1 /**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
20 * This header file only defines preprocessor macros.
21 */
22 /*
23 * Copyright The Mbed TLS Contributors
24 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
25 */
26
27 #ifndef PSA_CRYPTO_VALUES_H
28 #define PSA_CRYPTO_VALUES_H
29 #include "mbedtls/private_access.h"
30
31 /** \defgroup error Error codes
32 * @{
33 */
34
35 /* PSA error codes */
36
37 /* Error codes are standardized across PSA domains (framework, crypto, storage,
38 * etc.). Do not change the values in this section or even the expansions
39 * of each macro: it must be possible to `#include` both this header
40 * and some other PSA component's headers in the same C source,
41 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
42 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
43 * to the same sequence of tokens.
44 *
45 * If you must add a new
46 * value, check with the Arm PSA framework group to pick one that other
47 * domains aren't already using. */
48
49 /* Tell uncrustify not to touch the constant definitions, otherwise
50 * it might change the spacing to something that is not PSA-compliant
51 * (e.g. adding a space after casts).
52 *
53 * *INDENT-OFF*
54 */
55
56 /** The action was completed successfully. */
57 #define PSA_SUCCESS ((psa_status_t)0)
58
59 /** An error occurred that does not correspond to any defined
60 * failure cause.
61 *
62 * Implementations may use this error code if none of the other standard
63 * error codes are applicable. */
64 #define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
65
66 /** The requested operation or a parameter is not supported
67 * by this implementation.
68 *
69 * Implementations should return this error code when an enumeration
70 * parameter such as a key type, algorithm, etc. is not recognized.
71 * If a combination of parameters is recognized and identified as
72 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
73 #define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
74
75 /** The requested action is denied by a policy.
76 *
77 * Implementations should return this error code when the parameters
78 * are recognized as valid and supported, and a policy explicitly
79 * denies the requested operation.
80 *
81 * If a subset of the parameters of a function call identify a
82 * forbidden operation, and another subset of the parameters are
83 * not valid or not supported, it is unspecified whether the function
84 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
85 * #PSA_ERROR_INVALID_ARGUMENT. */
86 #define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
87
88 /** An output buffer is too small.
89 *
90 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
91 * description to determine a sufficient buffer size.
92 *
93 * Implementations should preferably return this error code only
94 * in cases when performing the operation with a larger output
95 * buffer would succeed. However implementations may return this
96 * error if a function has invalid or unsupported parameters in addition
97 * to the parameters that determine the necessary output buffer size. */
98 #define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
99
100 /** Asking for an item that already exists
101 *
102 * Implementations should return this error, when attempting
103 * to write an item (like a key) that already exists. */
104 #define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
105
106 /** Asking for an item that doesn't exist
107 *
108 * Implementations should return this error, if a requested item (like
109 * a key) does not exist. */
110 #define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
111
112 /** The requested action cannot be performed in the current state.
113 *
114 * Multipart operations return this error when one of the
115 * functions is called out of sequence. Refer to the function
116 * descriptions for permitted sequencing of functions.
117 *
118 * Implementations shall not return this error code to indicate
119 * that a key either exists or not,
120 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
121 * as applicable.
122 *
123 * Implementations shall not return this error code to indicate that a
124 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
125 * instead. */
126 #define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
127
128 /** The parameters passed to the function are invalid.
129 *
130 * Implementations may return this error any time a parameter or
131 * combination of parameters are recognized as invalid.
132 *
133 * Implementations shall not return this error code to indicate that a
134 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
135 * instead.
136 */
137 #define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
138
139 /** There is not enough runtime memory.
140 *
141 * If the action is carried out across multiple security realms, this
142 * error can refer to available memory in any of the security realms. */
143 #define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
144
145 /** There is not enough persistent storage.
146 *
147 * Functions that modify the key storage return this error code if
148 * there is insufficient storage space on the host media. In addition,
149 * many functions that do not otherwise access storage may return this
150 * error code if the implementation requires a mandatory log entry for
151 * the requested action and the log storage space is full. */
152 #define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
153
154 /** There was a communication failure inside the implementation.
155 *
156 * This can indicate a communication failure between the application
157 * and an external cryptoprocessor or between the cryptoprocessor and
158 * an external volatile or persistent memory. A communication failure
159 * may be transient or permanent depending on the cause.
160 *
161 * \warning If a function returns this error, it is undetermined
162 * whether the requested action has completed or not. Implementations
163 * should return #PSA_SUCCESS on successful completion whenever
164 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
165 * if the requested action was completed successfully in an external
166 * cryptoprocessor but there was a breakdown of communication before
167 * the cryptoprocessor could report the status to the application.
168 */
169 #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
170
171 /** There was a storage failure that may have led to data loss.
172 *
173 * This error indicates that some persistent storage is corrupted.
174 * It should not be used for a corruption of volatile memory
175 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
176 * between the cryptoprocessor and its external storage (use
177 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
178 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
179 *
180 * Note that a storage failure does not indicate that any data that was
181 * previously read is invalid. However this previously read data may no
182 * longer be readable from storage.
183 *
184 * When a storage failure occurs, it is no longer possible to ensure
185 * the global integrity of the keystore. Depending on the global
186 * integrity guarantees offered by the implementation, access to other
187 * data may or may not fail even if the data is still readable but
188 * its integrity cannot be guaranteed.
189 *
190 * Implementations should only use this error code to report a
191 * permanent storage corruption. However application writers should
192 * keep in mind that transient errors while reading the storage may be
193 * reported using this error code. */
194 #define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
195
196 /** A hardware failure was detected.
197 *
198 * A hardware failure may be transient or permanent depending on the
199 * cause. */
200 #define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
201
202 /** A tampering attempt was detected.
203 *
204 * If an application receives this error code, there is no guarantee
205 * that previously accessed or computed data was correct and remains
206 * confidential. Applications should not perform any security function
207 * and should enter a safe failure state.
208 *
209 * Implementations may return this error code if they detect an invalid
210 * state that cannot happen during normal operation and that indicates
211 * that the implementation's security guarantees no longer hold. Depending
212 * on the implementation architecture and on its security and safety goals,
213 * the implementation may forcibly terminate the application.
214 *
215 * This error code is intended as a last resort when a security breach
216 * is detected and it is unsure whether the keystore data is still
217 * protected. Implementations shall only return this error code
218 * to report an alarm from a tampering detector, to indicate that
219 * the confidentiality of stored data can no longer be guaranteed,
220 * or to indicate that the integrity of previously returned data is now
221 * considered compromised. Implementations shall not use this error code
222 * to indicate a hardware failure that merely makes it impossible to
223 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
224 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
225 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
226 * instead).
227 *
228 * This error indicates an attack against the application. Implementations
229 * shall not return this error code as a consequence of the behavior of
230 * the application itself. */
231 #define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
232
233 /** There is not enough entropy to generate random data needed
234 * for the requested action.
235 *
236 * This error indicates a failure of a hardware random generator.
237 * Application writers should note that this error can be returned not
238 * only by functions whose purpose is to generate random data, such
239 * as key, IV or nonce generation, but also by functions that execute
240 * an algorithm with a randomized result, as well as functions that
241 * use randomization of intermediate computations as a countermeasure
242 * to certain attacks.
243 *
244 * Implementations should avoid returning this error after psa_crypto_init()
245 * has succeeded. Implementations should generate sufficient
246 * entropy during initialization and subsequently use a cryptographically
247 * secure pseudorandom generator (PRNG). However implementations may return
248 * this error at any time if a policy requires the PRNG to be reseeded
249 * during normal operation. */
250 #define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
251
252 /** The signature, MAC or hash is incorrect.
253 *
254 * Verification functions return this error if the verification
255 * calculations completed successfully, and the value to be verified
256 * was determined to be incorrect.
257 *
258 * If the value to verify has an invalid size, implementations may return
259 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
260 #define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
261
262 /** The decrypted padding is incorrect.
263 *
264 * \warning In some protocols, when decrypting data, it is essential that
265 * the behavior of the application does not depend on whether the padding
266 * is correct, down to precise timing. Applications should prefer
267 * protocols that use authenticated encryption rather than plain
268 * encryption. If the application must perform a decryption of
269 * unauthenticated data, the application writer should take care not
270 * to reveal whether the padding is invalid.
271 *
272 * Implementations should strive to make valid and invalid padding
273 * as close as possible to indistinguishable to an external observer.
274 * In particular, the timing of a decryption operation should not
275 * depend on the validity of the padding. */
276 #define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
277
278 /** Return this error when there's insufficient data when attempting
279 * to read from a resource. */
280 #define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
281
282 /** The key identifier is not valid. See also :ref:\`key-handles\`.
283 */
284 #define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
285
286 /** Stored data has been corrupted.
287 *
288 * This error indicates that some persistent storage has suffered corruption.
289 * It does not indicate the following situations, which have specific error
290 * codes:
291 *
292 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
293 * - A communication error between the cryptoprocessor and its external
294 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
295 * - When the storage is in a valid state but is full - use
296 * #PSA_ERROR_INSUFFICIENT_STORAGE.
297 * - When the storage fails for other reasons - use
298 * #PSA_ERROR_STORAGE_FAILURE.
299 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
300 *
301 * \note A storage corruption does not indicate that any data that was
302 * previously read is invalid. However this previously read data might no
303 * longer be readable from storage.
304 *
305 * When a storage failure occurs, it is no longer possible to ensure the
306 * global integrity of the keystore.
307 */
308 #define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
309
310 /** Data read from storage is not valid for the implementation.
311 *
312 * This error indicates that some data read from storage does not have a valid
313 * format. It does not indicate the following situations, which have specific
314 * error codes:
315 *
316 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
317 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
318 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
319 *
320 * This error is typically a result of either storage corruption on a
321 * cleartext storage backend, or an attempt to read data that was
322 * written by an incompatible version of the library.
323 */
324 #define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
325
326 /** The function that returns this status is defined as interruptible and
327 * still has work to do, thus the user should call the function again with the
328 * same operation context until it either returns #PSA_SUCCESS or any other
329 * error. This is not an error per se, more a notification of status.
330 */
331 #define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)
332
333 /* *INDENT-ON* */
334
335 /**@}*/
336
337 /** \defgroup crypto_types Key and algorithm types
338 * @{
339 */
340
341 /* Note that key type values, including ECC family and DH group values, are
342 * embedded in the persistent key store, as part of key metadata. As a
343 * consequence, they must not be changed (unless the storage format version
344 * changes).
