm.
2246 *
2247 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2248 *
2249 * \return The underlying hash algorithm if alg is a composite algorithm that
2250 * uses a hash algorithm.
2251 *
2252 * \return \c 0 if alg is not a composite algorithm that uses a hash.
2253 */
2254 #define PSA_ALG_GET_HASH(alg) \
2255 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
2256
2257 /**@}*/
2258
2259 /** \defgroup key_lifetimes Key lifetimes
2260 * @{
2261 */
2262
2263 /* Note that location and persistence level values are embedded in the
2264 * persistent key store, as part of key metadata. As a consequence, they
2265 * must not be changed (unless the storage format version changes).
2266 */
2267
2268 /** The default lifetime for volatile keys.
2269 *
2270 * A volatile key only exists as long as the identifier to it is not destroyed.
2271 * The key material is guaranteed to be erased on a power reset.
2272 *
2273 * A key with this lifetime is typically stored in the RAM area of the
2274 * PSA Crypto subsystem. However this is an implementation choice.
2275 * If an implementation stores data about the key in a non-volatile memory,
2276 * it must release all the resources associated with the key and erase the
2277 * key material if the calling application terminates.
2278 */
2279 #define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
2280
2281 /** The default lifetime for persistent keys.
2282 *
2283 * A persistent key remains in storage until it is explicitly destroyed or
2284 * until the corresponding storage area is wiped. This specification does
2285 * not define any mechanism to wipe a storage area, but integrations may
2286 * provide their own mechanism (for example to perform a factory reset,
2287 * to prepare for device refurbishment, or to uninstall an application).
2288 *
2289 * This lifetime value is the default storage area for the calling
2290 * application. Integrations of Mbed TLS may support other persistent lifetimes.
2291 * See ::psa_key_lifetime_t for more information.
2292 */
2293 #define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
2294
2295 /** The persistence level of volatile keys.
2296 *
2297 * See ::psa_key_persistence_t for more information.
2298 */
2299 #define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
2300
2301 /** The default persistence level for persistent keys.
2302 *
2303 * See ::psa_key_persistence_t for more information.
2304 */
2305 #define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
2306
2307 /** A persistence level indicating that a key is never destroyed.
2308 *
2309 * See ::psa_key_persistence_t for more information.
2310 */
2311 #define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
2312
2313 #define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
2314 ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
2315
2316 #define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
2317 ((psa_key_location_t) ((lifetime) >> 8))
2318
2319 /** Whether a key lifetime indicates that the key is volatile.
2320 *
2321 * A volatile key is automatically destroyed by the implementation when
2322 * the application instance terminates. In particular, a volatile key
2323 * is automatically destroyed on a power reset of the device.
2324 *
2325 * A key that is not volatile is persistent. Persistent keys are
2326 * preserved until the application explicitly destroys them or until an
2327 * implementation-specific device management event occurs (for example,
2328 * a factory reset).
2329 *
2330 * \param lifetime The lifetime value to query (value of type
2331 * ::psa_key_lifetime_t).
2332 *
2333 * \return \c 1 if the key is volatile, otherwise \c 0.
2334 */
2335 #define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2336 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2337 PSA_KEY_PERSISTENCE_VOLATILE)
2338
2339 /** Whether a key lifetime indicates that the key is read-only.
2340 *
2341 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2342 * They must be created through platform-specific means that bypass the API.
2343 *
2344 * Some platforms may offer ways to destroy read-only keys. For example,
2345 * consider a platform with multiple levels of privilege, where a
2346 * low-privilege application can use a key but is not allowed to destroy
2347 * it, and the platform exposes the key to the application with a read-only
2348 * lifetime. High-privilege code can destroy the key even though the
2349 * application sees the key as read-only.
2350 *
2351 * \param lifetime The lifetime value to query (value of type
2352 * ::psa_key_lifetime_t).
2353 *
2354 * \return \c 1 if the key is read-only, otherwise \c 0.
2355 */
2356 #define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2357 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2358 PSA_KEY_PERSISTENCE_READ_ONLY)
2359
2360 /** Construct a lifetime from a persistence level and a location.
