1 /**
2  * \file psa/crypto_values.h
3  *
4  * \brief PSA cryptography module: macros to build and analyze integer values.
5  *
6  * \note This file may not be included directly. Applications must
7  * include psa/crypto.h. Drivers must include the appropriate driver
8  * header file.
9  *
10  * This file contains portable definitions of macros to build and analyze
11  * values of integral types that encode properties of cryptographic keys,
12  * designations of cryptographic algorithms, and error codes returned by
13  * the library.
14  *
15  * Note that many of the constants defined in this file are embedded in
16  * the persistent key store, as part of key metadata (including usage
17  * policies). As a consequence, they must not be changed (unless the storage
18  * format version changes).
19  *
20  * This header file only defines preprocessor macros.
21  */
22 /*
23  *  Copyright The Mbed TLS Contributors
24  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
25  */
26 
27 #ifndef PSA_CRYPTO_VALUES_H
28 #define PSA_CRYPTO_VALUES_H
29 #include "mbedtls/private_access.h"
30 
31 /** \defgroup error Error codes
32  * @{
33  */
34 
35 /* PSA error codes */
36 
37 /* Error codes are standardized across PSA domains (framework, crypto, storage,
38  * etc.). Do not change the values in this section or even the expansions
39  * of each macro: it must be possible to `#include` both this header
40  * and some other PSA component's headers in the same C source,
41  * which will lead to duplicate definitions of the `PSA_SUCCESS` and
42  * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
43  * to the same sequence of tokens.
44  *
45  * If you must add a new
46  * value, check with the Arm PSA framework group to pick one that other
47  * domains aren't already using. */
48 
49 /* Tell uncrustify not to touch the constant definitions, otherwise
50  * it might change the spacing to something that is not PSA-compliant
51  * (e.g. adding a space after casts).
52  *
53  * *INDENT-OFF*
54  */
55 
56 /** The action was completed successfully. */
57 #define PSA_SUCCESS ((psa_status_t)0)
58 
59 /** An error occurred that does not correspond to any defined
60  * failure cause.
61  *
62  * Implementations may use this error code if none of the other standard
63  * error codes are applicable. */
64 #define PSA_ERROR_GENERIC_ERROR         ((psa_status_t)-132)
65 
66 /** The requested operation or a parameter is not supported
67  * by this implementation.
68  *
69  * Implementations should return this error code when an enumeration
70  * parameter such as a key type, algorithm, etc. is not recognized.
71  * If a combination of parameters is recognized and identified as
72  * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
73 #define PSA_ERROR_NOT_SUPPORTED         ((psa_status_t)-134)
74 
75 /** The requested action is denied by a policy.
76  *
77  * Implementations should return this error code when the parameters
78  * are recognized as valid and supported, and a policy explicitly
79  * denies the requested operation.
80  *
81  * If a subset of the parameters of a function call identify a
82  * forbidden operation, and another subset of the parameters are
83  * not valid or not supported, it is unspecified whether the function
84  * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
85  * #PSA_ERROR_INVALID_ARGUMENT. */
86 #define PSA_ERROR_NOT_PERMITTED         ((psa_status_t)-133)
87 
88 /** An output buffer is too small.
89  *
90  * Applications can call the \c PSA_xxx_SIZE macro listed in the function
91  * description to determine a sufficient buffer size.
92  *
93  * Implementations should preferably return this error code only
94  * in cases when performing the operation with a larger output
95  * buffer would succeed. However implementations may return this
96  * error if a function has invalid or unsupported parameters in addition
97  * to the parameters that determine the necessary output buffer size. */
98 #define PSA_ERROR_BUFFER_TOO_SMALL      ((psa_status_t)-138)
99 
100 /** Asking for an item that already exists
101  *
102  * Implementations should return this error, when attempting
103  * to write an item (like a key) that already exists. */
104 #define PSA_ERROR_ALREADY_EXISTS        ((psa_status_t)-139)
105 
106 /** Asking for an item that doesn't exist
107  *
108  * Implementations should return this error, if a requested item (like
109  * a key) does not exist. */
110 #define PSA_ERROR_DOES_NOT_EXIST        ((psa_status_t)-140)
111 
112 /** The requested action cannot be performed in the current state.
113  *
114  * Multipart operations return this error when one of the
115  * functions is called out of sequence. Refer to the function
116  * descriptions for permitted sequencing of functions.
117  *
118  * Implementations shall not return this error code to indicate
119  * that a key either exists or not,
120  * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
121  * as applicable.
122  *
123  * Implementations shall not return this error code to indicate that a
124  * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
125  * instead. */
126 #define PSA_ERROR_BAD_STATE             ((psa_status_t)-137)
127 
128 /** The parameters passed to the function are invalid.
129  *
130  * Implementations may return this error any time a parameter or
131  * combination of parameters are recognized as invalid.
132  *
133  * Implementations shall not return this error code to indicate that a
134  * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
135  * instead.
136  */
137 #define PSA_ERROR_INVALID_ARGUMENT      ((psa_status_t)-135)
138 
139 /** There is not enough runtime memory.
140  *
141  * If the action is carried out across multiple security realms, this
142  * error can refer to available memory in any of the security realms. */
143 #define PSA_ERROR_INSUFFICIENT_MEMORY   ((psa_status_t)-141)
144 
145 /** There is not enough persistent storage.
146  *
147  * Functions that modify the key storage return this error code if
148  * there is insufficient storage space on the host media. In addition,
149  * many functions that do not otherwise access storage may return this
150  * error code if the implementation requires a mandatory log entry for
151  * the requested action and the log storage space is full. */
152 #define PSA_ERROR_INSUFFICIENT_STORAGE  ((psa_status_t)-142)
153 
154 /** There was a communication failure inside the implementation.
155  *
156  * This can indicate a communication failure between the application
157  * and an external cryptoprocessor or between the cryptoprocessor and
158  * an external volatile or persistent memory. A communication failure
159  * may be transient or permanent depending on the cause.
160  *
161  * \warning If a function returns this error, it is undetermined
162  * whether the requested action has completed or not. Implementations
163  * should return #PSA_SUCCESS on successful completion whenever
164  * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
165  * if the requested action was completed successfully in an external
166  * cryptoprocessor but there was a breakdown of communication before
167  * the cryptoprocessor could report the status to the application.
168  */
169 #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
170 
171 /** There was a storage failure that may have led to data loss.
172  *
173  * This error indicates that some persistent storage is corrupted.
174  * It should not be used for a corruption of volatile memory
175  * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
176  * between the cryptoprocessor and its external storage (use
177  * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
178  * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
179  *
180  * Note that a storage failure does not indicate that any data that was
181  * previously read is invalid. However this previously read data may no
182  * longer be readable from storage.
183  *
184  * When a storage failure occurs, it is no longer possible to ensure
185  * the global integrity of the keystore. Depending on the global
186  * integrity guarantees offered by the implementation, access to other
187  * data may or may not fail even if the data is still readable but
188  * its integrity cannot be guaranteed.
189  *
190  * Implementations should only use this error code to report a
191  * permanent storage corruption. However application writers should
192  * keep in mind that transient errors while reading the storage may be
193  * reported using this error code. */
194 #define PSA_ERROR_STORAGE_FAILURE       ((psa_status_t)-146)
195 
196 /** A hardware failure was detected.
197  *
198  * A hardware failure may be transient or permanent depending on the
199  * cause. */
200 #define PSA_ERROR_HARDWARE_FAILURE      ((psa_status_t)-147)
201 
202 /** A tampering attempt was detected.
203  *
204  * If an application receives this error code, there is no guarantee
205  * that previously accessed or computed data was correct and remains
206  * confidential. Applications should not perform any security function
207  * and should enter a safe failure state.
208  *
209  * Implementations may return this error code if they detect an invalid
210  * state that cannot happen during normal operation and that indicates
211  * that the implementation's security guarantees no longer hold. Depending
212  * on the implementation architecture and on its security and safety goals,
213  * the implementation may forcibly terminate the application.
214  *
215  * This error code is intended as a last resort when a security breach
216  * is detected and it is unsure whether the keystore data is still
217  * protected. Implementations shall only return this error code
218  * to report an alarm from a tampering detector, to indicate that
219  * the confidentiality of stored data can no longer be guaranteed,
220  * or to indicate that the integrity of previously returned data is now
221  * considered compromised. Implementations shall not use this error code
222  * to indicate a hardware failure that merely makes it impossible to
223  * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
224  * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
225  * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
226  * instead).
227  *
228  * This error indicates an attack against the application. Implementations
229  * shall not return this error code as a consequence of the behavior of
230  * the application itself. */
231 #define PSA_ERROR_CORRUPTION_DETECTED    ((psa_status_t)-151)
232 
233 /** There is not enough entropy to generate random data needed
234  * for the requested action.
235  *
236  * This error indicates a failure of a hardware random generator.
237  * Application writers should note that this error can be returned not
238  * only by functions whose purpose is to generate random data, such
239  * as key, IV or nonce generation, but also by functions that execute
240  * an algorithm with a randomized result, as well as functions that
241  * use randomization of intermediate computations as a countermeasure
242  * to certain attacks.
243  *
244  * Implementations should avoid returning this error after psa_crypto_init()
245  * has succeeded. Implementations should generate sufficient
246  * entropy during initialization and subsequently use a cryptographically
247  * secure pseudorandom generator (PRNG). However implementations may return
248  * this error at any time if a policy requires the PRNG to be reseeded
249  * during normal operation. */
250 #define PSA_ERROR_INSUFFICIENT_ENTROPY  ((psa_status_t)-148)
251 
252 /** The signature, MAC or hash is incorrect.
253  *
254  * Verification functions return this error if the verification
255  * calculations completed successfully, and the value to be verified
256  * was determined to be incorrect.
257  *
258  * If the value to verify has an invalid size, implementations may return
259  * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
260 #define PSA_ERROR_INVALID_SIGNATURE     ((psa_status_t)-149)
261 
262 /** The decrypted padding is incorrect.
263  *
264  * \warning In some protocols, when decrypting data, it is essential that
265  * the behavior of the application does not depend on whether the padding
266  * is correct, down to precise timing. Applications should prefer
267  * protocols that use authenticated encryption rather than plain
268  * encryption. If the application must perform a decryption of
269  * unauthenticated data, the application writer should take care not
270  * to reveal whether the padding is invalid.