345 */
346
347 /** An invalid key type value.
348 *
349 * Zero is not the encoding of any key type.
350 */
351 #define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
352
353 /** Vendor-defined key type flag.
354 *
355 * Key types defined by this standard will never have the
356 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
357 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
358 * respect the bitwise structure used by standard encodings whenever practical.
359 */
360 #define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
361
362 #define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
363 #define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
364 #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
365 #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
366 #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
367
368 #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
369
370 /** Whether a key type is vendor-defined.
371 *
372 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
373 */
374 #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
375 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
376
377 /** Whether a key type is an unstructured array of bytes.
378 *
379 * This encompasses both symmetric keys and non-key data.
380 */
381 #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
382 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
383 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
384
385 /** Whether a key type is asymmetric: either a key pair or a public key. */
386 #define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
387 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
388 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
389 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
390 /** Whether a key type is the public part of a key pair. */
391 #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
392 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
393 /** Whether a key type is a key pair containing a private part and a public
394 * part. */
395 #define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
396 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
397 /** The key pair type corresponding to a public key type.
398 *
399 * You may also pass a key pair type as \p type, it will be left unchanged.
400 *
401 * \param type A public key type or key pair type.
402 *
403 * \return The corresponding key pair type.
404 * If \p type is not a public key or a key pair,
405 * the return value is undefined.
406 */
407 #define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
408 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
409 /** The public key type corresponding to a key pair type.
410 *
411 * You may also pass a key pair type as \p type, it will be left unchanged.
412 *
413 * \param type A public key type or key pair type.
414 *
415 * \return The corresponding public key type.
416 * If \p type is not a public key or a key pair,
417 * the return value is undefined.
418 */
419 #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
420 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
421
422 /** Raw data.
423 *
424 * A "key" of this type cannot be used for any cryptographic operation.
425 * Applications may use this type to store arbitrary data in the keystore. */
426 #define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
427
428 /** HMAC key.
429 *
430 * The key policy determines which underlying hash algorithm the key can be
431 * used for.
432 *
433 * HMAC keys should generally have the same size as the underlying hash.
434 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
435 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
436 #define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
437
438 /** A secret for key derivation.
439 *
440 * This key type is for high-entropy secrets only. For low-entropy secrets,
441 * #PSA_KEY_TYPE_PASSWORD should be used instead.
442 *
443 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
444 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
445 *
446 * The key policy determines which key derivation algorithm the key
447 * can be used for.
448 */
449 #define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
450
451 /** A low-entropy secret for password hashing or key derivation.
452 *
453 * This key type is suitable for passwords and passphrases which are typically
454 * intended to be memorizable by humans, and have a low entropy relative to
455 * their size. It can be used for randomly generated or derived keys with
456 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
457 * for such keys. It is not suitable for passwords with extremely low entropy,
458 * such as numerical PINs.
459 *
460 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
461 * key derivation algorithms. Algorithms that accept such an input were
462 * designed to accept low-entropy secret and are known as password hashing or
463 * key stretching algorithms.
464 *
465 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
466 * key derivation algorithms, as the algorithms that take such an input expect
467 * it to be high-entropy.
468 *
469 * The key policy determines which key derivation algorithm the key can be
470 * used for, among the permissible subset defined above.
471 */
472 #define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t) 0x1203)
473
474 /** A secret value that can be used to verify a password hash.
475 *
476 * The key policy determines which key derivation algorithm the key
477 * can be used for, among the same permissible subset as for
478 * #PSA_KEY_TYPE_PASSWORD.
479 */
480 #define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t) 0x1205)
481
482 /** A secret value that can be used in when computing a password hash.
483 *
484 * The key policy determines which key derivation algorithm the key
485 * can be used for, among the subset of algorithms that can use pepper.
486 */
487 #define PSA_KEY_TYPE_PEPPER ((psa_key_type_t) 0x1206)
488
489 /** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
490 *
491 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
492 * 32 bytes (AES-256).
493 */
494 #define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
495
496 /** Key for a cipher, AEAD or MAC algorithm based on the
497 * ARIA block cipher. */
498 #define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
499
500 /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
501 *
502 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
503 * 192 bits (3-key 3DES).
504 *
505 * Note that single DES and 2-key 3DES are weak and strongly
506 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
507 * is weak and deprecated and should only be used in legacy protocols.
508 */
509 #define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
510
511 /** Key for a cipher, AEAD or MAC algorithm based on the
512 * Camellia block cipher. */
513 #define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
514
515 /** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
516 *
517 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
518 *
519 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
520 * 12-byte nonces.
521 *
522 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
523 * with the initial counter value 1, you can process and discard a
524 * 64-byte block before the real data.
525 */
526 #define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
527
528 /** RSA public key.
529 *
530 * The size of an RSA key is the bit size of the modulus.
531 */
532 #define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
533 /** RSA key pair (private and public key).
534 *
535 * The size of an RSA key is the bit size of the modulus.
536 */
537 #define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
538 /** Whether a key type is an RSA key (pair or public-only). */
539 #define PSA_KEY_TYPE_IS_RSA(type) \
540 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
541
542 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
543 #define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
544 #define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
545 /** Elliptic curve key pair.
546 *
547 * The size of an elliptic curve key is the bit size associated with the curve,
548 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
549 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
550 *
551 * \param curve A value of type ::psa_ecc_family_t that
552 * identifies the ECC curve to be used.
553 */
554 #define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
555 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
556 /** Elliptic curve public key.
557 *
558 * The size of an elliptic curve public key is the same as the corresponding
559 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
560 * `PSA_ECC_FAMILY_xxx` curve families).
561 *
562 * \param curve A value of type ::psa_ecc_family_t that
563 * identifies the ECC curve to be used.
564 */
565 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
566 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
567
568 /** Whether a key type is an elliptic curve key (pair or public-only). */
569 #define PSA_KEY_TYPE_IS_ECC(type) \
570 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
571 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
572 /** Whether a key type is an elliptic curve key pair. */
573 #define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
574 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
575 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
576 /** Whether a key type is an elliptic curve public key. */
577 #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
578 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
579 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
580
581 /** Extract the curve from an elliptic curve key type. */
582 #define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
583 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
584 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
585 0))
586
587 /** Check if the curve of given family is Weierstrass elliptic curve. */
588 #define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
589
590 /** SEC Koblitz curves over prime fields.
591 *
592 * This family comprises the following curves:
593 * secp192k1, secp224k1, secp256k1.
594 * They are defined in _Standards for Efficient Cryptography_,
595 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
596 * https://www.secg.org/sec2-v2.pdf
597 */
598 #define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
599
600 /** SEC random curves over prime fields.
601 *
602 * This family comprises the following curves:
603 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
604 * They are defined in _Standards for Efficient Cryptography_,
605 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
606 * https://www.secg.org/sec2-v2.pdf
607 */
608 #define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
609 /* SECP160R2 (SEC2 v1, obsolete) */
610 #define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
611
612 /** SEC Koblitz curves over binary fields.
613 *
614 * This family comprises the following curves:
615 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
616 * They are defined in _Standards for Efficient Cryptography_,
617 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
618 * https://www.secg.org/sec2-v2.pdf
619 */
620 #define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
621
622 /** SEC random curves over binary fields.
623 *
624 * This family comprises the following curves:
625 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
626 * They are defined in _Standards for Efficient Cryptography_,
627 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
628 * https://www.secg.org/sec2-v2.pdf
629 */
630 #define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
631
632 /** SEC additional random curves over binary fields.
633 *
634 * This family comprises the following curve:
635 * sect163r2.
636 * It is defined in _Standards for Efficient Cryptography_,
637 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
638 * https://www.secg.org/sec2-v2.pdf
639 */
640 #define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
641
642 /** Brainpool P random curves.
643 *
644 * This family comprises the following curves:
645 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
646 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
647 * It is defined in RFC 5639.
648 */
649 #define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
650
651 /** Curve25519 and Curve448.
652 *
653 * This family comprises the following Montgomery curves:
654 * - 255-bit: Bernstein et al.,
655 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
656 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
657 * - 448-bit: Hamburg,
658 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
659 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
660 */
661 #define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
662
663 /** The twisted Edwards curves Ed25519 and Ed448.
664 *
665 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
666 * #PSA_ALG_ED25519PH for the 255-bit curve,
667 * #PSA_ALG_ED448PH for the 448-bit curve).
668 *
669 * This family comprises the following twisted Edwards curves:
670 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
671 * to Curve25519.
672 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
673 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
674 * to Curve448.
675 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
676 */
677 #define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
678
679 #define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
680 #define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
681 #define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
682 /** Diffie-Hellman key pair.
683 *
684 * \param group A value of type ::psa_dh_family_t that identifies the
685 * Diffie-Hellman group to be used.
686 */
687 #define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
688 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
689 /** Diffie-Hellman public key.
690 *
691 * \param group A value of type ::psa_dh_family_t that identifies the
692 * Diffie-Hellman group to be used.
693 */
694 #define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
695 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
696
697 /** Whether a key type is a Diffie-Hellman key (pair or public-only). */
698 #define PSA_KEY_TYPE_IS_DH(type) \
699 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
700 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
701 /** Whether a key type is a Diffie-Hellman key pair. */
702 #define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
703 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
704 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
705 /** Whether a key type is a Diffie-Hellman public key. */
706 #define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
707 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
708 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
709
710 /** Extract the group from a Diffie-Hellman key type. */
711 #define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
712 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
713 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
714 0))
715
716 /** Diffie-Hellman groups defined in RFC 7919 Appendix A.
717 *
718 * This family includes groups with the following key sizes (in bits):
719 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
720 * all of these sizes or only a subset.
721 */
722 #define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
723
724 #define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
725 (((type) >> 8) & 7)
726 /** The block size of a block cipher.
727 *
728 * \param type A cipher key type (value of type #psa_key_type_t).
729 *
730 * \return The block size for a block cipher, or 1 for a stream cipher.
731 * The return value is undefined if \p type is not a supported
732 * cipher key type.
733 *
734 * \note It is possible to build stream cipher algorithms on top of a block
735 * cipher, for example CTR mode (#PSA_ALG_CTR).
736 * This macro only takes the key type into account, so it cannot be
737 * used to determine the size of the data that #psa_cipher_update()
738 * might buffer for future processing in general.