2361 *
2362 * \param persistence The persistence level
2363 * (value of type ::psa_key_persistence_t).
2364 * \param location The location indicator
2365 * (value of type ::psa_key_location_t).
2366 *
2367 * \return The constructed lifetime value.
2368 */
2369 #define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2370 ((location) << 8 | (persistence))
2371
2372 /** The local storage area for persistent keys.
2373 *
2374 * This storage area is available on all systems that can store persistent
2375 * keys without delegating the storage to a third-party cryptoprocessor.
2376 *
2377 * See ::psa_key_location_t for more information.
2378 */
2379 #define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
2380
2381 #define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
2382
2383 /* Note that key identifier values are embedded in the
2384 * persistent key store, as part of key metadata. As a consequence, they
2385 * must not be changed (unless the storage format version changes).
2386 */
2387
2388 /** The null key identifier.
2389 */
2390 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
2391 #define PSA_KEY_ID_NULL ((psa_key_id_t)0)
2392 /* *INDENT-ON* */
2393 /** The minimum value for a key identifier chosen by the application.
2394 */
2395 #define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
2396 /** The maximum value for a key identifier chosen by the application.
2397 */
2398 #define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
2399 /** The minimum value for a key identifier chosen by the implementation.
2400 */
2401 #define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
2402 /** The maximum value for a key identifier chosen by the implementation.
2403 */
2404 #define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
2405
2406
2407 #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2408
2409 #define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2410 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2411 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
2412
2413 /** Utility to initialize a key identifier at runtime.
2414 *
2415 * \param unused Unused parameter.
2416 * \param key_id Identifier of the key.
2417 */
mbedtls_svc_key_id_make(unsigned int unused,psa_key_id_t key_id)2418 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2419 unsigned int unused, psa_key_id_t key_id)
2420 {
2421 (void) unused;
2422
2423 return key_id;
2424 }
2425
2426 /** Compare two key identifiers.
2427 *
2428 * \param id1 First key identifier.
2429 * \param id2 Second key identifier.
2430 *
2431 * \return Non-zero if the two key identifier are equal, zero otherwise.
2432 */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2433 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2434 mbedtls_svc_key_id_t id2)
2435 {
2436 return id1 == id2;
2437 }
2438
2439 /** Check whether a key identifier is null.
2440 *
2441 * \param key Key identifier.
2442 *
2443 * \return Non-zero if the key identifier is null, zero otherwise.
2444 */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2445 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2446 {
2447 return key == 0;
2448 }
2449
2450 #else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2451 #include "mbedtls/private_access.h"
2452 #define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2453 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
2454 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
2455
2456 /** Utility to initialize a key identifier at runtime.
2457 *
2458 * \param owner_id Identifier of the key owner.
2459 * \param key_id Identifier of the key.
2460 */
mbedtls_svc_key_id_make(mbedtls_key_owner_id_t owner_id,psa_key_id_t key_id)2461 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2462 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
2463 {
2464 return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2465 .MBEDTLS_PRIVATE(owner) = owner_id };
2466 }
2467
2468 /** Compare two key identifiers.
2469 *
2470 * \param id1 First key identifier.
2471 * \param id2 Second key identifier.
2472 *
2473 * \return Non-zero if the two key identifier are equal, zero otherwise.
2474 */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2475 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2476 mbedtls_svc_key_id_t id2)
2477 {
2478 return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
2479 mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
2480 }
2481
2482 /** Check whether a key identifier is null.
2483 *
2484 * \param key Key identifier.
2485 *
2486 * \return Non-zero if the key identifier is null, zero otherwise.
2487 */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2488 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2489 {
2490 return key.MBEDTLS_PRIVATE(key_id) == 0;
2491 }
2492
2493 #endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2494
2495 /**@}*/
2496
2497 /** \defgroup policy Key policies
2498 * @{
2499 */
2500
2501 /* Note that key usage flags are embedded in the
2502 * persistent key store, as part of key metadata. As a consequence, they
2503 * must not be changed (unless the storage format version changes).