271  *
272  * Implementations should strive to make valid and invalid padding
273  * as close as possible to indistinguishable to an external observer.
274  * In particular, the timing of a decryption operation should not
275  * depend on the validity of the padding. */
276 #define PSA_ERROR_INVALID_PADDING       ((psa_status_t)-150)
277 
278 /** Return this error when there's insufficient data when attempting
279  * to read from a resource. */
280 #define PSA_ERROR_INSUFFICIENT_DATA     ((psa_status_t)-143)
281 
282 /** This can be returned if a function can no longer operate correctly.
283  * For example, if an essential initialization operation failed or
284  * a mutex operation failed. */
285 #define PSA_ERROR_SERVICE_FAILURE       ((psa_status_t)-144)
286 
287 /** The key identifier is not valid. See also :ref:\`key-handles\`.
288  */
289 #define PSA_ERROR_INVALID_HANDLE        ((psa_status_t)-136)
290 
291 /** Stored data has been corrupted.
292  *
293  * This error indicates that some persistent storage has suffered corruption.
294  * It does not indicate the following situations, which have specific error
295  * codes:
296  *
297  * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
298  * - A communication error between the cryptoprocessor and its external
299  *   storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
300  * - When the storage is in a valid state but is full - use
301  *   #PSA_ERROR_INSUFFICIENT_STORAGE.
302  * - When the storage fails for other reasons - use
303  *   #PSA_ERROR_STORAGE_FAILURE.
304  * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
305  *
306  * \note A storage corruption does not indicate that any data that was
307  * previously read is invalid. However this previously read data might no
308  * longer be readable from storage.
309  *
310  * When a storage failure occurs, it is no longer possible to ensure the
311  * global integrity of the keystore.
312  */
313 #define PSA_ERROR_DATA_CORRUPT          ((psa_status_t)-152)
314 
315 /** Data read from storage is not valid for the implementation.
316  *
317  * This error indicates that some data read from storage does not have a valid
318  * format. It does not indicate the following situations, which have specific
319  * error codes:
320  *
321  * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
322  * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
323  * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
324  *
325  * This error is typically a result of either storage corruption on a
326  * cleartext storage backend, or an attempt to read data that was
327  * written by an incompatible version of the library.
328  */
329 #define PSA_ERROR_DATA_INVALID          ((psa_status_t)-153)
330 
331 /** The function that returns this status is defined as interruptible and
332  *  still has work to do, thus the user should call the function again with the
333  *  same operation context until it either returns #PSA_SUCCESS or any other
334  *  error. This is not an error per se, more a notification of status.
335  */
336 #define PSA_OPERATION_INCOMPLETE           ((psa_status_t)-248)
337 
338 /* *INDENT-ON* */
339 
340 /**@}*/
341 
342 /** \defgroup crypto_types Key and algorithm types
343  * @{
344  */
345 
346 /* Note that key type values, including ECC family and DH group values, are
347  * embedded in the persistent key store, as part of key metadata. As a
348  * consequence, they must not be changed (unless the storage format version
349  * changes).
350  */
351 
352 /** An invalid key type value.
353  *
354  * Zero is not the encoding of any key type.
355  */
356 #define PSA_KEY_TYPE_NONE                           ((psa_key_type_t) 0x0000)
357 
358 /** Vendor-defined key type flag.
359  *
360  * Key types defined by this standard will never have the
361  * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
362  * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
363  * respect the bitwise structure used by standard encodings whenever practical.
364  */
365 #define PSA_KEY_TYPE_VENDOR_FLAG                    ((psa_key_type_t) 0x8000)
366 
367 #define PSA_KEY_TYPE_CATEGORY_MASK                  ((psa_key_type_t) 0x7000)
368 #define PSA_KEY_TYPE_CATEGORY_RAW                   ((psa_key_type_t) 0x1000)
369 #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC             ((psa_key_type_t) 0x2000)
370 #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY            ((psa_key_type_t) 0x4000)
371 #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR              ((psa_key_type_t) 0x7000)
372 
373 #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR             ((psa_key_type_t) 0x3000)
374 
375 /** Whether a key type is vendor-defined.
376  *
377  * See also #PSA_KEY_TYPE_VENDOR_FLAG.
378  */
379 #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
380     (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
381 
382 /** Whether a key type is an unstructured array of bytes.
383  *
384  * This encompasses both symmetric keys and non-key data.
385  */
386 #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
387     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
388      ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
389 
390 /** Whether a key type is asymmetric: either a key pair or a public key. */
391 #define PSA_KEY_TYPE_IS_ASYMMETRIC(type)                                \
392     (((type) & PSA_KEY_TYPE_CATEGORY_MASK                               \
393       & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) ==                            \
394      PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
395 /** Whether a key type is the public part of a key pair. */
396 #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type)                                \
397     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
398 /** Whether a key type is a key pair containing a private part and a public
399  * part. */
400 #define PSA_KEY_TYPE_IS_KEY_PAIR(type)                                   \
401     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
402 /** The key pair type corresponding to a public key type.
403  *
404  * You may also pass a key pair type as \p type, it will be left unchanged.
405  *
406  * \param type      A public key type or key pair type.
407  *
408  * \return          The corresponding key pair type.
409  *                  If \p type is not a public key or a key pair,
410  *                  the return value is undefined.
411  */
412 #define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type)        \
413     ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
414 /** The public key type corresponding to a key pair type.
415  *
416  * You may also pass a public key type as \p type, it will be left unchanged.
417  *
418  * \param type      A public key type or key pair type.
419  *
420  * \return          The corresponding public key type.
421  *                  If \p type is not a public key or a key pair,
422  *                  the return value is undefined.
423  */
424 #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type)        \
425     ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
426 
427 /** Raw data.
428  *
429  * A "key" of this type cannot be used for any cryptographic operation.
430  * Applications may use this type to store arbitrary data in the keystore. */
431 #define PSA_KEY_TYPE_RAW_DATA                       ((psa_key_type_t) 0x1001)
432 
433 /** HMAC key.
434  *
435  * The key policy determines which underlying hash algorithm the key can be
436  * used for.
437  *
438  * HMAC keys should generally have the same size as the underlying hash.
439  * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
440  * \c alg is the HMAC algorithm or the underlying hash algorithm. */
441 #define PSA_KEY_TYPE_HMAC                           ((psa_key_type_t) 0x1100)
442 
443 /** A secret for key derivation.
444  *
445  * This key type is for high-entropy secrets only. For low-entropy secrets,
446  * #PSA_KEY_TYPE_PASSWORD should be used instead.
447  *
448  * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
449  * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
450  *
451  * The key policy determines which key derivation algorithm the key
452  * can be used for.
453  */
454 #define PSA_KEY_TYPE_DERIVE                         ((psa_key_type_t) 0x1200)
455 
456 /** A low-entropy secret for password hashing or key derivation.
457  *
458  * This key type is suitable for passwords and passphrases which are typically
459  * intended to be memorizable by humans, and have a low entropy relative to
460  * their size. It can be used for randomly generated or derived keys with
461  * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
462  * for such keys. It is not suitable for passwords with extremely low entropy,
463  * such as numerical PINs.
464  *
465  * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
466  * key derivation algorithms. Algorithms that accept such an input were
467  * designed to accept low-entropy secret and are known as password hashing or
468  * key stretching algorithms.
469  *
470  * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
471  * key derivation algorithms, as the algorithms that take such an input expect
472  * it to be high-entropy.
473  *
474  * The key policy determines which key derivation algorithm the key can be
475  * used for, among the permissible subset defined above.
476  */
477 #define PSA_KEY_TYPE_PASSWORD                       ((psa_key_type_t) 0x1203)
478 
479 /** A secret value that can be used to verify a password hash.
480  *
481  * The key policy determines which key derivation algorithm the key
482  * can be used for, among the same permissible subset as for
483  * #PSA_KEY_TYPE_PASSWORD.
484  */
485 #define PSA_KEY_TYPE_PASSWORD_HASH                  ((psa_key_type_t) 0x1205)
486 
487 /** A secret value that can be used in when computing a password hash.
488  *
489  * The key policy determines which key derivation algorithm the key
490  * can be used for, among the subset of algorithms that can use pepper.
491  */
492 #define PSA_KEY_TYPE_PEPPER                         ((psa_key_type_t) 0x1206)
493 
494 /** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
495  *
496  * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
497  * 32 bytes (AES-256).
498  */
499 #define PSA_KEY_TYPE_AES                            ((psa_key_type_t) 0x2400)
500 
501 /** Key for a cipher, AEAD or MAC algorithm based on the
502  * ARIA block cipher. */
503 #define PSA_KEY_TYPE_ARIA                           ((psa_key_type_t) 0x2406)
504 
505 /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
506  *
507  * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
508  * 192 bits (3-key 3DES).
509  *
510  * Note that single DES and 2-key 3DES are weak and strongly
511  * deprecated and should only be used to decrypt legacy data. 3-key 3DES
512  * is weak and deprecated and should only be used in legacy protocols.
513  */
514 #define PSA_KEY_TYPE_DES                            ((psa_key_type_t) 0x2301)
515 
516 /** Key for a cipher, AEAD or MAC algorithm based on the
517  * Camellia block cipher. */
518 #define PSA_KEY_TYPE_CAMELLIA                       ((psa_key_type_t) 0x2403)
519 
520 /** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
521  *
522  * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
523  *
524  * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
525  *       12-byte nonces.
526  *
527  * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
528  *       with the initial counter value 1, you can process and discard a
529  *       64-byte block before the real data.
530  */
531 #define PSA_KEY_TYPE_CHACHA20                       ((psa_key_type_t) 0x2004)
532 
533 /** RSA public key.
534  *
535  * The size of an RSA key is the bit size of the modulus.
536  */
537 #define PSA_KEY_TYPE_RSA_PUBLIC_KEY                 ((psa_key_type_t) 0x4001)
538 /** RSA key pair (private and public key).
539  *
540  * The size of an RSA key is the bit size of the modulus.