739 *
740 * \note This macro returns a compile-time constant if its argument is one.
741 *
742 * \warning This macro may evaluate its argument multiple times.
743 */
744 #define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
745 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
746 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
747 0u)
748
749 /* Note that algorithm values are embedded in the persistent key store,
750 * as part of key metadata. As a consequence, they must not be changed
751 * (unless the storage format version changes).
752 */
753
754 /** Vendor-defined algorithm flag.
755 *
756 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
757 * bit set. Vendors who define additional algorithms must use an encoding with
758 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
759 * used by standard encodings whenever practical.
760 */
761 #define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
762
763 #define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
764 #define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
765 #define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
766 #define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
767 #define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
768 #define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
769 #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
770 #define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
771 #define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
772
773 /** Whether an algorithm is vendor-defined.
774 *
775 * See also #PSA_ALG_VENDOR_FLAG.
776 */
777 #define PSA_ALG_IS_VENDOR_DEFINED(alg) \
778 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
779
780 /** Whether the specified algorithm is a hash algorithm.
781 *
782 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
783 *
784 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
785 * This macro may return either 0 or 1 if \p alg is not a supported
786 * algorithm identifier.
787 */
788 #define PSA_ALG_IS_HASH(alg) \
789 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
790
791 /** Whether the specified algorithm is a MAC algorithm.
792 *
793 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
794 *
795 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
796 * This macro may return either 0 or 1 if \p alg is not a supported
797 * algorithm identifier.
798 */
799 #define PSA_ALG_IS_MAC(alg) \
800 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
801
802 /** Whether the specified algorithm is a symmetric cipher algorithm.
803 *
804 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
805 *
806 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
807 * This macro may return either 0 or 1 if \p alg is not a supported
808 * algorithm identifier.
809 */
810 #define PSA_ALG_IS_CIPHER(alg) \
811 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
812
813 /** Whether the specified algorithm is an authenticated encryption
814 * with associated data (AEAD) algorithm.
815 *
816 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
817 *
818 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
819 * This macro may return either 0 or 1 if \p alg is not a supported
820 * algorithm identifier.
821 */
822 #define PSA_ALG_IS_AEAD(alg) \
823 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
824
825 /** Whether the specified algorithm is an asymmetric signature algorithm,
826 * also known as public-key signature algorithm.
827 *
828 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
829 *
830 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
831 * This macro may return either 0 or 1 if \p alg is not a supported
832 * algorithm identifier.
833 */
834 #define PSA_ALG_IS_SIGN(alg) \
835 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
836
837 /** Whether the specified algorithm is an asymmetric encryption algorithm,
838 * also known as public-key encryption algorithm.
839 *
840 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
841 *
842 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
843 * This macro may return either 0 or 1 if \p alg is not a supported
844 * algorithm identifier.
845 */
846 #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
847 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
848
849 /** Whether the specified algorithm is a key agreement algorithm.
850 *
851 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
852 *
853 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
854 * This macro may return either 0 or 1 if \p alg is not a supported
855 * algorithm identifier.
856 */
857 #define PSA_ALG_IS_KEY_AGREEMENT(alg) \
858 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
859
860 /** Whether the specified algorithm is a key derivation algorithm.
861 *
862 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
863 *
864 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
865 * This macro may return either 0 or 1 if \p alg is not a supported
866 * algorithm identifier.
867 */
868 #define PSA_ALG_IS_KEY_DERIVATION(alg) \
869 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
870
871 /** Whether the specified algorithm is a key stretching / password hashing
872 * algorithm.
873 *
874 * A key stretching / password hashing algorithm is a key derivation algorithm
875 * that is suitable for use with a low-entropy secret such as a password.
876 * Equivalently, it's a key derivation algorithm that uses a
877 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
878 *
879 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
880 *
881 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
882 * otherwise. This macro may return either 0 or 1 if \p alg is not a
883 * supported algorithm identifier.
884 */
885 #define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
886 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
887 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
888
889 /** An invalid algorithm identifier value. */
890 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
891 #define PSA_ALG_NONE ((psa_algorithm_t)0)
892 /* *INDENT-ON* */
893
894 #define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
895 /** MD5 */
896 #define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
897 /** PSA_ALG_RIPEMD160 */
898 #define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
899 /** SHA1 */
900 #define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
901 /** SHA2-224 */
902 #define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
903 /** SHA2-256 */
904 #define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
905 /** SHA2-384 */
906 #define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
907 /** SHA2-512 */
908 #define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
909 /** SHA2-512/224 */
910 #define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
911 /** SHA2-512/256 */
912 #define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
913 /** SHA3-224 */
914 #define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
915 /** SHA3-256 */
916 #define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
917 /** SHA3-384 */
918 #define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
919 /** SHA3-512 */
920 #define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
921 /** The first 512 bits (64 bytes) of the SHAKE256 output.
922 *
923 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
924 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
925 * has the same output size and a (theoretically) higher security strength.
926 */
927 #define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
928
929 /** In a hash-and-sign algorithm policy, allow any hash algorithm.
930 *
931 * This value may be used to form the algorithm usage field of a policy
932 * for a signature algorithm that is parametrized by a hash. The key
933 * may then be used to perform operations using the same signature
934 * algorithm parametrized with any supported hash.
935 *
936 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
937 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
938 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
939 * Then you may create and use a key as follows:
940 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
941 * ```
942 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
943 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
944 * ```
945 * - Import or generate key material.
946 * - Call psa_sign_hash() or psa_verify_hash(), passing
947 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
948 * call to sign or verify a message may use a different hash.
949 * ```
950 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
951 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
952 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
953 * ```
954 *
955 * This value may not be used to build other algorithms that are
956 * parametrized over a hash. For any valid use of this macro to build
957 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
958 *
959 * This value may not be used to build an algorithm specification to
960 * perform an operation. It is only valid to build policies.
961 */
962 #define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
963
964 #define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
965 #define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
966 /** Macro to build an HMAC algorithm.
967 *
968 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
969 *
970 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
971 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
972 *
973 * \return The corresponding HMAC algorithm.
974 * \return Unspecified if \p hash_alg is not a supported
975 * hash algorithm.
976 */
977 #define PSA_ALG_HMAC(hash_alg) \
978 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
979
980 #define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
981 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
982
983 /** Whether the specified algorithm is an HMAC algorithm.
984 *
985 * HMAC is a family of MAC algorithms that are based on a hash function.
986 *
987 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
988 *
989 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
990 * This macro may return either 0 or 1 if \p alg is not a supported
991 * algorithm identifier.
992 */
993 #define PSA_ALG_IS_HMAC(alg) \
994 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
995 PSA_ALG_HMAC_BASE)
996
997 /* In the encoding of a MAC algorithm, the bits corresponding to
998 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
999 * truncated. As an exception, the value 0 means the untruncated algorithm,
1000 * whatever its length is. The length is encoded in 6 bits, so it can
1001 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1002 * to full length is correctly encoded as 0 and any non-trivial truncation
1003 * is correctly encoded as a value between 1 and 63. */
1004 #define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
1005 #define PSA_MAC_TRUNCATION_OFFSET 16
1006
1007 /* In the encoding of a MAC algorithm, the bit corresponding to
1008 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1009 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1010 * algorithm policy can be used with any algorithm corresponding to the
1011 * same base class and having a (potentially truncated) MAC length greater or
1012 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
1013 #define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
1014
1015 /** Macro to build a truncated MAC algorithm.
1016 *
1017 * A truncated MAC algorithm is identical to the corresponding MAC
1018 * algorithm except that the MAC value for the truncated algorithm
1019 * consists of only the first \p mac_length bytes of the MAC value
1020 * for the untruncated algorithm.
1021 *
1022 * \note This macro may allow constructing algorithm identifiers that
1023 * are not valid, either because the specified length is larger
1024 * than the untruncated MAC or because the specified length is
1025 * smaller than permitted by the implementation.
1026 *
1027 * \note It is implementation-defined whether a truncated MAC that
1028 * is truncated to the same length as the MAC of the untruncated
1029 * algorithm is considered identical to the untruncated algorithm
1030 * for policy comparison purposes.
1031 *
1032 * \param mac_alg A MAC algorithm identifier (value of type
1033 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1034 * is true). This may be a truncated or untruncated
1035 * MAC algorithm.
1036 * \param mac_length Desired length of the truncated MAC in bytes.
1037 * This must be at most the full length of the MAC
1038 * and must be at least an implementation-specified
1039 * minimum. The implementation-specified minimum
1040 * shall not be zero.
1041 *
1042 * \return The corresponding MAC algorithm with the specified
1043 * length.
1044 * \return Unspecified if \p mac_alg is not a supported
1045 * MAC algorithm or if \p mac_length is too small or
1046 * too large for the specified MAC algorithm.
1047 */
1048 #define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1049 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1050 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
1051 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1052
1053 /** Macro to build the base MAC algorithm corresponding to a truncated
1054 * MAC algorithm.
1055 *
1056 * \param mac_alg A MAC algorithm identifier (value of type
1057 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1058 * is true). This may be a truncated or untruncated
1059 * MAC algorithm.
1060 *
1061 * \return The corresponding base MAC algorithm.
1062 * \return Unspecified if \p mac_alg is not a supported
1063 * MAC algorithm.
1064 */
1065 #define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1066 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1067 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
1068
1069 /** Length to which a MAC algorithm is truncated.
1070 *
1071 * \param mac_alg A MAC algorithm identifier (value of type
1072 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1073 * is true).
1074 *
1075 * \return Length of the truncated MAC in bytes.
1076 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1077 * \return Unspecified if \p mac_alg is not a supported
1078 * MAC algorithm.
1079 */
1080 #define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1081 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
1082
1083 /** Macro to build a MAC minimum-MAC-length wildcard algorithm.
1084 *
1085 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
1086 * sharing the same base algorithm, and where the (potentially truncated) MAC
1087 * length of the specific algorithm is equal to or larger then the wildcard
1088 * algorithm's minimum MAC length.
1089 *
1090 * \note When setting the minimum required MAC length to less than the
1091 * smallest MAC length allowed by the base algorithm, this effectively
1092 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
1093 *
1094 * \param mac_alg A MAC algorithm identifier (value of type
1095 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1096 * is true).
1097 * \param min_mac_length Desired minimum length of the message authentication
1098 * code in bytes. This must be at most the untruncated
1099 * length of the MAC and must be at least 1.