2504 */
2505
2506 /** Whether the key may be exported.
2507 *
2508 * A public key or the public part of a key pair may always be exported
2509 * regardless of the value of this permission flag.
2510 *
2511 * If a key does not have export permission, implementations shall not
2512 * allow the key to be exported in plain form from the cryptoprocessor,
2513 * whether through psa_export_key() or through a proprietary interface.
2514 * The key may however be exportable in a wrapped form, i.e. in a form
2515 * where it is encrypted by another key.
2516 */
2517 #define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
2518
2519 /** Whether the key may be copied.
2520 *
2521 * This flag allows the use of psa_copy_key() to make a copy of the key
2522 * with the same policy or a more restrictive policy.
2523 *
2524 * For lifetimes for which the key is located in a secure element which
2525 * enforce the non-exportability of keys, copying a key outside the secure
2526 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2527 * Copying the key inside the secure element is permitted with just
2528 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2529 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2530 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2531 * is sufficient to permit the copy.
2532 */
2533 #define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
2534
2535 /** Whether the key may be used to encrypt a message.
2536 *
2537 * This flag allows the key to be used for a symmetric encryption operation,
2538 * for an AEAD encryption-and-authentication operation,
2539 * or for an asymmetric encryption operation,
2540 * if otherwise permitted by the key's type and policy.
2541 *
2542 * For a key pair, this concerns the public key.
2543 */
2544 #define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
2545
2546 /** Whether the key may be used to decrypt a message.
2547 *
2548 * This flag allows the key to be used for a symmetric decryption operation,
2549 * for an AEAD decryption-and-verification operation,
2550 * or for an asymmetric decryption operation,
2551 * if otherwise permitted by the key's type and policy.
2552 *
2553 * For a key pair, this concerns the private key.
2554 */
2555 #define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
2556
2557 /** Whether the key may be used to sign a message.
2558 *
2559 * This flag allows the key to be used for a MAC calculation operation or for
2560 * an asymmetric message signature operation, if otherwise permitted by the
2561 * key’s type and policy.
2562 *
2563 * For a key pair, this concerns the private key.
2564 */
2565 #define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
2566
2567 /** Whether the key may be used to verify a message.
2568 *
2569 * This flag allows the key to be used for a MAC verification operation or for
2570 * an asymmetric message signature verification operation, if otherwise
2571 * permitted by the key’s type and policy.
2572 *
2573 * For a key pair, this concerns the public key.
2574 */
2575 #define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
2576
2577 /** Whether the key may be used to sign a message.
2578 *
2579 * This flag allows the key to be used for a MAC calculation operation
2580 * or for an asymmetric signature operation,
2581 * if otherwise permitted by the key's type and policy.
2582 *
2583 * For a key pair, this concerns the private key.
2584 */
2585 #define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
2586
2587 /** Whether the key may be used to verify a message signature.
2588 *
2589 * This flag allows the key to be used for a MAC verification operation
2590 * or for an asymmetric signature verification operation,
2591 * if otherwise permitted by the key's type and policy.
2592 *
2593 * For a key pair, this concerns the public key.
2594 */
2595 #define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
2596
2597 /** Whether the key may be used to derive other keys or produce a password
2598 * hash.
2599 *
2600 * This flag allows the key to be used for a key derivation operation or for
2601 * a key agreement operation, if otherwise permitted by the key's type and
2602 * policy.
2603 *
2604 * If this flag is present on all keys used in calls to
2605 * psa_key_derivation_input_key() for a key derivation operation, then it
2606 * permits calling psa_key_derivation_output_bytes() or
2607 * psa_key_derivation_output_key() at the end of the operation.
2608 */
2609 #define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
2610
2611 /** Whether the key may be used to verify the result of a key derivation,
2612 * including password hashing.
2613 *
2614 * This flag allows the key to be used:
2615 *
2616 * This flag allows the key to be used in a key derivation operation, if
2617 * otherwise permitted by the key's type and policy.