541  */
542 #define PSA_KEY_TYPE_RSA_KEY_PAIR                   ((psa_key_type_t) 0x7001)
543 /** Whether a key type is an RSA key (pair or public-only). */
544 #define PSA_KEY_TYPE_IS_RSA(type)                                       \
545     (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
546 
547 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE            ((psa_key_type_t) 0x4100)
548 #define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE              ((psa_key_type_t) 0x7100)
549 #define PSA_KEY_TYPE_ECC_CURVE_MASK                 ((psa_key_type_t) 0x00ff)
550 /** Elliptic curve key pair.
551  *
552  * The size of an elliptic curve key is the bit size associated with the curve,
553  * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
554  * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
555  *
556  * \param curve     A value of type ::psa_ecc_family_t that
557  *                  identifies the ECC curve to be used.
558  */
559 #define PSA_KEY_TYPE_ECC_KEY_PAIR(curve)         \
560     (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
561 /** Elliptic curve public key.
562  *
563  * The size of an elliptic curve public key is the same as the corresponding
564  * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
565  * `PSA_ECC_FAMILY_xxx` curve families).
566  *
567  * \param curve     A value of type ::psa_ecc_family_t that
568  *                  identifies the ECC curve to be used.
569  */
570 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve)              \
571     (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
572 
573 /** Whether a key type is an elliptic curve key (pair or public-only). */
574 #define PSA_KEY_TYPE_IS_ECC(type)                                       \
575     ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
576       ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
577 /** Whether a key type is an elliptic curve key pair. */
578 #define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type)                               \
579     (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
580      PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
581 /** Whether a key type is an elliptic curve public key. */
582 #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type)                            \
583     (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
584      PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
585 
586 /** Extract the curve from an elliptic curve key type. */
587 #define PSA_KEY_TYPE_ECC_GET_FAMILY(type)                        \
588     ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ?             \
589                          ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
590                          0))
591 
592 /** Check if the curve of given family is Weierstrass elliptic curve. */
593 #define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
594 
595 /** SEC Koblitz curves over prime fields.
596  *
597  * This family comprises the following curves:
598  * secp192k1, secp224k1, secp256k1.
599  * They are defined in _Standards for Efficient Cryptography_,
600  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
601  * https://www.secg.org/sec2-v2.pdf
602  *
603  * \note For secp224k1, the bit-size is 225 (size of a private value).
604  *
605  * \note Mbed TLS only supports secp192k1 and secp256k1.
606  */
607 #define PSA_ECC_FAMILY_SECP_K1           ((psa_ecc_family_t) 0x17)
608 
609 /** SEC random curves over prime fields.
610  *
611  * This family comprises the following curves:
612  * secp192r1, secp224r1, secp256r1, secp384r1, secp521r1.
613  * They are defined in _Standards for Efficient Cryptography_,
614  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
615  * https://www.secg.org/sec2-v2.pdf
616  */
617 #define PSA_ECC_FAMILY_SECP_R1           ((psa_ecc_family_t) 0x12)
618 /* SECP160R2 (SEC2 v1, obsolete, not supported in Mbed TLS) */
619 #define PSA_ECC_FAMILY_SECP_R2           ((psa_ecc_family_t) 0x1b)
620 
621 /** SEC Koblitz curves over binary fields.
622  *
623  * This family comprises the following curves:
624  * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
625  * They are defined in _Standards for Efficient Cryptography_,
626  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
627  * https://www.secg.org/sec2-v2.pdf
628  *
629  * \note Mbed TLS does not support any curve in this family.
630  */
631 #define PSA_ECC_FAMILY_SECT_K1           ((psa_ecc_family_t) 0x27)
632 
633 /** SEC random curves over binary fields.
634  *
635  * This family comprises the following curves:
636  * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
637  * They are defined in _Standards for Efficient Cryptography_,
638  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
639  * https://www.secg.org/sec2-v2.pdf
640  *
641  * \note Mbed TLS does not support any curve in this family.
642  */
643 #define PSA_ECC_FAMILY_SECT_R1           ((psa_ecc_family_t) 0x22)
644 
645 /** SEC additional random curves over binary fields.
646  *
647  * This family comprises the following curve:
648  * sect163r2.
649  * It is defined in _Standards for Efficient Cryptography_,
650  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
651  * https://www.secg.org/sec2-v2.pdf
652  *
653  * \note Mbed TLS does not support any curve in this family.
654  */
655 #define PSA_ECC_FAMILY_SECT_R2           ((psa_ecc_family_t) 0x2b)
656 
657 /** Brainpool P random curves.
658  *
659  * This family comprises the following curves:
660  * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
661  * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
662  * It is defined in RFC 5639.
663  *
664  * \note Mbed TLS only supports the 256-bit, 384-bit and 512-bit curves
665  *       in this family.
666  */
667 #define PSA_ECC_FAMILY_BRAINPOOL_P_R1    ((psa_ecc_family_t) 0x30)
668 
669 /** Curve25519 and Curve448.
670  *
671  * This family comprises the following Montgomery curves:
672  * - 255-bit: Bernstein et al.,
673  *   _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
674  *   The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
675  * - 448-bit: Hamburg,
676  *   _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
677  *   The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
678  */
679 #define PSA_ECC_FAMILY_MONTGOMERY        ((psa_ecc_family_t) 0x41)
680 
681 /** The twisted Edwards curves Ed25519 and Ed448.
682  *
683  * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
684  * #PSA_ALG_ED25519PH for the 255-bit curve,
685  * #PSA_ALG_ED448PH for the 448-bit curve).
686  *
687  * This family comprises the following twisted Edwards curves:
688  * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
689  *   to Curve25519.
690  *   Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
691  * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
692  *   to Curve448.
693  *   Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
694  *
695  * \note Mbed TLS does not support Edwards curves yet.
696  */
697 #define PSA_ECC_FAMILY_TWISTED_EDWARDS   ((psa_ecc_family_t) 0x42)
698 
699 #define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE             ((psa_key_type_t) 0x4200)
700 #define PSA_KEY_TYPE_DH_KEY_PAIR_BASE               ((psa_key_type_t) 0x7200)
701 #define PSA_KEY_TYPE_DH_GROUP_MASK                  ((psa_key_type_t) 0x00ff)
702 /** Diffie-Hellman key pair.
703  *
704  * \param group     A value of type ::psa_dh_family_t that identifies the
705  *                  Diffie-Hellman group to be used.
706  */
707 #define PSA_KEY_TYPE_DH_KEY_PAIR(group)          \
708     (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
709 /** Diffie-Hellman public key.
710  *
711  * \param group     A value of type ::psa_dh_family_t that identifies the
712  *                  Diffie-Hellman group to be used.
713  */
714 #define PSA_KEY_TYPE_DH_PUBLIC_KEY(group)               \
715     (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
716 
717 /** Whether a key type is a Diffie-Hellman key (pair or public-only). */
718 #define PSA_KEY_TYPE_IS_DH(type)                                        \
719     ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
720       ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
721 /** Whether a key type is a Diffie-Hellman key pair. */
722 #define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type)                               \
723     (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
724      PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
725 /** Whether a key type is a Diffie-Hellman public key. */
726 #define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type)                            \
727     (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
728      PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
729 
730 /** Extract the group from a Diffie-Hellman key type. */
731 #define PSA_KEY_TYPE_DH_GET_FAMILY(type)                        \
732     ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ?              \
733                         ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) :  \
734                         0))
735 
736 /** Diffie-Hellman groups defined in RFC 7919 Appendix A.
737  *
738  * This family includes groups with the following key sizes (in bits):
739  * 2048, 3072, 4096, 6144, 8192. A given implementation may support
740  * all of these sizes or only a subset.
741  */
742 #define PSA_DH_FAMILY_RFC7919            ((psa_dh_family_t) 0x03)
743 
744 #define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type)      \
745     (((type) >> 8) & 7)
746 /** The block size of a block cipher.
747  *
748  * \param type  A cipher key type (value of type #psa_key_type_t).
749  *
750  * \return      The block size for a block cipher, or 1 for a stream cipher.
751  *              The return value is undefined if \p type is not a supported
752  *              cipher key type.
753  *
754  * \note It is possible to build stream cipher algorithms on top of a block
755  *       cipher, for example CTR mode (#PSA_ALG_CTR).
756  *       This macro only takes the key type into account, so it cannot be
757  *       used to determine the size of the data that #psa_cipher_update()
758  *       might buffer for future processing in general.
759  *
760  * \note This macro returns a compile-time constant if its argument is one.
761  *
762  * \warning This macro may evaluate its argument multiple times.
763  */
764 #define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type)                                     \
765     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
766      1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) :                         \
767         0u)
768 
769 /* Note that algorithm values are embedded in the persistent key store,
770  * as part of key metadata. As a consequence, they must not be changed
771  * (unless the storage format version changes).
772  */
773 
774 /** Vendor-defined algorithm flag.
775  *
776  * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
777  * bit set. Vendors who define additional algorithms must use an encoding with
778  * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
779  * used by standard encodings whenever practical.
780  */
781 #define PSA_ALG_VENDOR_FLAG                     ((psa_algorithm_t) 0x80000000)
782 
783 #define PSA_ALG_CATEGORY_MASK                   ((psa_algorithm_t) 0x7f000000)
784 #define PSA_ALG_CATEGORY_HASH                   ((psa_algorithm_t) 0x02000000)
785 #define PSA_ALG_CATEGORY_MAC                    ((psa_algorithm_t) 0x03000000)
786 #define PSA_ALG_CATEGORY_CIPHER                 ((psa_algorithm_t) 0x04000000)
787 #define PSA_ALG_CATEGORY_AEAD                   ((psa_algorithm_t) 0x05000000)
788 #define PSA_ALG_CATEGORY_SIGN                   ((psa_algorithm_t) 0x06000000)
789 #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION  ((psa_algorithm_t) 0x07000000)
790 #define PSA_ALG_CATEGORY_KEY_DERIVATION         ((psa_algorithm_t) 0x08000000)
791 #define PSA_ALG_CATEGORY_KEY_AGREEMENT          ((psa_algorithm_t) 0x09000000)
792 
793 /** Whether an algorithm is vendor-defined.
794  *
795  * See also #PSA_ALG_VENDOR_FLAG.