1100 *
1101 * \return The corresponding MAC wildcard algorithm with the
1102 * specified minimum length.
1103 * \return Unspecified if \p mac_alg is not a supported MAC
1104 * algorithm or if \p min_mac_length is less than 1 or
1105 * too large for the specified MAC algorithm.
1106 */
1107 #define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1108 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1109 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
1110
1111 #define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
1112 /** The CBC-MAC construction over a block cipher
1113 *
1114 * \warning CBC-MAC is insecure in many cases.
1115 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1116 */
1117 #define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
1118 /** The CMAC construction over a block cipher */
1119 #define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
1120
1121 /** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1122 *
1123 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1124 *
1125 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1126 * This macro may return either 0 or 1 if \p alg is not a supported
1127 * algorithm identifier.
1128 */
1129 #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1130 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1131 PSA_ALG_CIPHER_MAC_BASE)
1132
1133 #define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
1134 #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
1135
1136 /** Whether the specified algorithm is a stream cipher.
1137 *
1138 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1139 * by applying a bitwise-xor with a stream of bytes that is generated
1140 * from a key.
1141 *
1142 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1143 *
1144 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1145 * This macro may return either 0 or 1 if \p alg is not a supported
1146 * algorithm identifier or if it is not a symmetric cipher algorithm.
1147 */
1148 #define PSA_ALG_IS_STREAM_CIPHER(alg) \
1149 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1150 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1151
1152 /** The stream cipher mode of a stream cipher algorithm.
1153 *
1154 * The underlying stream cipher is determined by the key type.
1155 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1156 */
1157 #define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
1158
1159 /** The CTR stream cipher mode.
1160 *
1161 * CTR is a stream cipher which is built from a block cipher.
1162 * The underlying block cipher is determined by the key type.
1163 * For example, to use AES-128-CTR, use this algorithm with
1164 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1165 */
1166 #define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
1167
1168 /** The CFB stream cipher mode.
1169 *
1170 * The underlying block cipher is determined by the key type.
1171 */
1172 #define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
1173
1174 /** The OFB stream cipher mode.
1175 *
1176 * The underlying block cipher is determined by the key type.
1177 */
1178 #define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
1179
1180 /** The XTS cipher mode.
1181 *
1182 * XTS is a cipher mode which is built from a block cipher. It requires at
1183 * least one full block of input, but beyond this minimum the input
1184 * does not need to be a whole number of blocks.
1185 */
1186 #define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
1187
1188 /** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1189 *
1190 * \warning ECB mode does not protect the confidentiality of the encrypted data
1191 * except in extremely narrow circumstances. It is recommended that applications
1192 * only use ECB if they need to construct an operating mode that the
1193 * implementation does not provide. Implementations are encouraged to provide
1194 * the modes that applications need in preference to supporting direct access
1195 * to ECB.
1196 *
1197 * The underlying block cipher is determined by the key type.
1198 *
1199 * This symmetric cipher mode can only be used with messages whose lengths are a
1200 * multiple of the block size of the chosen block cipher.
1201 *
1202 * ECB mode does not accept an initialization vector (IV). When using a
1203 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1204 * and psa_cipher_set_iv() must not be called.
1205 */
1206 #define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
1207
1208 /** The CBC block cipher chaining mode, with no padding.
1209 *
1210 * The underlying block cipher is determined by the key type.
1211 *
1212 * This symmetric cipher mode can only be used with messages whose lengths
1213 * are whole number of blocks for the chosen block cipher.
1214 */
1215 #define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
1216
1217 /** The CBC block cipher chaining mode with PKCS#7 padding.
1218 *
1219 * The underlying block cipher is determined by the key type.
1220 *
1221 * This is the padding method defined by PKCS#7 (RFC 2315) §10.3.
1222 */
1223 #define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
1224
1225 #define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
1226
1227 /** Whether the specified algorithm is an AEAD mode on a block cipher.
1228 *
1229 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1230 *
1231 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1232 * a block cipher, 0 otherwise.
1233 * This macro may return either 0 or 1 if \p alg is not a supported
1234 * algorithm identifier.
1235 */
1236 #define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1237 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1238 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1239
1240 /** The CCM authenticated encryption algorithm.
1241 *
1242 * The underlying block cipher is determined by the key type.
1243 */
1244 #define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
1245
1246 /** The CCM* cipher mode without authentication.
1247 *
1248 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1249 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1250 *
1251 * The underlying block cipher is determined by the key type.
1252 *
1253 * Currently only 13-byte long IV's are supported.
1254 */
1255 #define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t) 0x04c01300)
1256
1257 /** The GCM authenticated encryption algorithm.
1258 *
1259 * The underlying block cipher is determined by the key type.
1260 */
1261 #define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
1262
1263 /** The Chacha20-Poly1305 AEAD algorithm.
1264 *
1265 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
1266 *
1267 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1268 * and should reject other sizes.
1269 *
1270 * Implementations must support 16-byte tags and should reject other sizes.
1271 */
1272 #define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
1273
1274 /* In the encoding of an AEAD algorithm, the bits corresponding to
1275 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1276 * The constants for default lengths follow this encoding.
1277 */
1278 #define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
1279 #define PSA_AEAD_TAG_LENGTH_OFFSET 16
1280
1281 /* In the encoding of an AEAD algorithm, the bit corresponding to
1282 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1283 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1284 * algorithm policy can be used with any algorithm corresponding to the
1285 * same base class and having a tag length greater than or equal to the one
1286 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1287 #define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
1288
1289 /** Macro to build a shortened AEAD algorithm.
1290 *
1291 * A shortened AEAD algorithm is similar to the corresponding AEAD
1292 * algorithm, but has an authentication tag that consists of fewer bytes.
1293 * Depending on the algorithm, the tag length may affect the calculation
1294 * of the ciphertext.
1295 *
1296 * \param aead_alg An AEAD algorithm identifier (value of type
1297 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1298 * is true).
1299 * \param tag_length Desired length of the authentication tag in bytes.
1300 *
1301 * \return The corresponding AEAD algorithm with the specified
1302 * length.
1303 * \return Unspecified if \p aead_alg is not a supported
1304 * AEAD algorithm or if \p tag_length is not valid
1305 * for the specified AEAD algorithm.
1306 */
1307 #define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
1308 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1309 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
1310 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1311 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1312
1313 /** Retrieve the tag length of a specified AEAD algorithm
1314 *
1315 * \param aead_alg An AEAD algorithm identifier (value of type
1316 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1317 * is true).
1318 *
1319 * \return The tag length specified by the input algorithm.
1320 * \return Unspecified if \p aead_alg is not a supported
1321 * AEAD algorithm.
1322 */
1323 #define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1324 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1325 PSA_AEAD_TAG_LENGTH_OFFSET)
1326
1327 /** Calculate the corresponding AEAD algorithm with the default tag length.
1328 *
1329 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1330 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1331 *
1332 * \return The corresponding AEAD algorithm with the default
1333 * tag length for that algorithm.
1334 */
1335 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
1336 ( \
1337 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1338 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1339 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
1340 0)
1341 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1342 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1343 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
1344 ref :
1345
1346 /** Macro to build an AEAD minimum-tag-length wildcard algorithm.
1347 *
1348 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
1349 * sharing the same base algorithm, and where the tag length of the specific
1350 * algorithm is equal to or larger then the minimum tag length specified by the
1351 * wildcard algorithm.
1352 *
1353 * \note When setting the minimum required tag length to less than the
1354 * smallest tag length allowed by the base algorithm, this effectively
1355 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
1356 *
1357 * \param aead_alg An AEAD algorithm identifier (value of type
1358 * #psa_algorithm_t such that
1359 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1360 * \param min_tag_length Desired minimum length of the authentication tag in
1361 * bytes. This must be at least 1 and at most the largest
1362 * allowed tag length of the algorithm.
1363 *
1364 * \return The corresponding AEAD wildcard algorithm with the
1365 * specified minimum length.
1366 * \return Unspecified if \p aead_alg is not a supported
1367 * AEAD algorithm or if \p min_tag_length is less than 1
1368 * or too large for the specified AEAD algorithm.
1369 */
1370 #define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
1371 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1372 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
1373
1374 #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
1375 /** RSA PKCS#1 v1.5 signature with hashing.
1376 *
1377 * This is the signature scheme defined by RFC 8017
1378 * (PKCS#1: RSA Cryptography Specifications) under the name
1379 * RSASSA-PKCS1-v1_5.
1380 *
1381 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1382 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1383 * This includes #PSA_ALG_ANY_HASH
1384 * when specifying the algorithm in a usage policy.
1385 *
1386 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
1387 * \return Unspecified if \p hash_alg is not a supported
1388 * hash algorithm.
1389 */
1390 #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1391 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1392 /** Raw PKCS#1 v1.5 signature.
1393 *
1394 * The input to this algorithm is the DigestInfo structure used by
1395 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2
1396 * steps 3–6.
1397 */
1398 #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1399 #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1400 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1401
1402 #define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
1403 #define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
1404 /** RSA PSS signature with hashing.
1405 *
1406 * This is the signature scheme defined by RFC 8017
1407 * (PKCS#1: RSA Cryptography Specifications) under the name
1408 * RSASSA-PSS, with the message generation function MGF1, and with
1409 * a salt length equal to the length of the hash, or the largest
1410 * possible salt length for the algorithm and key size if that is
1411 * smaller than the hash length. The specified hash algorithm is
1412 * used to hash the input message, to create the salted hash, and
1413 * for the mask generation.
1414 *
1415 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1416 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1417 * This includes #PSA_ALG_ANY_HASH
1418 * when specifying the algorithm in a usage policy.
1419 *
1420 * \return The corresponding RSA PSS signature algorithm.
1421 * \return Unspecified if \p hash_alg is not a supported
1422 * hash algorithm.
1423 */
1424 #define PSA_ALG_RSA_PSS(hash_alg) \
1425 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1426
1427 /** RSA PSS signature with hashing with relaxed verification.
1428 *
1429 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1430 * but allows an arbitrary salt length (including \c 0) when verifying a
1431 * signature.
1432 *
1433 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1434 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1435 * This includes #PSA_ALG_ANY_HASH
1436 * when specifying the algorithm in a usage policy.
1437 *
1438 * \return The corresponding RSA PSS signature algorithm.
1439 * \return Unspecified if \p hash_alg is not a supported
1440 * hash algorithm.