2618 *
2619 * If this flag is present on all keys used in calls to
2620 * psa_key_derivation_input_key() for a key derivation operation, then it
2621 * permits calling psa_key_derivation_verify_bytes() or
2622 * psa_key_derivation_verify_key() at the end of the operation.
2623 */
2624 #define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t) 0x00008000)
2625
2626 /**@}*/
2627
2628 /** \defgroup derivation Key derivation
2629 * @{
2630 */
2631
2632 /* Key input steps are not embedded in the persistent storage, so you can
2633 * change them if needed: it's only an ABI change. */
2634
2635 /** A secret input for key derivation.
2636 *
2637 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2638 * (passed to psa_key_derivation_input_key())
2639 * or the shared secret resulting from a key agreement
2640 * (obtained via psa_key_derivation_key_agreement()).
2641 *
2642 * The secret can also be a direct input (passed to
2643 * key_derivation_input_bytes()). In this case, the derivation operation
2644 * may not be used to derive keys: the operation will only allow
2645 * psa_key_derivation_output_bytes(),
2646 * psa_key_derivation_verify_bytes(), or
2647 * psa_key_derivation_verify_key(), but not
2648 * psa_key_derivation_output_key().
2649 */
2650 #define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
2651
2652 /** A low-entropy secret input for password hashing / key stretching.
2653 *
2654 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2655 * psa_key_derivation_input_key()) or a direct input (passed to
2656 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2657 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2658 * the shared secret resulting from a key agreement.
2659 *
2660 * The secret can also be a direct input (passed to
2661 * key_derivation_input_bytes()). In this case, the derivation operation
2662 * may not be used to derive keys: the operation will only allow
2663 * psa_key_derivation_output_bytes(),
2664 * psa_key_derivation_verify_bytes(), or
2665 * psa_key_derivation_verify_key(), but not
2666 * psa_key_derivation_output_key().
2667 */
2668 #define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t) 0x0102)
2669
2670 /** A high-entropy additional secret input for key derivation.
2671 *
2672 * This is typically the shared secret resulting from a key agreement obtained
2673 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2674 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2675 * a direct input passed to `psa_key_derivation_input_bytes()`.
2676 */
2677 #define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
2678 ((psa_key_derivation_step_t) 0x0103)
2679
2680 /** A label for key derivation.
2681 *
2682 * This should be a direct input.
2683 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2684 */
2685 #define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
2686
2687 /** A salt for key derivation.
2688 *
2689 * This should be a direct input.
2690 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2691 * #PSA_KEY_TYPE_PEPPER.
2692 */
2693 #define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
2694
2695 /** An information string for key derivation.
2696 *
2697 * This should be a direct input.
2698 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2699 */
2700 #define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
2701
2702 /** A seed for key derivation.
2703 *
2704 * This should be a direct input.
2705 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2706 */
2707 #define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
2708
2709 /** A cost parameter for password hashing / key stretching.
2710 *
2711 * This must be a direct input, passed to psa_key_derivation_input_integer().
2712 */
2713 #define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t) 0x0205)
2714
2715 /**@}*/
2716
2717 /** \defgroup helper_macros Helper macros
2718 * @{
2719 */
2720
2721 /* Helper macros */
2722
2723 /** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2724 * regardless of the tag length they encode.
2725 *
2726 * \param aead_alg_1 An AEAD algorithm identifier.
2727 * \param aead_alg_2 An AEAD algorithm identifier.
2728 *
2729 * \return 1 if both identifiers refer to the same AEAD algorithm,
2730 * 0 otherwise.
2731 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2732 * a supported AEAD algorithm.
2733 */
2734 #define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2735 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2736 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2737
2738 /**@}*/
2739
2740 /**@}*/
2741
2742 /** \defgroup interruptible Interruptible operations
2743 * @{
2744 */
2745
2746 /** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
2747 * the maximum number of ops allowed to be executed by an interruptible
2748 * function in a single call.
2749 */
2750 #define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
2751
2752 /**@}*/
2753
2754 #endif /* PSA_CRYPTO_VALUES_H */
2755