796  */
797 #define PSA_ALG_IS_VENDOR_DEFINED(alg)                                  \
798     (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
799 
800 /** Whether the specified algorithm is a hash algorithm.
801  *
802  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
803  *
804  * \return 1 if \p alg is a hash algorithm, 0 otherwise.
805  *         This macro may return either 0 or 1 if \p alg is not a supported
806  *         algorithm identifier.
807  */
808 #define PSA_ALG_IS_HASH(alg)                                            \
809     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
810 
811 /** Whether the specified algorithm is a MAC algorithm.
812  *
813  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
814  *
815  * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
816  *         This macro may return either 0 or 1 if \p alg is not a supported
817  *         algorithm identifier.
818  */
819 #define PSA_ALG_IS_MAC(alg)                                             \
820     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
821 
822 /** Whether the specified algorithm is a symmetric cipher algorithm.
823  *
824  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
825  *
826  * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
827  *         This macro may return either 0 or 1 if \p alg is not a supported
828  *         algorithm identifier.
829  */
830 #define PSA_ALG_IS_CIPHER(alg)                                          \
831     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
832 
833 /** Whether the specified algorithm is an authenticated encryption
834  * with associated data (AEAD) algorithm.
835  *
836  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
837  *
838  * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
839  *         This macro may return either 0 or 1 if \p alg is not a supported
840  *         algorithm identifier.
841  */
842 #define PSA_ALG_IS_AEAD(alg)                                            \
843     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
844 
845 /** Whether the specified algorithm is an asymmetric signature algorithm,
846  * also known as public-key signature algorithm.
847  *
848  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
849  *
850  * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
851  *         This macro may return either 0 or 1 if \p alg is not a supported
852  *         algorithm identifier.
853  */
854 #define PSA_ALG_IS_SIGN(alg)                                            \
855     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
856 
857 /** Whether the specified algorithm is an asymmetric encryption algorithm,
858  * also known as public-key encryption algorithm.
859  *
860  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
861  *
862  * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
863  *         This macro may return either 0 or 1 if \p alg is not a supported
864  *         algorithm identifier.
865  */
866 #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg)                           \
867     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
868 
869 /** Whether the specified algorithm is a key agreement algorithm.
870  *
871  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
872  *
873  * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
874  *         This macro may return either 0 or 1 if \p alg is not a supported
875  *         algorithm identifier.
876  */
877 #define PSA_ALG_IS_KEY_AGREEMENT(alg)                                   \
878     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
879 
880 /** Whether the specified algorithm is a key derivation algorithm.
881  *
882  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
883  *
884  * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
885  *         This macro may return either 0 or 1 if \p alg is not a supported
886  *         algorithm identifier.
887  */
888 #define PSA_ALG_IS_KEY_DERIVATION(alg)                                  \
889     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
890 
891 /** Whether the specified algorithm is a key stretching / password hashing
892  * algorithm.
893  *
894  * A key stretching / password hashing algorithm is a key derivation algorithm
895  * that is suitable for use with a low-entropy secret such as a password.
896  * Equivalently, it's a key derivation algorithm that uses a
897  * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
898  *
899  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
900  *
901  * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
902  *         otherwise. This macro may return either 0 or 1 if \p alg is not a
903  *         supported algorithm identifier.
904  */
905 #define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg)                                  \
906     (PSA_ALG_IS_KEY_DERIVATION(alg) &&              \
907      (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
908 
909 /** An invalid algorithm identifier value. */
910 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
911 #define PSA_ALG_NONE                            ((psa_algorithm_t)0)
912 /* *INDENT-ON* */
913 
914 #define PSA_ALG_HASH_MASK                       ((psa_algorithm_t) 0x000000ff)
915 /** MD5 */
916 #define PSA_ALG_MD5                             ((psa_algorithm_t) 0x02000003)
917 /** PSA_ALG_RIPEMD160 */
918 #define PSA_ALG_RIPEMD160                       ((psa_algorithm_t) 0x02000004)
919 /** SHA1 */
920 #define PSA_ALG_SHA_1                           ((psa_algorithm_t) 0x02000005)
921 /** SHA2-224 */
922 #define PSA_ALG_SHA_224                         ((psa_algorithm_t) 0x02000008)
923 /** SHA2-256 */
924 #define PSA_ALG_SHA_256                         ((psa_algorithm_t) 0x02000009)
925 /** SHA2-384 */
926 #define PSA_ALG_SHA_384                         ((psa_algorithm_t) 0x0200000a)
927 /** SHA2-512 */
928 #define PSA_ALG_SHA_512                         ((psa_algorithm_t) 0x0200000b)
929 /** SHA2-512/224 */
930 #define PSA_ALG_SHA_512_224                     ((psa_algorithm_t) 0x0200000c)
931 /** SHA2-512/256 */
932 #define PSA_ALG_SHA_512_256                     ((psa_algorithm_t) 0x0200000d)
933 /** SHA3-224 */
934 #define PSA_ALG_SHA3_224                        ((psa_algorithm_t) 0x02000010)
935 /** SHA3-256 */
936 #define PSA_ALG_SHA3_256                        ((psa_algorithm_t) 0x02000011)
937 /** SHA3-384 */
938 #define PSA_ALG_SHA3_384                        ((psa_algorithm_t) 0x02000012)
939 /** SHA3-512 */
940 #define PSA_ALG_SHA3_512                        ((psa_algorithm_t) 0x02000013)
941 /** The first 512 bits (64 bytes) of the SHAKE256 output.
942  *
943  * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
944  * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
945  * has the same output size and a (theoretically) higher security strength.
946  */
947 #define PSA_ALG_SHAKE256_512                    ((psa_algorithm_t) 0x02000015)
948 
949 /** In a hash-and-sign algorithm policy, allow any hash algorithm.
950  *
951  * This value may be used to form the algorithm usage field of a policy
952  * for a signature algorithm that is parametrized by a hash. The key
953  * may then be used to perform operations using the same signature
954  * algorithm parametrized with any supported hash.
955  *
956  * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
957  * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
958  * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
959  * Then you may create and use a key as follows:
960  * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
961  *   ```
962  *   psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
963  *   psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
964  *   ```
965  * - Import or generate key material.
966  * - Call psa_sign_hash() or psa_verify_hash(), passing
967  *   an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
968  *   call to sign or verify a message may use a different hash.
969  *   ```
970  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
971  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
972  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
973  *   ```
974  *
975  * This value may not be used to build other algorithms that are
976  * parametrized over a hash. For any valid use of this macro to build
977  * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
978  *
979  * This value may not be used to build an algorithm specification to
980  * perform an operation. It is only valid to build policies.
981  */
982 #define PSA_ALG_ANY_HASH                        ((psa_algorithm_t) 0x020000ff)
983 
984 #define PSA_ALG_MAC_SUBCATEGORY_MASK            ((psa_algorithm_t) 0x00c00000)
985 #define PSA_ALG_HMAC_BASE                       ((psa_algorithm_t) 0x03800000)
986 /** Macro to build an HMAC algorithm.
987  *
988  * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
989  *
990  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
991  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
992  *
993  * \return              The corresponding HMAC algorithm.
994  * \return              Unspecified if \p hash_alg is not a supported
995  *                      hash algorithm.
996  */
997 #define PSA_ALG_HMAC(hash_alg)                                  \
998     (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
999 
1000 #define PSA_ALG_HMAC_GET_HASH(hmac_alg)                             \
1001     (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
1002 
1003 /** Whether the specified algorithm is an HMAC algorithm.
1004  *
1005  * HMAC is a family of MAC algorithms that are based on a hash function.
1006  *
1007  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1008  *
1009  * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
1010  *         This macro may return either 0 or 1 if \p alg is not a supported
1011  *         algorithm identifier.
1012  */
1013 #define PSA_ALG_IS_HMAC(alg)                                            \
1014     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1015      PSA_ALG_HMAC_BASE)
1016 
1017 /* In the encoding of a MAC algorithm, the bits corresponding to
1018  * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
1019  * truncated. As an exception, the value 0 means the untruncated algorithm,
1020  * whatever its length is. The length is encoded in 6 bits, so it can
1021  * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1022  * to full length is correctly encoded as 0 and any non-trivial truncation
1023  * is correctly encoded as a value between 1 and 63. */
1024 #define PSA_ALG_MAC_TRUNCATION_MASK             ((psa_algorithm_t) 0x003f0000)
1025 #define PSA_MAC_TRUNCATION_OFFSET 16
1026 
1027 /* In the encoding of a MAC algorithm, the bit corresponding to
1028  * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1029  * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1030  * algorithm policy can be used with any algorithm corresponding to the
1031  * same base class and having a (potentially truncated) MAC length greater or
1032  * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
1033 #define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG   ((psa_algorithm_t) 0x00008000)
1034 
1035 /** Macro to build a truncated MAC algorithm.
1036  *
1037  * A truncated MAC algorithm is identical to the corresponding MAC
1038  * algorithm except that the MAC value for the truncated algorithm
1039  * consists of only the first \p mac_length bytes of the MAC value
1040  * for the untruncated algorithm.
1041  *
1042  * \note    This macro may allow constructing algorithm identifiers that
1043  *          are not valid, either because the specified length is larger
1044  *          than the untruncated MAC or because the specified length is
1045  *          smaller than permitted by the implementation.
1046  *
1047  * \note    It is implementation-defined whether a truncated MAC that
1048  *          is truncated to the same length as the MAC of the untruncated
1049  *          algorithm is considered identical to the untruncated algorithm
1050  *          for policy comparison purposes.
1051  *
1052  * \param mac_alg       A MAC algorithm identifier (value of type
1053  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1054  *                      is true). This may be a truncated or untruncated
1055  *                      MAC algorithm.
1056  * \param mac_length    Desired length of the truncated MAC in bytes.
1057  *                      This must be at most the full length of the MAC
1058  *                      and must be at least an implementation-specified
1059  *                      minimum. The implementation-specified minimum
1060  *                      shall not be zero.
1061  *
1062  * \return              The corresponding MAC algorithm with the specified
1063  *                      length.
1064  * \return              Unspecified if \p mac_alg is not a supported
1065  *                      MAC algorithm or if \p mac_length is too small or
1066  *                      too large for the specified MAC algorithm.