1441 */
1442 #define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1443 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1444
1445 /** Whether the specified algorithm is RSA PSS with standard salt.
1446 *
1447 * \param alg An algorithm value or an algorithm policy wildcard.
1448 *
1449 * \return 1 if \p alg is of the form
1450 * #PSA_ALG_RSA_PSS(\c hash_alg),
1451 * where \c hash_alg is a hash algorithm or
1452 * #PSA_ALG_ANY_HASH. 0 otherwise.
1453 * This macro may return either 0 or 1 if \p alg is not
1454 * a supported algorithm identifier or policy.
1455 */
1456 #define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
1457 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1458
1459 /** Whether the specified algorithm is RSA PSS with any salt.
1460 *
1461 * \param alg An algorithm value or an algorithm policy wildcard.
1462 *
1463 * \return 1 if \p alg is of the form
1464 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1465 * where \c hash_alg is a hash algorithm or
1466 * #PSA_ALG_ANY_HASH. 0 otherwise.
1467 * This macro may return either 0 or 1 if \p alg is not
1468 * a supported algorithm identifier or policy.
1469 */
1470 #define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1471 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1472
1473 /** Whether the specified algorithm is RSA PSS.
1474 *
1475 * This includes any of the RSA PSS algorithm variants, regardless of the
1476 * constraints on salt length.
1477 *
1478 * \param alg An algorithm value or an algorithm policy wildcard.
1479 *
1480 * \return 1 if \p alg is of the form
1481 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1482 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1483 * where \c hash_alg is a hash algorithm or
1484 * #PSA_ALG_ANY_HASH. 0 otherwise.
1485 * This macro may return either 0 or 1 if \p alg is not
1486 * a supported algorithm identifier or policy.
1487 */
1488 #define PSA_ALG_IS_RSA_PSS(alg) \
1489 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1490 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
1491
1492 #define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
1493 /** ECDSA signature with hashing.
1494 *
1495 * This is the ECDSA signature scheme defined by ANSI X9.62,
1496 * with a random per-message secret number (*k*).
1497 *
1498 * The representation of the signature as a byte string consists of
1499 * the concatenation of the signature values *r* and *s*. Each of
1500 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1501 * of the base point of the curve in octets. Each value is represented
1502 * in big-endian order (most significant octet first).
1503 *
1504 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1505 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1506 * This includes #PSA_ALG_ANY_HASH
1507 * when specifying the algorithm in a usage policy.
1508 *
1509 * \return The corresponding ECDSA signature algorithm.
1510 * \return Unspecified if \p hash_alg is not a supported
1511 * hash algorithm.
1512 */
1513 #define PSA_ALG_ECDSA(hash_alg) \
1514 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1515 /** ECDSA signature without hashing.
1516 *
1517 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1518 * without specifying a hash algorithm. This algorithm may only be
1519 * used to sign or verify a sequence of bytes that should be an
1520 * already-calculated hash. Note that the input is padded with
1521 * zeros on the left or truncated on the left as required to fit
1522 * the curve size.
1523 */
1524 #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1525 #define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
1526 /** Deterministic ECDSA signature with hashing.
1527 *
1528 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1529 *
1530 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1531 *
1532 * Note that when this algorithm is used for verification, signatures
1533 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1534 * same private key are accepted. In other words,
1535 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1536 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1537 *
1538 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1539 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1540 * This includes #PSA_ALG_ANY_HASH
1541 * when specifying the algorithm in a usage policy.
1542 *
1543 * \return The corresponding deterministic ECDSA signature
1544 * algorithm.
1545 * \return Unspecified if \p hash_alg is not a supported
1546 * hash algorithm.
1547 */
1548 #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1549 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1550 #define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
1551 #define PSA_ALG_IS_ECDSA(alg) \
1552 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
1553 PSA_ALG_ECDSA_BASE)
1554 #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1555 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
1556 #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1557 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1558 #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1559 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1560
1561 /** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1562 * using standard parameters.
1563 *
1564 * Contexts are not supported in the current version of this specification
1565 * because there is no suitable signature interface that can take the
1566 * context as a parameter. A future version of this specification may add
1567 * suitable functions and extend this algorithm to support contexts.
1568 *
1569 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1570 * In this specification, the following curves are supported:
1571 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1572 * in RFC 8032.
1573 * The curve is Edwards25519.
1574 * The hash function used internally is SHA-512.
1575 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1576 * in RFC 8032.
1577 * The curve is Edwards448.
1578 * The hash function used internally is the first 114 bytes of the
1579 * SHAKE256 output.
1580 *
1581 * This algorithm can be used with psa_sign_message() and
1582 * psa_verify_message(). Since there is no prehashing, it cannot be used
1583 * with psa_sign_hash() or psa_verify_hash().
1584 *
1585 * The signature format is the concatenation of R and S as defined by
1586 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1587 * string for Ed448).
1588 */
1589 #define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
1590
1591 #define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
1592 #define PSA_ALG_IS_HASH_EDDSA(alg) \
1593 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1594
1595 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1596 * using SHA-512 and the Edwards25519 curve.
1597 *
1598 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1599 *
1600 * This algorithm is Ed25519 as specified in RFC 8032.
1601 * The curve is Edwards25519.
1602 * The prehash is SHA-512.
1603 * The hash function used internally is SHA-512.
1604 *
1605 * This is a hash-and-sign algorithm: to calculate a signature,
1606 * you can either:
1607 * - call psa_sign_message() on the message;
1608 * - or calculate the SHA-512 hash of the message
1609 * with psa_hash_compute()
1610 * or with a multi-part hash operation started with psa_hash_setup(),
1611 * using the hash algorithm #PSA_ALG_SHA_512,
1612 * then sign the calculated hash with psa_sign_hash().
1613 * Verifying a signature is similar, using psa_verify_message() or
1614 * psa_verify_hash() instead of the signature function.
1615 */
1616 #define PSA_ALG_ED25519PH \
1617 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1618
1619 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1620 * using SHAKE256 and the Edwards448 curve.
1621 *
1622 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1623 *
1624 * This algorithm is Ed448 as specified in RFC 8032.
1625 * The curve is Edwards448.
1626 * The prehash is the first 64 bytes of the SHAKE256 output.
1627 * The hash function used internally is the first 114 bytes of the
1628 * SHAKE256 output.
1629 *
1630 * This is a hash-and-sign algorithm: to calculate a signature,
1631 * you can either:
1632 * - call psa_sign_message() on the message;
1633 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1634 * with psa_hash_compute()
1635 * or with a multi-part hash operation started with psa_hash_setup(),
1636 * using the hash algorithm #PSA_ALG_SHAKE256_512,
1637 * then sign the calculated hash with psa_sign_hash().
1638 * Verifying a signature is similar, using psa_verify_message() or
1639 * psa_verify_hash() instead of the signature function.
1640 */
1641 #define PSA_ALG_ED448PH \
1642 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
1643
1644 /* Default definition, to be overridden if the library is extended with
1645 * more hash-and-sign algorithms that we want to keep out of this header
1646 * file. */
1647 #define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1648
1649 /** Whether the specified algorithm is a signature algorithm that can be used
1650 * with psa_sign_hash() and psa_verify_hash().
1651 *
1652 * This encompasses all strict hash-and-sign algorithms categorized by
1653 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1654 * paradigm more loosely:
1655 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1656 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1657 *
1658 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1659 *
1660 * \return 1 if alg is a signature algorithm that can be used to sign a
1661 * hash. 0 if alg is a signature algorithm that can only be used
1662 * to sign a message. 0 if alg is not a signature algorithm.
1663 * This macro can return either 0 or 1 if alg is not a
1664 * supported algorithm identifier.
1665 */
1666 #define PSA_ALG_IS_SIGN_HASH(alg) \
1667 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1668 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1669 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1670
1671 /** Whether the specified algorithm is a signature algorithm that can be used
1672 * with psa_sign_message() and psa_verify_message().
1673 *
1674 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1675 *
1676 * \return 1 if alg is a signature algorithm that can be used to sign a
1677 * message. 0 if \p alg is a signature algorithm that can only be used
1678 * to sign an already-calculated hash. 0 if \p alg is not a signature
1679 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1680 * supported algorithm identifier.
1681 */
1682 #define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1683 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
1684
1685 /** Whether the specified algorithm is a hash-and-sign algorithm.
1686 *
1687 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1688 * structured in two parts: first the calculation of a hash in a way that
1689 * does not depend on the key, then the calculation of a signature from the
1690 * hash value and the key. Hash-and-sign algorithms encode the hash
1691 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1692 * to extract this algorithm.
1693 *
1694 * Thus, for a hash-and-sign algorithm,
1695 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1696 * ```
1697 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1698 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1699 * ```
1700 * Most usefully, separating the hash from the signature allows the hash
1701 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1702 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1703 * calculating the hash and then calling psa_verify_hash().
1704 *
1705 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1706 *
1707 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1708 * This macro may return either 0 or 1 if \p alg is not a supported
1709 * algorithm identifier.
1710 */
1711 #define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1712 (PSA_ALG_IS_SIGN_HASH(alg) && \
1713 ((alg) & PSA_ALG_HASH_MASK) != 0)
1714
1715 /** Get the hash used by a hash-and-sign signature algorithm.
1716 *
1717 * A hash-and-sign algorithm is a signature algorithm which is
1718 * composed of two phases: first a hashing phase which does not use
1719 * the key and produces a hash of the input message, then a signing
1720 * phase which only uses the hash and the key and not the message
1721 * itself.
1722 *
1723 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1724 * #PSA_ALG_IS_SIGN(\p alg) is true).
1725 *
1726 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1727 * algorithm.
1728 * \return 0 if \p alg is a signature algorithm that does not
1729 * follow the hash-and-sign structure.
1730 * \return Unspecified if \p alg is not a signature algorithm or
1731 * if it is not supported by the implementation.
1732 */
1733 #define PSA_ALG_SIGN_GET_HASH(alg) \
1734 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1735 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1736 0)
1737
1738 /** RSA PKCS#1 v1.5 encryption.
1739 *
1740 * \warning Calling psa_asymmetric_decrypt() with this algorithm as a
1741 * parameter is considered an inherently dangerous function
1742 * (CWE-242). Unless it is used in a side channel free and safe
1743 * way (eg. implementing the TLS protocol as per 7.4.7.1 of
1744 * RFC 5246), the calling code is vulnerable.