1067  */
1068 #define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length)              \
1069     (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK |               \
1070                     PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) |   \
1071      ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1072 
1073 /** Macro to build the base MAC algorithm corresponding to a truncated
1074  * MAC algorithm.
1075  *
1076  * \param mac_alg       A MAC algorithm identifier (value of type
1077  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1078  *                      is true). This may be a truncated or untruncated
1079  *                      MAC algorithm.
1080  *
1081  * \return              The corresponding base MAC algorithm.
1082  * \return              Unspecified if \p mac_alg is not a supported
1083  *                      MAC algorithm.
1084  */
1085 #define PSA_ALG_FULL_LENGTH_MAC(mac_alg)                        \
1086     ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK |                \
1087                    PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
1088 
1089 /** Length to which a MAC algorithm is truncated.
1090  *
1091  * \param mac_alg       A MAC algorithm identifier (value of type
1092  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1093  *                      is true).
1094  *
1095  * \return              Length of the truncated MAC in bytes.
1096  * \return              0 if \p mac_alg is a non-truncated MAC algorithm.
1097  * \return              Unspecified if \p mac_alg is not a supported
1098  *                      MAC algorithm.
1099  */
1100 #define PSA_MAC_TRUNCATED_LENGTH(mac_alg)                               \
1101     (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
1102 
1103 /** Macro to build a MAC minimum-MAC-length wildcard algorithm.
1104  *
1105  * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
1106  * sharing the same base algorithm, and where the (potentially truncated) MAC
1107  * length of the specific algorithm is equal to or larger then the wildcard
1108  * algorithm's minimum MAC length.
1109  *
1110  * \note    When setting the minimum required MAC length to less than the
1111  *          smallest MAC length allowed by the base algorithm, this effectively
1112  *          becomes an 'any-MAC-length-allowed' policy for that base algorithm.
1113  *
1114  * \param mac_alg         A MAC algorithm identifier (value of type
1115  *                        #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1116  *                        is true).
1117  * \param min_mac_length  Desired minimum length of the message authentication
1118  *                        code in bytes. This must be at most the untruncated
1119  *                        length of the MAC and must be at least 1.
1120  *
1121  * \return                The corresponding MAC wildcard algorithm with the
1122  *                        specified minimum length.
1123  * \return                Unspecified if \p mac_alg is not a supported MAC
1124  *                        algorithm or if \p min_mac_length is less than 1 or
1125  *                        too large for the specified MAC algorithm.
1126  */
1127 #define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length)   \
1128     (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) |              \
1129      PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
1130 
1131 #define PSA_ALG_CIPHER_MAC_BASE                 ((psa_algorithm_t) 0x03c00000)
1132 /** The CBC-MAC construction over a block cipher
1133  *
1134  * \warning CBC-MAC is insecure in many cases.
1135  * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1136  */
1137 #define PSA_ALG_CBC_MAC                         ((psa_algorithm_t) 0x03c00100)
1138 /** The CMAC construction over a block cipher */
1139 #define PSA_ALG_CMAC                            ((psa_algorithm_t) 0x03c00200)
1140 
1141 /** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1142  *
1143  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1144  *
1145  * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1146  *         This macro may return either 0 or 1 if \p alg is not a supported
1147  *         algorithm identifier.
1148  */
1149 #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg)                                \
1150     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1151      PSA_ALG_CIPHER_MAC_BASE)
1152 
1153 #define PSA_ALG_CIPHER_STREAM_FLAG              ((psa_algorithm_t) 0x00800000)
1154 #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG          ((psa_algorithm_t) 0x00400000)
1155 
1156 /** Whether the specified algorithm is a stream cipher.
1157  *
1158  * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1159  * by applying a bitwise-xor with a stream of bytes that is generated
1160  * from a key.
1161  *
1162  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1163  *
1164  * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1165  *         This macro may return either 0 or 1 if \p alg is not a supported
1166  *         algorithm identifier or if it is not a symmetric cipher algorithm.
1167  */
1168 #define PSA_ALG_IS_STREAM_CIPHER(alg)            \
1169     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1170      (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1171 
1172 /** The stream cipher mode of a stream cipher algorithm.
1173  *
1174  * The underlying stream cipher is determined by the key type.
1175  * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1176  */
1177 #define PSA_ALG_STREAM_CIPHER                   ((psa_algorithm_t) 0x04800100)
1178 
1179 /** The CTR stream cipher mode.
1180  *
1181  * CTR is a stream cipher which is built from a block cipher.
1182  * The underlying block cipher is determined by the key type.
1183  * For example, to use AES-128-CTR, use this algorithm with
1184  * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1185  */
1186 #define PSA_ALG_CTR                             ((psa_algorithm_t) 0x04c01000)
1187 
1188 /** The CFB stream cipher mode.
1189  *
1190  * The underlying block cipher is determined by the key type.
1191  */
1192 #define PSA_ALG_CFB                             ((psa_algorithm_t) 0x04c01100)
1193 
1194 /** The OFB stream cipher mode.
1195  *
1196  * The underlying block cipher is determined by the key type.
1197  */
1198 #define PSA_ALG_OFB                             ((psa_algorithm_t) 0x04c01200)
1199 
1200 /** The XTS cipher mode.
1201  *
1202  * XTS is a cipher mode which is built from a block cipher. It requires at
1203  * least one full block of input, but beyond this minimum the input
1204  * does not need to be a whole number of blocks.
1205  */
1206 #define PSA_ALG_XTS                             ((psa_algorithm_t) 0x0440ff00)
1207 
1208 /** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1209  *
1210  * \warning ECB mode does not protect the confidentiality of the encrypted data
1211  * except in extremely narrow circumstances. It is recommended that applications
1212  * only use ECB if they need to construct an operating mode that the
1213  * implementation does not provide. Implementations are encouraged to provide
1214  * the modes that applications need in preference to supporting direct access
1215  * to ECB.
1216  *
1217  * The underlying block cipher is determined by the key type.
1218  *
1219  * This symmetric cipher mode can only be used with messages whose lengths are a
1220  * multiple of the block size of the chosen block cipher.
1221  *
1222  * ECB mode does not accept an initialization vector (IV). When using a
1223  * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1224  * and psa_cipher_set_iv() must not be called.
1225  */
1226 #define PSA_ALG_ECB_NO_PADDING                  ((psa_algorithm_t) 0x04404400)
1227 
1228 /** The CBC block cipher chaining mode, with no padding.
1229  *
1230  * The underlying block cipher is determined by the key type.
1231  *
1232  * This symmetric cipher mode can only be used with messages whose lengths
1233  * are whole number of blocks for the chosen block cipher.
1234  */
1235 #define PSA_ALG_CBC_NO_PADDING                  ((psa_algorithm_t) 0x04404000)
1236 
1237 /** The CBC block cipher chaining mode with PKCS#7 padding.
1238  *
1239  * The underlying block cipher is determined by the key type.
1240  *
1241  * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1242  */
1243 #define PSA_ALG_CBC_PKCS7                       ((psa_algorithm_t) 0x04404100)
1244 
1245 #define PSA_ALG_AEAD_FROM_BLOCK_FLAG            ((psa_algorithm_t) 0x00400000)
1246 
1247 /** Whether the specified algorithm is an AEAD mode on a block cipher.
1248  *
1249  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1250  *
1251  * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1252  *         a block cipher, 0 otherwise.
1253  *         This macro may return either 0 or 1 if \p alg is not a supported
1254  *         algorithm identifier.
1255  */
1256 #define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg)    \
1257     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1258      (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1259 
1260 /** The CCM authenticated encryption algorithm.
1261  *
1262  * The underlying block cipher is determined by the key type.
1263  */
1264 #define PSA_ALG_CCM                             ((psa_algorithm_t) 0x05500100)
1265 
1266 /** The CCM* cipher mode without authentication.
1267  *
1268  * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1269  * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1270  *
1271  * The underlying block cipher is determined by the key type.
1272  *
1273  * Currently only 13-byte long IV's are supported.
1274  */
1275 #define PSA_ALG_CCM_STAR_NO_TAG                 ((psa_algorithm_t) 0x04c01300)
1276 
1277 /** The GCM authenticated encryption algorithm.
1278  *
1279  * The underlying block cipher is determined by the key type.
1280  */
1281 #define PSA_ALG_GCM                             ((psa_algorithm_t) 0x05500200)
1282 
1283 /** The Chacha20-Poly1305 AEAD algorithm.
1284  *
1285  * The ChaCha20_Poly1305 construction is defined in RFC 7539.
1286  *
1287  * Implementations must support 12-byte nonces, may support 8-byte nonces,
1288  * and should reject other sizes.
1289  *
1290  * Implementations must support 16-byte tags and should reject other sizes.
1291  */
1292 #define PSA_ALG_CHACHA20_POLY1305               ((psa_algorithm_t) 0x05100500)
1293 
1294 /* In the encoding of an AEAD algorithm, the bits corresponding to
1295  * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1296  * The constants for default lengths follow this encoding.
1297  */
1298 #define PSA_ALG_AEAD_TAG_LENGTH_MASK            ((psa_algorithm_t) 0x003f0000)
1299 #define PSA_AEAD_TAG_LENGTH_OFFSET 16
1300 
1301 /* In the encoding of an AEAD algorithm, the bit corresponding to
1302  * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1303  * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1304  * algorithm policy can be used with any algorithm corresponding to the
1305  * same base class and having a tag length greater than or equal to the one
1306  * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1307 #define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG  ((psa_algorithm_t) 0x00008000)
1308 
1309 /** Macro to build a shortened AEAD algorithm.
1310  *
1311  * A shortened AEAD algorithm is similar to the corresponding AEAD
1312  * algorithm, but has an authentication tag that consists of fewer bytes.
1313  * Depending on the algorithm, the tag length may affect the calculation
1314  * of the ciphertext.
1315  *
1316  * \param aead_alg      An AEAD algorithm identifier (value of type
1317  *                      #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1318  *                      is true).
1319  * \param tag_length    Desired length of the authentication tag in bytes.
1320  *
1321  * \return              The corresponding AEAD algorithm with the specified
1322  *                      length.
1323  * \return              Unspecified if \p aead_alg is not a supported
1324  *                      AEAD algorithm or if \p tag_length is not valid
1325  *                      for the specified AEAD algorithm.
1326  */
1327 #define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length)           \
1328     (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK |                     \
1329                      PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) |         \
1330      ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET &                      \
1331         PSA_ALG_AEAD_TAG_LENGTH_MASK))
1332 
1333 /** Retrieve the tag length of a specified AEAD algorithm
1334  *
1335  * \param aead_alg      An AEAD algorithm identifier (value of type
1336  *                      #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1337  *                      is true).
1338  *
1339  * \return              The tag length specified by the input algorithm.
1340  * \return              Unspecified if \p aead_alg is not a supported
1341  *                      AEAD algorithm.
1342  */
1343 #define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg)                           \
1344     (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >>                     \
1345      PSA_AEAD_TAG_LENGTH_OFFSET)
1346 
1347 /** Calculate the corresponding AEAD algorithm with the default tag length.
1348  *
1349  * \param aead_alg      An AEAD algorithm (\c PSA_ALG_XXX value such that
1350  *                      #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1351  *
1352  * \return              The corresponding AEAD algorithm with the default
1353  *                      tag length for that algorithm.
1354  */
1355 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg)                   \
1356     (                                                                    \
1357         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1358         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1359         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
1360         0)
1361 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref)         \
1362     PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) ==                      \
1363     PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ?                            \
1364     ref :
1365 
1366 /** Macro to build an AEAD minimum-tag-length wildcard algorithm.
1367  *
1368  * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
1369  * sharing the same base algorithm, and where the tag length of the specific
1370  * algorithm is equal to or larger then the minimum tag length specified by the
1371  * wildcard algorithm.
1372  *
1373  * \note    When setting the minimum required tag length to less than the
1374  *          smallest tag length allowed by the base algorithm, this effectively
1375  *          becomes an 'any-tag-length-allowed' policy for that base algorithm.
1376  *
1377  * \param aead_alg        An AEAD algorithm identifier (value of type
1378  *                        #psa_algorithm_t such that
1379  *                        #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1380  * \param min_tag_length  Desired minimum length of the authentication tag in
1381  *                        bytes. This must be at least 1 and at most the largest
1382  *                        allowed tag length of the algorithm.
1383  *
1384  * \return                The corresponding AEAD wildcard algorithm with the
1385  *                        specified minimum length.
1386  * \return                Unspecified if \p aead_alg is not a supported
1387  *                        AEAD algorithm or if \p min_tag_length is less than 1
1388  *                        or too large for the specified AEAD algorithm.
1389  */
1390 #define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
1391     (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) |            \
1392      PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
1393 
1394 #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE          ((psa_algorithm_t) 0x06000200)
1395 /** RSA PKCS#1 v1.5 signature with hashing.
1396  *
1397  * This is the signature scheme defined by RFC 8017
1398  * (PKCS#1: RSA Cryptography Specifications) under the name
1399  * RSASSA-PKCS1-v1_5.
1400  *
1401  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1402  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1403  *                      This includes #PSA_ALG_ANY_HASH
1404  *                      when specifying the algorithm in a usage policy.
1405  *
1406  * \return              The corresponding RSA PKCS#1 v1.5 signature algorithm.
1407  * \return              Unspecified if \p hash_alg is not a supported
1408  *                      hash algorithm.
1409  */
1410 #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg)                             \
1411     (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1412 /** Raw PKCS#1 v1.5 signature.
1413  *
1414  * The input to this algorithm is the DigestInfo structure used by
1415  * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1416  * steps 3&ndash;6.
1417  */
1418 #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1419 #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg)                               \
1420     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1421 
1422 #define PSA_ALG_RSA_PSS_BASE               ((psa_algorithm_t) 0x06000300)
1423 #define PSA_ALG_RSA_PSS_ANY_SALT_BASE      ((psa_algorithm_t) 0x06001300)
1424 /** RSA PSS signature with hashing.
1425  *
1426  * This is the signature scheme defined by RFC 8017
1427  * (PKCS#1: RSA Cryptography Specifications) under the name
1428  * RSASSA-PSS, with the message generation function MGF1, and with
1429  * a salt length equal to the length of the hash, or the largest
1430  * possible salt length for the algorithm and key size if that is
1431  * smaller than the hash length. The specified hash algorithm is
1432  * used to hash the input message, to create the salted hash, and
1433  * for the mask generation.
1434  *
1435  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1436  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1437  *                      This includes #PSA_ALG_ANY_HASH
1438  *                      when specifying the algorithm in a usage policy.
1439  *
1440  * \return              The corresponding RSA PSS signature algorithm.
1441  * \return              Unspecified if \p hash_alg is not a supported
1442  *                      hash algorithm.
1443  */
1444 #define PSA_ALG_RSA_PSS(hash_alg)                               \
1445     (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1446 
1447 /** RSA PSS signature with hashing with relaxed verification.
1448  *
1449  * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1450  * but allows an arbitrary salt length (including \c 0) when verifying a
1451  * signature.
1452  *
1453  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1454  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1455  *                      This includes #PSA_ALG_ANY_HASH
1456  *                      when specifying the algorithm in a usage policy.
1457  *
1458  * \return              The corresponding RSA PSS signature algorithm.
1459  * \return              Unspecified if \p hash_alg is not a supported
1460  *                      hash algorithm.
1461  */
1462 #define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg)                      \
1463     (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1464 
1465 /** Whether the specified algorithm is RSA PSS with standard salt.
1466  *
1467  * \param alg           An algorithm value or an algorithm policy wildcard.
1468  *
1469  * \return              1 if \p alg is of the form
1470  *                      #PSA_ALG_RSA_PSS(\c hash_alg),
1471  *                      where \c hash_alg is a hash algorithm or
1472  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1473  *                      This macro may return either 0 or 1 if \p alg is not
1474  *                      a supported algorithm identifier or policy.
1475  */
1476 #define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg)                   \
1477     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1478 
1479 /** Whether the specified algorithm is RSA PSS with any salt.
1480  *
1481  * \param alg           An algorithm value or an algorithm policy wildcard.
1482  *
1483  * \return              1 if \p alg is of the form
1484  *                      #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1485  *                      where \c hash_alg is a hash algorithm or
1486  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1487  *                      This macro may return either 0 or 1 if \p alg is not
1488  *                      a supported algorithm identifier or policy.
1489  */
1490 #define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg)                                \
1491     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1492 
1493 /** Whether the specified algorithm is RSA PSS.
1494  *
1495  * This includes any of the RSA PSS algorithm variants, regardless of the
1496  * constraints on salt length.
1497  *
1498  * \param alg           An algorithm value or an algorithm policy wildcard.
1499  *
1500  * \return              1 if \p alg is of the form
1501  *                      #PSA_ALG_RSA_PSS(\c hash_alg) or
1502  *                      #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1503  *                      where \c hash_alg is a hash algorithm or
1504  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1505  *                      This macro may return either 0 or 1 if \p alg is not
1506  *                      a supported algorithm identifier or policy.
1507  */
1508 #define PSA_ALG_IS_RSA_PSS(alg)                                 \
1509     (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) ||                   \
1510      PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
1511 
1512 #define PSA_ALG_ECDSA_BASE                      ((psa_algorithm_t) 0x06000600)
1513 /** ECDSA signature with hashing.
1514  *
1515  * This is the ECDSA signature scheme defined by ANSI X9.62,
1516  * with a random per-message secret number (*k*).
1517  *
1518  * The representation of the signature as a byte string consists of
1519  * the concatenation of the signature values *r* and *s*. Each of
1520  * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1521  * of the base point of the curve in octets. Each value is represented
1522  * in big-endian order (most significant octet first).
1523  *
1524  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1525  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1526  *                      This includes #PSA_ALG_ANY_HASH
1527  *                      when specifying the algorithm in a usage policy.
1528  *
1529  * \return              The corresponding ECDSA signature algorithm.
1530  * \return              Unspecified if \p hash_alg is not a supported
1531  *                      hash algorithm.
1532  */
1533 #define PSA_ALG_ECDSA(hash_alg)                                 \
1534     (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1535 /** ECDSA signature without hashing.
1536  *
1537  * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1538  * without specifying a hash algorithm. This algorithm may only be
1539  * used to sign or verify a sequence of bytes that should be an
1540  * already-calculated hash. Note that the input is padded with
1541  * zeros on the left or truncated on the left as required to fit
1542  * the curve size.
1543  */
1544 #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1545 #define PSA_ALG_DETERMINISTIC_ECDSA_BASE        ((psa_algorithm_t) 0x06000700)
1546 /** Deterministic ECDSA signature with hashing.
1547  *
1548  * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1549  *
1550  * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1551  *
1552  * Note that when this algorithm is used for verification, signatures
1553  * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1554  * same private key are accepted. In other words,
1555  * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1556  * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1557  *
1558  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1559  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1560  *                      This includes #PSA_ALG_ANY_HASH
1561  *                      when specifying the algorithm in a usage policy.
1562  *
1563  * \return              The corresponding deterministic ECDSA signature
1564  *                      algorithm.
1565  * \return              Unspecified if \p hash_alg is not a supported
1566  *                      hash algorithm.
1567  */
1568 #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg)                           \
1569     (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1570 #define PSA_ALG_ECDSA_DETERMINISTIC_FLAG        ((psa_algorithm_t) 0x00000100)
1571 #define PSA_ALG_IS_ECDSA(alg)                                           \
1572     (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) ==  \
1573      PSA_ALG_ECDSA_BASE)
1574 #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)             \
1575     (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
1576 #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg)                             \
1577     (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1578 #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg)                                \
1579     (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1580 
1581 /** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1582  * using standard parameters.
1583  *
1584  * Contexts are not supported in the current version of this specification
1585  * because there is no suitable signature interface that can take the
1586  * context as a parameter. A future version of this specification may add
1587  * suitable functions and extend this algorithm to support contexts.
1588  *
1589  * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1590  * In this specification, the following curves are supported:
1591  * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1592  *   in RFC 8032.
1593  *   The curve is Edwards25519.
1594  *   The hash function used internally is SHA-512.
1595  * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1596  *   in RFC 8032.