1745 *
1746 */
1747 #define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
1748
1749 #define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
1750 /** RSA OAEP encryption.
1751 *
1752 * This is the encryption scheme defined by RFC 8017
1753 * (PKCS#1: RSA Cryptography Specifications) under the name
1754 * RSAES-OAEP, with the message generation function MGF1.
1755 *
1756 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1757 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1758 * for MGF1.
1759 *
1760 * \return The corresponding RSA OAEP encryption algorithm.
1761 * \return Unspecified if \p hash_alg is not a supported
1762 * hash algorithm.
1763 */
1764 #define PSA_ALG_RSA_OAEP(hash_alg) \
1765 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1766 #define PSA_ALG_IS_RSA_OAEP(alg) \
1767 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1768 #define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1769 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1770 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1771 0)
1772
1773 #define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
1774 /** Macro to build an HKDF algorithm.
1775 *
1776 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
1777 *
1778 * This key derivation algorithm uses the following inputs:
1779 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
1780 * It is optional; if omitted, the derivation uses an empty salt.
1781 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1782 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1783 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1784 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
1785 * starting to generate output.
1786 *
1787 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1788 * if the salt is longer than the block size of the hash algorithm; then
1789 * pad with null bytes up to the block size. As a result, it is possible
1790 * for distinct salt inputs to result in the same outputs. To ensure
1791 * unique outputs, it is recommended to use a fixed length for salt values.
1792 *
1793 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1794 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1795 *
1796 * \return The corresponding HKDF algorithm.
1797 * \return Unspecified if \p hash_alg is not a supported
1798 * hash algorithm.
1799 */
1800 #define PSA_ALG_HKDF(hash_alg) \
1801 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1802 /** Whether the specified algorithm is an HKDF algorithm.
1803 *
1804 * HKDF is a family of key derivation algorithms that are based on a hash
1805 * function and the HMAC construction.
1806 *
1807 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1808 *
1809 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1810 * This macro may return either 0 or 1 if \c alg is not a supported
1811 * key derivation algorithm identifier.
1812 */
1813 #define PSA_ALG_IS_HKDF(alg) \
1814 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1815 #define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1816 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1817
1818 #define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t) 0x08000400)
1819 /** Macro to build an HKDF-Extract algorithm.
1820 *
1821 * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
1822 * HKDF-Extract using HMAC-SHA-256.
1823 *
1824 * This key derivation algorithm uses the following inputs:
1825 * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1826 * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1827 * "extract" step.
1828 * The inputs are mandatory and must be passed in the order above.
1829 * Each input may only be passed once.
1830 *
1831 * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1832 * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1833 * as a separate algorithm for the sake of protocols that use it as a
1834 * building block. It may also be a slight performance optimization
1835 * in applications that use HKDF with the same salt and key but many
1836 * different info strings.
1837 *
1838 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1839 * if the salt is longer than the block size of the hash algorithm; then
1840 * pad with null bytes up to the block size. As a result, it is possible
1841 * for distinct salt inputs to result in the same outputs. To ensure
1842 * unique outputs, it is recommended to use a fixed length for salt values.
1843 *
1844 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1845 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1846 *
1847 * \return The corresponding HKDF-Extract algorithm.
1848 * \return Unspecified if \p hash_alg is not a supported
1849 * hash algorithm.
1850 */
1851 #define PSA_ALG_HKDF_EXTRACT(hash_alg) \
1852 (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1853 /** Whether the specified algorithm is an HKDF-Extract algorithm.
1854 *
1855 * HKDF-Extract is a family of key derivation algorithms that are based
1856 * on a hash function and the HMAC construction.
1857 *
1858 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1859 *
1860 * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1861 * This macro may return either 0 or 1 if \c alg is not a supported
1862 * key derivation algorithm identifier.
1863 */
1864 #define PSA_ALG_IS_HKDF_EXTRACT(alg) \
1865 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1866
1867 #define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t) 0x08000500)
1868 /** Macro to build an HKDF-Expand algorithm.
1869 *
1870 * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
1871 * HKDF-Expand using HMAC-SHA-256.
1872 *
1873 * This key derivation algorithm uses the following inputs:
1874 * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
1875 * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1876 *
1877 * The inputs are mandatory and must be passed in the order above.
1878 * Each input may only be passed once.
1879 *
1880 * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1881 * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1882 * a separate algorithm for the sake of protocols that use it as a building
1883 * block. It may also be a slight performance optimization in applications
1884 * that use HKDF with the same salt and key but many different info strings.
1885 *
1886 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1887 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1888 *
1889 * \return The corresponding HKDF-Expand algorithm.
1890 * \return Unspecified if \p hash_alg is not a supported
1891 * hash algorithm.
1892 */
1893 #define PSA_ALG_HKDF_EXPAND(hash_alg) \
1894 (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1895 /** Whether the specified algorithm is an HKDF-Expand algorithm.
1896 *
1897 * HKDF-Expand is a family of key derivation algorithms that are based
1898 * on a hash function and the HMAC construction.
1899 *
1900 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1901 *
1902 * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1903 * This macro may return either 0 or 1 if \c alg is not a supported
1904 * key derivation algorithm identifier.
1905 */
1906 #define PSA_ALG_IS_HKDF_EXPAND(alg) \
1907 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1908
1909 /** Whether the specified algorithm is an HKDF or HKDF-Extract or
1910 * HKDF-Expand algorithm.
1911 *
1912 *
1913 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1914 *
1915 * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1916 * This macro may return either 0 or 1 if \c alg is not a supported
1917 * key derivation algorithm identifier.
1918 */
1919 #define PSA_ALG_IS_ANY_HKDF(alg) \
1920 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
1921 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
1922 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1923
1924 #define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
1925 /** Macro to build a TLS-1.2 PRF algorithm.
1926 *
1927 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1928 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1929 * used with either SHA-256 or SHA-384.
1930 *
1931 * This key derivation algorithm uses the following inputs, which must be
1932 * passed in the order given here:
1933 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1934 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1935 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1936 *
1937 * For the application to TLS-1.2 key expansion, the seed is the
1938 * concatenation of ServerHello.Random + ClientHello.Random,
1939 * and the label is "key expansion".
1940 *
1941 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
1942 * TLS 1.2 PRF using HMAC-SHA-256.
1943 *
1944 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1945 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1946 *
1947 * \return The corresponding TLS-1.2 PRF algorithm.
1948 * \return Unspecified if \p hash_alg is not a supported
1949 * hash algorithm.
1950 */
1951 #define PSA_ALG_TLS12_PRF(hash_alg) \
1952 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1953
1954 /** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1955 *
1956 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1957 *
1958 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1959 * This macro may return either 0 or 1 if \c alg is not a supported
1960 * key derivation algorithm identifier.
1961 */
1962 #define PSA_ALG_IS_TLS12_PRF(alg) \
1963 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1964 #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1965 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1966
1967 #define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
1968 /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1969 *
1970 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1971 * from the PreSharedKey (PSK) through the application of padding
1972 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1973 * The latter is based on HMAC and can be used with either SHA-256
1974 * or SHA-384.
1975 *
1976 * This key derivation algorithm uses the following inputs, which must be
1977 * passed in the order given here:
1978 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1979 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1980 * computation of the premaster secret. This input is optional;
1981 * if omitted, it defaults to a string of null bytes with the same length
1982 * as the secret (PSK) input.
1983 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1984 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1985 *
1986 * For the application to TLS-1.2, the seed (which is
1987 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1988 * ClientHello.Random + ServerHello.Random,
1989 * the label is "master secret" or "extended master secret" and
1990 * the other secret depends on the key exchange specified in the cipher suite:
1991 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1992 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1993 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1994 * (RFC 5489, Section 2), the other secret should be the output of the
1995 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
1996 * The recommended way to pass this input is to use a key derivation
1997 * algorithm constructed as
1998 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
1999 * and to call psa_key_derivation_key_agreement(). Alternatively,
2000 * this input may be an output of `psa_raw_key_agreement()` passed with
2001 * psa_key_derivation_input_bytes(), or an equivalent input passed with
2002 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
2003 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
2004 * should be the 48-byte client challenge (the PreMasterSecret of
2005 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2006 * a 46-byte random string chosen by the client. On the server, this is
2007 * typically an output of psa_asymmetric_decrypt() using
2008 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2009 * with `psa_key_derivation_input_bytes()`.
2010 *
2011 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
2012 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2013 *
2014 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2015 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2016 *
2017 * \return The corresponding TLS-1.2 PSK to MS algorithm.
2018 * \return Unspecified if \p hash_alg is not a supported
2019 * hash algorithm.
2020 */
2021 #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
2022 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2023
2024 /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2025 *
2026 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2027 *
2028 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2029 * This macro may return either 0 or 1 if \c alg is not a supported
2030 * key derivation algorithm identifier.
2031 */
2032 #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
2033 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2034 #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
2035 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2036
2037 /* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2038 * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2039 * will use to derive the session secret, as defined by step 2 of
2040 * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2041 * Uses PSA_ALG_SHA_256.
2042 * This function takes a single input:
2043 * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2044 * The only supported curve is secp256r1 (the 256-bit curve in
2045 * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
2046 * The output has to be read as a single chunk of 32 bytes, defined as
2047 * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
2048 */
2049 #define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t) 0x08000609)
2050
2051 /* This flag indicates whether the key derivation algorithm is suitable for
2052 * use on low-entropy secrets such as password - these algorithms are also
2053 * known as key stretching or password hashing schemes. These are also the
2054 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
2055 *
2056 * Those algorithms cannot be combined with a key agreement algorithm.
2057 */
2058 #define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t) 0x00800000)
2059
2060 #define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t) 0x08800100)
2061 /** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
2062 *
2063 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2064 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2065 * HMAC with the specified hash.
2066 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
2067 * using the PRF HMAC-SHA-256.
2068 *
2069 * This key derivation algorithm uses the following inputs, which must be
2070 * provided in the following order:
2071 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
2072 * This input step must be used exactly once.
2073 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2074 * This input step must be used one or more times; if used several times, the
2075 * inputs will be concatenated. This can be used to build the final salt
2076 * from multiple sources, both public and secret (also known as pepper).
2077 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
2078 * This input step must be used exactly once.
2079 *
2080 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2081 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2082 *
2083 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
2084 * \return Unspecified if \p hash_alg is not a supported
2085 * hash algorithm.
2086 */
2087 #define PSA_ALG_PBKDF2_HMAC(hash_alg) \
2088 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2089
2090 /** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2091 *
2092 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2093 *
2094 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2095 * This macro may return either 0 or 1 if \c alg is not a supported
2096 * key derivation algorithm identifier.
2097 */
2098 #define PSA_ALG_IS_PBKDF2_HMAC(alg) \
2099 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
2100 #define PSA_ALG_PBKDF2_HMAC_GET_HASH(pbkdf2_alg) \
2101 (PSA_ALG_CATEGORY_HASH | ((pbkdf2_alg) & PSA_ALG_HASH_MASK))
2102 /** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2103 *
2104 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2105 * This macro specifies the PBKDF2 algorithm constructed using the
2106 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2107 *
2108 * This key derivation algorithm uses the same inputs as
2109 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
2110 */
2111 #define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t) 0x08800200)
2112
2113 #define PSA_ALG_IS_PBKDF2(kdf_alg) \
2114 (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg) || \
2115 ((kdf_alg) == PSA_ALG_PBKDF2_AES_CMAC_PRF_128))
2116
2117 #define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
2118 #define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
2119
2120 /** Macro to build a combined algorithm that chains a key agreement with
2121 * a key derivation.
2122 *
2123 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
2124 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2125 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
2126 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
2127 *
2128 * \return The corresponding key agreement and derivation
2129 * algorithm.
2130 * \return Unspecified if \p ka_alg is not a supported
2131 * key agreement algorithm or \p kdf_alg is not a
2132 * supported key derivation algorithm.
2133 */
2134 #define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
2135 ((ka_alg) | (kdf_alg))
2136
2137 #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
2138 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2139
2140 #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
2141 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
2142
2143 /** Whether the specified algorithm is a raw key agreement algorithm.
2144 *
2145 * A raw key agreement algorithm is one that does not specify
2146 * a key derivation function.
2147 * Usually, raw key agreement algorithms are constructed directly with
2148 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
2149 * constructed with #PSA_ALG_KEY_AGREEMENT().
2150 *
2151 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2152 *
2153 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2154 * This macro may return either 0 or 1 if \p alg is not a supported
2155 * algorithm identifier.
2156 */
2157 #define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
2158 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
2159 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
2160
2161 #define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
2162 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2163
2164 /** The finite-field Diffie-Hellman (DH) key agreement algorithm.
2165 *
2166 * The shared secret produced by key agreement is
2167 * `g^{ab}` in big-endian format.
2168 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2169 * in bits.
2170 */
2171 #define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
2172
2173 /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2174 *
2175 * This includes the raw finite field Diffie-Hellman algorithm as well as
2176 * finite-field Diffie-Hellman followed by any supporter key derivation
2177 * algorithm.
2178 *
2179 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2180 *
2181 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2182 * This macro may return either 0 or 1 if \c alg is not a supported
2183 * key agreement algorithm identifier.
2184 */
2185 #define PSA_ALG_IS_FFDH(alg) \
2186 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
2187
2188 /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2189 *
2190 * The shared secret produced by key agreement is the x-coordinate of
2191 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2192 * `m` is the bit size associated with the curve, i.e. the bit size of the
2193 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2194 * the byte containing the most significant bit of the shared secret
2195 * is padded with zero bits. The byte order is either little-endian
2196 * or big-endian depending on the curve type.
2197 *
2198 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
2199 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2200 * in little-endian byte order.
2201 * The bit size is 448 for Curve448 and 255 for Curve25519.
2202 * - For Weierstrass curves over prime fields (curve types
2203 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
2204 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2205 * in big-endian byte order.
2206 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2207 * - For Weierstrass curves over binary fields (curve types
2208 * `PSA_ECC_FAMILY_SECTXXX`),
2209 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2210 * in big-endian byte order.
2211 * The bit size is `m` for the field `F_{2^m}`.
2212 */
2213 #define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
2214
2215 /** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2216 * algorithm.
2217 *
2218 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2219 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2220 * algorithm.
2221 *
2222 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2223 *
2224 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2225 * 0 otherwise.
2226 * This macro may return either 0 or 1 if \c alg is not a supported
2227 * key agreement algorithm identifier.
2228 */
2229 #define PSA_ALG_IS_ECDH(alg) \
2230 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
2231
2232 /** Whether the specified algorithm encoding is a wildcard.
2233 *
2234 * Wildcard values may only be used to set the usage algorithm field in
2235 * a policy, not to perform an operation.
2236 *
2237 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2238 *
2239 * \return 1 if \c alg is a wildcard algorithm encoding.
2240 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2241 * an operation).
2242 * \return This macro may return either 0 or 1 if \c alg is not a supported
2243 * algorithm identifier.
2244 */
2245 #define PSA_ALG_IS_WILDCARD(alg) \
2246 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2247 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2248 PSA_ALG_IS_MAC(alg) ? \
2249 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2250 PSA_ALG_IS_AEAD(alg) ? \
2251 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2252 (alg) == PSA_ALG_ANY_HASH)
2253
2254 /** Get the hash used by a composite algorithm.
2255 *
2256 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2257 *
2258 * \return The underlying hash algorithm if alg is a composite algorithm that
2259 * uses a hash algorithm.
2260 *
2261 * \return \c 0 if alg is not a composite algorithm that uses a hash.
2262 */
2263 #define PSA_ALG_GET_HASH(alg) \
2264 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
2265
2266 /**@}*/
2267
2268 /** \defgroup key_lifetimes Key lifetimes
2269 * @{
2270 */
2271
2272 /* Note that location and persistence level values are embedded in the
2273 * persistent key store, as part of key metadata. As a consequence, they
2274 * must not be changed (unless the storage format version changes).
2275 */
2276
2277 /** The default lifetime for volatile keys.
2278 *
2279 * A volatile key only exists as long as the identifier to it is not destroyed.
2280 * The key material is guaranteed to be erased on a power reset.
2281 *
2282 * A key with this lifetime is typically stored in the RAM area of the
2283 * PSA Crypto subsystem. However this is an implementation choice.
2284 * If an implementation stores data about the key in a non-volatile memory,
2285 * it must release all the resources associated with the key and erase the
2286 * key material if the calling application terminates.
2287 */
2288 #define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
2289
2290 /** The default lifetime for persistent keys.
2291 *
2292 * A persistent key remains in storage until it is explicitly destroyed or
2293 * until the corresponding storage area is wiped. This specification does
2294 * not define any mechanism to wipe a storage area, but integrations may
2295 * provide their own mechanism (for example to perform a factory reset,
2296 * to prepare for device refurbishment, or to uninstall an application).
2297 *
2298 * This lifetime value is the default storage area for the calling
2299 * application. Integrations of Mbed TLS may support other persistent lifetimes.
2300 * See ::psa_key_lifetime_t for more information.
2301 */
2302 #define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
2303
2304 /** The persistence level of volatile keys.
2305 *
2306 * See ::psa_key_persistence_t for more information.
2307 */
2308 #define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
2309
2310 /** The default persistence level for persistent keys.
2311 *
2312 * See ::psa_key_persistence_t for more information.
2313 */
2314 #define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
2315
2316 /** A persistence level indicating that a key is never destroyed.
2317 *
2318 * See ::psa_key_persistence_t for more information.
2319 */
2320 #define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
2321
2322 #define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
2323 ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
2324
2325 #define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
2326 ((psa_key_location_t) ((lifetime) >> 8))
2327
2328 /** Whether a key lifetime indicates that the key is volatile.
2329 *
2330 * A volatile key is automatically destroyed by the implementation when
2331 * the application instance terminates. In particular, a volatile key
2332 * is automatically destroyed on a power reset of the device.
2333 *
2334 * A key that is not volatile is persistent. Persistent keys are
2335 * preserved until the application explicitly destroys them or until an
2336 * implementation-specific device management event occurs (for example,
2337 * a factory reset).
2338 *
2339 * \param lifetime The lifetime value to query (value of type
2340 * ::psa_key_lifetime_t).
2341 *
2342 * \return \c 1 if the key is volatile, otherwise \c 0.
2343 */
2344 #define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2345 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2346 PSA_KEY_PERSISTENCE_VOLATILE)
2347
2348 /** Whether a key lifetime indicates that the key is read-only.
2349 *
2350 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2351 * They must be created through platform-specific means that bypass the API.
2352 *
2353 * Some platforms may offer ways to destroy read-only keys. For example,
2354 * consider a platform with multiple levels of privilege, where a
2355 * low-privilege application can use a key but is not allowed to destroy
2356 * it, and the platform exposes the key to the application with a read-only
2357 * lifetime. High-privilege code can destroy the key even though the
2358 * application sees the key as read-only.
2359 *
2360 * \param lifetime The lifetime value to query (value of type
2361 * ::psa_key_lifetime_t).
2362 *
2363 * \return \c 1 if the key is read-only, otherwise \c 0.
2364 */
2365 #define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2366 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2367 PSA_KEY_PERSISTENCE_READ_ONLY)
2368
2369 /** Construct a lifetime from a persistence level and a location.
2370 *
2371 * \param persistence The persistence level
2372 * (value of type ::psa_key_persistence_t).
2373 * \param location The location indicator
2374 * (value of type ::psa_key_location_t).
2375 *
2376 * \return The constructed lifetime value.
2377 */
2378 #define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2379 ((location) << 8 | (persistence))
2380
2381 /** The local storage area for persistent keys.
2382 *
2383 * This storage area is available on all systems that can store persistent
2384 * keys without delegating the storage to a third-party cryptoprocessor.
2385 *
2386 * See ::psa_key_location_t for more information.
2387 */
2388 #define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
2389
2390 #define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
2391
2392 /* Note that key identifier values are embedded in the
2393 * persistent key store, as part of key metadata. As a consequence, they
2394 * must not be changed (unless the storage format version changes).
2395 */
2396
2397 /** The null key identifier.
2398 */
2399 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
2400 #define PSA_KEY_ID_NULL ((psa_key_id_t)0)
2401 /* *INDENT-ON* */
2402 /** The minimum value for a key identifier chosen by the application.
2403 */
2404 #define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
2405 /** The maximum value for a key identifier chosen by the application.
2406 */
2407 #define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
2408 /** The minimum value for a key identifier chosen by the implementation.
2409 */
2410 #define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
2411 /** The maximum value for a key identifier chosen by the implementation.