1597  *   The curve is Edwards448.
1598  *   The hash function used internally is the first 114 bytes of the
1599  *   SHAKE256 output.
1600  *
1601  * This algorithm can be used with psa_sign_message() and
1602  * psa_verify_message(). Since there is no prehashing, it cannot be used
1603  * with psa_sign_hash() or psa_verify_hash().
1604  *
1605  * The signature format is the concatenation of R and S as defined by
1606  * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1607  * string for Ed448).
1608  */
1609 #define PSA_ALG_PURE_EDDSA                      ((psa_algorithm_t) 0x06000800)
1610 
1611 #define PSA_ALG_HASH_EDDSA_BASE                 ((psa_algorithm_t) 0x06000900)
1612 #define PSA_ALG_IS_HASH_EDDSA(alg)              \
1613     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1614 
1615 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1616  * using SHA-512 and the Edwards25519 curve.
1617  *
1618  * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1619  *
1620  * This algorithm is Ed25519 as specified in RFC 8032.
1621  * The curve is Edwards25519.
1622  * The prehash is SHA-512.
1623  * The hash function used internally is SHA-512.
1624  *
1625  * This is a hash-and-sign algorithm: to calculate a signature,
1626  * you can either:
1627  * - call psa_sign_message() on the message;
1628  * - or calculate the SHA-512 hash of the message
1629  *   with psa_hash_compute()
1630  *   or with a multi-part hash operation started with psa_hash_setup(),
1631  *   using the hash algorithm #PSA_ALG_SHA_512,
1632  *   then sign the calculated hash with psa_sign_hash().
1633  * Verifying a signature is similar, using psa_verify_message() or
1634  * psa_verify_hash() instead of the signature function.
1635  */
1636 #define PSA_ALG_ED25519PH                               \
1637     (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1638 
1639 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1640  * using SHAKE256 and the Edwards448 curve.
1641  *
1642  * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1643  *
1644  * This algorithm is Ed448 as specified in RFC 8032.
1645  * The curve is Edwards448.
1646  * The prehash is the first 64 bytes of the SHAKE256 output.
1647  * The hash function used internally is the first 114 bytes of the
1648  * SHAKE256 output.
1649  *
1650  * This is a hash-and-sign algorithm: to calculate a signature,
1651  * you can either:
1652  * - call psa_sign_message() on the message;
1653  * - or calculate the first 64 bytes of the SHAKE256 output of the message
1654  *   with psa_hash_compute()
1655  *   or with a multi-part hash operation started with psa_hash_setup(),
1656  *   using the hash algorithm #PSA_ALG_SHAKE256_512,
1657  *   then sign the calculated hash with psa_sign_hash().
1658  * Verifying a signature is similar, using psa_verify_message() or
1659  * psa_verify_hash() instead of the signature function.
1660  */
1661 #define PSA_ALG_ED448PH                                 \
1662     (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
1663 
1664 /* Default definition, to be overridden if the library is extended with
1665  * more hash-and-sign algorithms that we want to keep out of this header
1666  * file. */
1667 #define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1668 
1669 /** Whether the specified algorithm is a signature algorithm that can be used
1670  * with psa_sign_hash() and psa_verify_hash().
1671  *
1672  * This encompasses all strict hash-and-sign algorithms categorized by
1673  * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1674  * paradigm more loosely:
1675  * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1676  * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1677  *
1678  * \param alg An algorithm identifier (value of type psa_algorithm_t).
1679  *
1680  * \return 1 if alg is a signature algorithm that can be used to sign a
1681  *         hash. 0 if alg is a signature algorithm that can only be used
1682  *         to sign a message. 0 if alg is not a signature algorithm.
1683  *         This macro can return either 0 or 1 if alg is not a
1684  *         supported algorithm identifier.
1685  */
1686 #define PSA_ALG_IS_SIGN_HASH(alg)                                       \
1687     (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) ||    \
1688      PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) ||             \
1689      PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1690 
1691 /** Whether the specified algorithm is a signature algorithm that can be used
1692  * with psa_sign_message() and psa_verify_message().
1693  *
1694  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1695  *
1696  * \return 1 if alg is a signature algorithm that can be used to sign a
1697  *         message. 0 if \p alg is a signature algorithm that can only be used
1698  *         to sign an already-calculated hash. 0 if \p alg is not a signature
1699  *         algorithm. This macro can return either 0 or 1 if \p alg is not a
1700  *         supported algorithm identifier.
1701  */
1702 #define PSA_ALG_IS_SIGN_MESSAGE(alg)                                    \
1703     (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
1704 
1705 /** Whether the specified algorithm is a hash-and-sign algorithm.
1706  *
1707  * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1708  * structured in two parts: first the calculation of a hash in a way that
1709  * does not depend on the key, then the calculation of a signature from the
1710  * hash value and the key. Hash-and-sign algorithms encode the hash
1711  * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1712  * to extract this algorithm.
1713  *
1714  * Thus, for a hash-and-sign algorithm,
1715  * `psa_sign_message(key, alg, input, ...)` is equivalent to
1716  * ```
1717  * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1718  * psa_sign_hash(key, alg, hash, ..., signature, ...);
1719  * ```
1720  * Most usefully, separating the hash from the signature allows the hash
1721  * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1722  * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1723  * calculating the hash and then calling psa_verify_hash().
1724  *
1725  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1726  *
1727  * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1728  *         This macro may return either 0 or 1 if \p alg is not a supported
1729  *         algorithm identifier.
1730  */
1731 #define PSA_ALG_IS_HASH_AND_SIGN(alg)                                   \
1732     (PSA_ALG_IS_SIGN_HASH(alg) &&                                       \
1733      ((alg) & PSA_ALG_HASH_MASK) != 0)
1734 
1735 /** Get the hash used by a hash-and-sign signature algorithm.
1736  *
1737  * A hash-and-sign algorithm is a signature algorithm which is
1738  * composed of two phases: first a hashing phase which does not use
1739  * the key and produces a hash of the input message, then a signing
1740  * phase which only uses the hash and the key and not the message
1741  * itself.
1742  *
1743  * \param alg   A signature algorithm (\c PSA_ALG_XXX value such that
1744  *              #PSA_ALG_IS_SIGN(\p alg) is true).
1745  *
1746  * \return      The underlying hash algorithm if \p alg is a hash-and-sign
1747  *              algorithm.
1748  * \return      0 if \p alg is a signature algorithm that does not
1749  *              follow the hash-and-sign structure.
1750  * \return      Unspecified if \p alg is not a signature algorithm or
1751  *              if it is not supported by the implementation.
1752  */
1753 #define PSA_ALG_SIGN_GET_HASH(alg)                                     \
1754     (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                                   \
1755      ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :             \
1756      0)
1757 
1758 /** RSA PKCS#1 v1.5 encryption.
1759  *
1760  * \warning     Calling psa_asymmetric_decrypt() with this algorithm as a
1761  *              parameter is considered an inherently dangerous function
1762  *              (CWE-242). Unless it is used in a side channel free and safe
1763  *              way (eg. implementing the TLS protocol as per 7.4.7.1 of
1764  *              RFC 5246), the calling code is vulnerable.
1765  *
1766  */
1767 #define PSA_ALG_RSA_PKCS1V15_CRYPT              ((psa_algorithm_t) 0x07000200)
1768 
1769 #define PSA_ALG_RSA_OAEP_BASE                   ((psa_algorithm_t) 0x07000300)
1770 /** RSA OAEP encryption.
1771  *
1772  * This is the encryption scheme defined by RFC 8017
1773  * (PKCS#1: RSA Cryptography Specifications) under the name
1774  * RSAES-OAEP, with the message generation function MGF1.
1775  *
1776  * \param hash_alg      The hash algorithm (\c PSA_ALG_XXX value such that
1777  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1778  *                      for MGF1.
1779  *
1780  * \return              The corresponding RSA OAEP encryption algorithm.
1781  * \return              Unspecified if \p hash_alg is not a supported
1782  *                      hash algorithm.
1783  */
1784 #define PSA_ALG_RSA_OAEP(hash_alg)                              \
1785     (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1786 #define PSA_ALG_IS_RSA_OAEP(alg)                                \
1787     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1788 #define PSA_ALG_RSA_OAEP_GET_HASH(alg)                          \
1789     (PSA_ALG_IS_RSA_OAEP(alg) ?                                 \
1790      ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :      \
1791      0)
1792 
1793 #define PSA_ALG_HKDF_BASE                       ((psa_algorithm_t) 0x08000100)
1794 /** Macro to build an HKDF algorithm.
1795  *
1796  * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
1797  *
1798  * This key derivation algorithm uses the following inputs:
1799  * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
1800  *   It is optional; if omitted, the derivation uses an empty salt.
1801  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1802  * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1803  * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1804  * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
1805  * starting to generate output.
1806  *
1807  *  \warning  HKDF processes the salt as follows: first hash it with hash_alg
1808  *  if the salt is longer than the block size of the hash algorithm; then
1809  *  pad with null bytes up to the block size. As a result, it is possible
1810  *  for distinct salt inputs to result in the same outputs. To ensure
1811  *  unique outputs, it is recommended to use a fixed length for salt values.
1812  *
1813  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1814  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1815  *
1816  * \return              The corresponding HKDF algorithm.
1817  * \return              Unspecified if \p hash_alg is not a supported
1818  *                      hash algorithm.
1819  */
1820 #define PSA_ALG_HKDF(hash_alg)                                  \
1821     (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1822 /** Whether the specified algorithm is an HKDF algorithm.
1823  *
1824  * HKDF is a family of key derivation algorithms that are based on a hash
1825  * function and the HMAC construction.
1826  *
1827  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1828  *
1829  * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1830  *         This macro may return either 0 or 1 if \c alg is not a supported
1831  *         key derivation algorithm identifier.
1832  */
1833 #define PSA_ALG_IS_HKDF(alg)                            \
1834     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1835 #define PSA_ALG_HKDF_GET_HASH(hkdf_alg)                         \
1836     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1837 
1838 #define PSA_ALG_HKDF_EXTRACT_BASE                       ((psa_algorithm_t) 0x08000400)
1839 /** Macro to build an HKDF-Extract algorithm.