2412 */
2413 #define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
2414
2415
2416 #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2417
2418 #define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2419 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2420 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
2421
2422 /** Utility to initialize a key identifier at runtime.
2423 *
2424 * \param unused Unused parameter.
2425 * \param key_id Identifier of the key.
2426 */
mbedtls_svc_key_id_make(unsigned int unused,psa_key_id_t key_id)2427 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2428 unsigned int unused, psa_key_id_t key_id)
2429 {
2430 (void) unused;
2431
2432 return key_id;
2433 }
2434
2435 /** Compare two key identifiers.
2436 *
2437 * \param id1 First key identifier.
2438 * \param id2 Second key identifier.
2439 *
2440 * \return Non-zero if the two key identifier are equal, zero otherwise.
2441 */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2442 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2443 mbedtls_svc_key_id_t id2)
2444 {
2445 return id1 == id2;
2446 }
2447
2448 /** Check whether a key identifier is null.
2449 *
2450 * \param key Key identifier.
2451 *
2452 * \return Non-zero if the key identifier is null, zero otherwise.
2453 */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2454 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2455 {
2456 return key == 0;
2457 }
2458
2459 #else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2460
2461 #define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2462 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
2463 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
2464
2465 /** Utility to initialize a key identifier at runtime.
2466 *
2467 * \param owner_id Identifier of the key owner.
2468 * \param key_id Identifier of the key.
2469 */
mbedtls_svc_key_id_make(mbedtls_key_owner_id_t owner_id,psa_key_id_t key_id)2470 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2471 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
2472 {
2473 return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2474 .MBEDTLS_PRIVATE(owner) = owner_id };
2475 }
2476
2477 /** Compare two key identifiers.
2478 *
2479 * \param id1 First key identifier.
2480 * \param id2 Second key identifier.
2481 *
2482 * \return Non-zero if the two key identifier are equal, zero otherwise.
2483 */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2484 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2485 mbedtls_svc_key_id_t id2)
2486 {
2487 return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
2488 mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
2489 }
2490
2491 /** Check whether a key identifier is null.
2492 *
2493 * \param key Key identifier.
2494 *
2495 * \return Non-zero if the key identifier is null, zero otherwise.
2496 */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2497 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2498 {
2499 return key.MBEDTLS_PRIVATE(key_id) == 0;
2500 }
2501
2502 #endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2503
2504 /**@}*/
2505
2506 /** \defgroup policy Key policies
2507 * @{
2508 */
2509
2510 /* Note that key usage flags are embedded in the
2511 * persistent key store, as part of key metadata. As a consequence, they
2512 * must not be changed (unless the storage format version changes).
2513 */
2514
2515 /** Whether the key may be exported.
2516 *
2517 * A public key or the public part of a key pair may always be exported
2518 * regardless of the value of this permission flag.
2519 *
2520 * If a key does not have export permission, implementations shall not
2521 * allow the key to be exported in plain form from the cryptoprocessor,
2522 * whether through psa_export_key() or through a proprietary interface.
2523 * The key may however be exportable in a wrapped form, i.e. in a form
2524 * where it is encrypted by another key.
2525 */
2526 #define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
2527
2528 /** Whether the key may be copied.
2529 *
2530 * This flag allows the use of psa_copy_key() to make a copy of the key
2531 * with the same policy or a more restrictive policy.
2532 *
2533 * For lifetimes for which the key is located in a secure element which
2534 * enforce the non-exportability of keys, copying a key outside the secure
2535 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2536 * Copying the key inside the secure element is permitted with just
2537 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2538 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2539 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2540 * is sufficient to permit the copy.
2541 */
2542 #define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
2543
2544 /** Whether the key may be used to encrypt a message.
2545 *
2546 * This flag allows the key to be used for a symmetric encryption operation,
2547 * for an AEAD encryption-and-authentication operation,
2548 * or for an asymmetric encryption operation,
2549 * if otherwise permitted by the key's type and policy.
2550 *
2551 * For a key pair, this concerns the public key.
2552 */
2553 #define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
2554
2555 /** Whether the key may be used to decrypt a message.
2556 *
2557 * This flag allows the key to be used for a symmetric decryption operation,
2558 * for an AEAD decryption-and-verification operation,
2559 * or for an asymmetric decryption operation,
2560 * if otherwise permitted by the key's type and policy.
2561 *
2562 * For a key pair, this concerns the private key.
2563 */
2564 #define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
2565
2566 /** Whether the key may be used to sign a message.
2567 *
2568 * This flag allows the key to be used for a MAC calculation operation or for
2569 * an asymmetric message signature operation, if otherwise permitted by the
2570 * key’s type and policy.
2571 *
2572 * For a key pair, this concerns the private key.
2573 */
2574 #define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
2575
2576 /** Whether the key may be used to verify a message.
2577 *
2578 * This flag allows the key to be used for a MAC verification operation or for
2579 * an asymmetric message signature verification operation, if otherwise
2580 * permitted by the key’s type and policy.
2581 *
2582 * For a key pair, this concerns the public key.
2583 */
2584 #define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
2585
2586 /** Whether the key may be used to sign a message.
2587 *
2588 * This flag allows the key to be used for a MAC calculation operation
2589 * or for an asymmetric signature operation,
2590 * if otherwise permitted by the key's type and policy.
2591 *
2592 * For a key pair, this concerns the private key.
2593 */
2594 #define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
2595
2596 /** Whether the key may be used to verify a message signature.
2597 *
2598 * This flag allows the key to be used for a MAC verification operation
2599 * or for an asymmetric signature verification operation,
2600 * if otherwise permitted by the key's type and policy.
2601 *
2602 * For a key pair, this concerns the public key.
2603 */
2604 #define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
2605
2606 /** Whether the key may be used to derive other keys or produce a password
2607 * hash.
2608 *
2609 * This flag allows the key to be used for a key derivation operation or for
2610 * a key agreement operation, if otherwise permitted by the key's type and
2611 * policy.
2612 *
2613 * If this flag is present on all keys used in calls to
2614 * psa_key_derivation_input_key() for a key derivation operation, then it
2615 * permits calling psa_key_derivation_output_bytes() or
2616 * psa_key_derivation_output_key() at the end of the operation.
2617 */
2618 #define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
2619
2620 /** Whether the key may be used to verify the result of a key derivation,
2621 * including password hashing.
2622 *
2623 * This flag allows the key to be used:
2624 *
2625 * This flag allows the key to be used in a key derivation operation, if
2626 * otherwise permitted by the key's type and policy.
2627 *
2628 * If this flag is present on all keys used in calls to
2629 * psa_key_derivation_input_key() for a key derivation operation, then it
2630 * permits calling psa_key_derivation_verify_bytes() or
2631 * psa_key_derivation_verify_key() at the end of the operation.
2632 */
2633 #define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t) 0x00008000)
2634
2635 /**@}*/
2636
2637 /** \defgroup derivation Key derivation
2638 * @{
2639 */
2640
2641 /* Key input steps are not embedded in the persistent storage, so you can
2642 * change them if needed: it's only an ABI change. */
2643
2644 /** A secret input for key derivation.
2645 *
2646 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2647 * (passed to psa_key_derivation_input_key())
2648 * or the shared secret resulting from a key agreement
2649 * (obtained via psa_key_derivation_key_agreement()).
2650 *
2651 * The secret can also be a direct input (passed to
2652 * key_derivation_input_bytes()). In this case, the derivation operation
2653 * may not be used to derive keys: the operation will only allow
2654 * psa_key_derivation_output_bytes(),
2655 * psa_key_derivation_verify_bytes(), or
2656 * psa_key_derivation_verify_key(), but not
2657 * psa_key_derivation_output_key().
2658 */
2659 #define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
2660
2661 /** A low-entropy secret input for password hashing / key stretching.
2662 *
2663 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2664 * psa_key_derivation_input_key()) or a direct input (passed to
2665 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2666 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2667 * the shared secret resulting from a key agreement.
2668 *
2669 * The secret can also be a direct input (passed to
2670 * key_derivation_input_bytes()). In this case, the derivation operation
2671 * may not be used to derive keys: the operation will only allow
2672 * psa_key_derivation_output_bytes(),
2673 * psa_key_derivation_verify_bytes(), or
2674 * psa_key_derivation_verify_key(), but not
2675 * psa_key_derivation_output_key().
2676 */
2677 #define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t) 0x0102)
2678
2679 /** A high-entropy additional secret input for key derivation.
2680 *
2681 * This is typically the shared secret resulting from a key agreement obtained
2682 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2683 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2684 * a direct input passed to `psa_key_derivation_input_bytes()`.
2685 */
2686 #define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
2687 ((psa_key_derivation_step_t) 0x0103)
2688
2689 /** A label for key derivation.
2690 *
2691 * This should be a direct input.
2692 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2693 */
2694 #define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
2695
2696 /** A salt for key derivation.
2697 *
2698 * This should be a direct input.
2699 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2700 * #PSA_KEY_TYPE_PEPPER.
2701 */
2702 #define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
2703
2704 /** An information string for key derivation.
2705 *
2706 * This should be a direct input.
2707 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2708 */
2709 #define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
2710
2711 /** A seed for key derivation.
2712 *
2713 * This should be a direct input.
2714 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2715 */
2716 #define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
2717
2718 /** A cost parameter for password hashing / key stretching.
2719 *
2720 * This must be a direct input, passed to psa_key_derivation_input_integer().
2721 */
2722 #define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t) 0x0205)
2723
2724 /**@}*/
2725
2726 /** \defgroup helper_macros Helper macros
2727 * @{
2728 */
2729
2730 /* Helper macros */
2731
2732 /** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2733 * regardless of the tag length they encode.
2734 *
2735 * \param aead_alg_1 An AEAD algorithm identifier.
2736 * \param aead_alg_2 An AEAD algorithm identifier.
2737 *
2738 * \return 1 if both identifiers refer to the same AEAD algorithm,
2739 * 0 otherwise.
2740 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2741 * a supported AEAD algorithm.
2742 */
2743 #define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2744 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2745 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2746
2747 /**@}*/
2748
2749 /**@}*/
2750
2751 /** \defgroup interruptible Interruptible operations
2752 * @{
2753 */
2754
2755 /** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
2756 * the maximum number of ops allowed to be executed by an interruptible
2757 * function in a single call.
2758 */
2759 #define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
2760
2761 /**@}*/
2762
2763 #endif /* PSA_CRYPTO_VALUES_H */
2764