1840  *
1841  * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
1842  * HKDF-Extract using HMAC-SHA-256.
1843  *
1844  * This key derivation algorithm uses the following inputs:
1845  *  - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1846  *  - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1847  *    "extract" step.
1848  * The inputs are mandatory and must be passed in the order above.
1849  * Each input may only be passed once.
1850  *
1851  *  \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1852  *  should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1853  *  as a separate algorithm for the sake of protocols that use it as a
1854  *  building block. It may also be a slight performance optimization
1855  *  in applications that use HKDF with the same salt and key but many
1856  *  different info strings.
1857  *
1858  *  \warning  HKDF processes the salt as follows: first hash it with hash_alg
1859  *  if the salt is longer than the block size of the hash algorithm; then
1860  *  pad with null bytes up to the block size. As a result, it is possible
1861  *  for distinct salt inputs to result in the same outputs. To ensure
1862  *  unique outputs, it is recommended to use a fixed length for salt values.
1863  *
1864  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1865  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1866  *
1867  * \return              The corresponding HKDF-Extract algorithm.
1868  * \return              Unspecified if \p hash_alg is not a supported
1869  *                      hash algorithm.
1870  */
1871 #define PSA_ALG_HKDF_EXTRACT(hash_alg)                                  \
1872     (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1873 /** Whether the specified algorithm is an HKDF-Extract algorithm.
1874  *
1875  * HKDF-Extract is a family of key derivation algorithms that are based
1876  * on a hash function and the HMAC construction.
1877  *
1878  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1879  *
1880  * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1881  *         This macro may return either 0 or 1 if \c alg is not a supported
1882  *         key derivation algorithm identifier.
1883  */
1884 #define PSA_ALG_IS_HKDF_EXTRACT(alg)                            \
1885     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1886 
1887 #define PSA_ALG_HKDF_EXPAND_BASE                       ((psa_algorithm_t) 0x08000500)
1888 /** Macro to build an HKDF-Expand algorithm.
1889  *
1890  * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
1891  * HKDF-Expand using HMAC-SHA-256.
1892  *
1893  * This key derivation algorithm uses the following inputs:
1894  *  - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
1895  *  - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1896  *
1897  *  The inputs are mandatory and must be passed in the order above.
1898  *  Each input may only be passed once.
1899  *
1900  *  \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1901  *  should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1902  *  a separate algorithm for the sake of protocols that use it as a building
1903  *  block. It may also be a slight performance optimization in applications
1904  *  that use HKDF with the same salt and key but many different info strings.
1905  *
1906  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1907  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1908  *
1909  * \return              The corresponding HKDF-Expand algorithm.
1910  * \return              Unspecified if \p hash_alg is not a supported
1911  *                      hash algorithm.
1912  */
1913 #define PSA_ALG_HKDF_EXPAND(hash_alg)                                  \
1914     (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1915 /** Whether the specified algorithm is an HKDF-Expand algorithm.
1916  *
1917  * HKDF-Expand is a family of key derivation algorithms that are based
1918  * on a hash function and the HMAC construction.
1919  *
1920  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1921  *
1922  * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1923  *         This macro may return either 0 or 1 if \c alg is not a supported
1924  *         key derivation algorithm identifier.
1925  */
1926 #define PSA_ALG_IS_HKDF_EXPAND(alg)                            \
1927     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1928 
1929 /** Whether the specified algorithm is an HKDF or HKDF-Extract or
1930  *  HKDF-Expand algorithm.
1931  *
1932  *
1933  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1934  *
1935  * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1936  *         This macro may return either 0 or 1 if \c alg is not a supported
1937  *         key derivation algorithm identifier.
1938  */
1939 #define PSA_ALG_IS_ANY_HKDF(alg)                                   \
1940     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE ||          \
1941      ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE ||  \
1942      ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1943 
1944 #define PSA_ALG_TLS12_PRF_BASE                  ((psa_algorithm_t) 0x08000200)
1945 /** Macro to build a TLS-1.2 PRF algorithm.
1946  *
1947  * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1948  * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1949  * used with either SHA-256 or SHA-384.
1950  *
1951  * This key derivation algorithm uses the following inputs, which must be
1952  * passed in the order given here:
1953  * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1954  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1955  * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1956  *
1957  * For the application to TLS-1.2 key expansion, the seed is the
1958  * concatenation of ServerHello.Random + ClientHello.Random,
1959  * and the label is "key expansion".
1960  *
1961  * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
1962  * TLS 1.2 PRF using HMAC-SHA-256.
1963  *
1964  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1965  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1966  *
1967  * \return              The corresponding TLS-1.2 PRF algorithm.
1968  * \return              Unspecified if \p hash_alg is not a supported
1969  *                      hash algorithm.
1970  */
1971 #define PSA_ALG_TLS12_PRF(hash_alg)                                  \
1972     (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1973 
1974 /** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1975  *
1976  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1977  *
1978  * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1979  *         This macro may return either 0 or 1 if \c alg is not a supported
1980  *         key derivation algorithm identifier.
1981  */
1982 #define PSA_ALG_IS_TLS12_PRF(alg)                                    \
1983     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1984 #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg)                         \
1985     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1986 
1987 #define PSA_ALG_TLS12_PSK_TO_MS_BASE            ((psa_algorithm_t) 0x08000300)
1988 /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1989  *
1990  * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1991  * from the PreSharedKey (PSK) through the application of padding
1992  * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1993  * The latter is based on HMAC and can be used with either SHA-256
1994  * or SHA-384.
1995  *
1996  * This key derivation algorithm uses the following inputs, which must be
1997  * passed in the order given here:
1998  * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1999  * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
2000  *   computation of the premaster secret. This input is optional;
2001  *   if omitted, it defaults to a string of null bytes with the same length
2002  *   as the secret (PSK) input.
2003  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
2004  * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
2005  *
2006  * For the application to TLS-1.2, the seed (which is
2007  * forwarded to the TLS-1.2 PRF) is the concatenation of the
2008  * ClientHello.Random + ServerHello.Random,
2009  * the label is "master secret" or "extended master secret" and
2010  * the other secret depends on the key exchange specified in the cipher suite:
2011  * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
2012  *   PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
2013  * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
2014  *   (RFC 5489, Section 2), the other secret should be the output of the
2015  *   PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
2016  *   The recommended way to pass this input is to use a key derivation
2017  *   algorithm constructed as
2018  *   PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
2019  *   and to call psa_key_derivation_key_agreement(). Alternatively,
2020  *   this input may be an output of `psa_raw_key_agreement()` passed with
2021  *   psa_key_derivation_input_bytes(), or an equivalent input passed with
2022  *   psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
2023  * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
2024  *   should be the 48-byte client challenge (the PreMasterSecret of
2025  *   (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2026  *   a 46-byte random string chosen by the client. On the server, this is
2027  *   typically an output of psa_asymmetric_decrypt() using
2028  *   PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2029  *   with `psa_key_derivation_input_bytes()`.
2030  *
2031  * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
2032  * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2033  *
2034  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
2035  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
2036  *
2037  * \return              The corresponding TLS-1.2 PSK to MS algorithm.
2038  * \return              Unspecified if \p hash_alg is not a supported
2039  *                      hash algorithm.
2040  */
2041 #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg)                                  \
2042     (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2043 
2044 /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2045  *
2046  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2047  *
2048  * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2049  *         This macro may return either 0 or 1 if \c alg is not a supported
2050  *         key derivation algorithm identifier.
2051  */
2052 #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg)                                    \
2053     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2054 #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg)                         \
2055     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2056 
2057 /* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2058  * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2059  * will use to derive the session secret, as defined by step 2 of
2060  * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2061  * Uses PSA_ALG_SHA_256.
2062  * This function takes a single input:
2063  * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2064  * The only supported curve is secp256r1 (the 256-bit curve in
2065  * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
2066  * The output has to be read as a single chunk of 32 bytes, defined as
2067  * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
2068  */
2069 #define PSA_ALG_TLS12_ECJPAKE_TO_PMS            ((psa_algorithm_t) 0x08000609)
2070 
2071 /* This flag indicates whether the key derivation algorithm is suitable for
2072  * use on low-entropy secrets such as password - these algorithms are also
2073  * known as key stretching or password hashing schemes. These are also the
2074  * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
2075  *
2076  * Those algorithms cannot be combined with a key agreement algorithm.
2077  */
2078 #define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG  ((psa_algorithm_t) 0x00800000)
2079 
2080 #define PSA_ALG_PBKDF2_HMAC_BASE                ((psa_algorithm_t) 0x08800100)
2081 /** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
2082  *
2083  * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2084  * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2085  * HMAC with the specified hash.
2086  * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
2087  * using the PRF HMAC-SHA-256.
2088  *
2089  * This key derivation algorithm uses the following inputs, which must be
2090  * provided in the following order:
2091  * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
2092  *   This input step must be used exactly once.
2093  * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2094  *   This input step must be used one or more times; if used several times, the
2095  *   inputs will be concatenated. This can be used to build the final salt
2096  *   from multiple sources, both public and secret (also known as pepper).
2097  * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
2098  *   This input step must be used exactly once.
2099  *
2100  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
2101  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
2102  *
2103  * \return              The corresponding PBKDF2-HMAC-XXX algorithm.
2104  * \return              Unspecified if \p hash_alg is not a supported
2105  *                      hash algorithm.
2106  */
2107 #define PSA_ALG_PBKDF2_HMAC(hash_alg)                                  \
2108     (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2109 
2110 /** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2111  *
2112  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2113  *
2114  * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2115  *         This macro may return either 0 or 1 if \c alg is not a supported
2116  *         key derivation algorithm identifier.
2117  */
2118 #define PSA_ALG_IS_PBKDF2_HMAC(alg)                                    \
2119     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
2120 #define PSA_ALG_PBKDF2_HMAC_GET_HASH(pbkdf2_alg)                         \
2121     (PSA_ALG_CATEGORY_HASH | ((pbkdf2_alg) & PSA_ALG_HASH_MASK))
2122 /** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2123  *
2124  * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2125  * This macro specifies the PBKDF2 algorithm constructed using the
2126  * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2127  *
2128  * This key derivation algorithm uses the same inputs as
2129  * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
2130  */
2131 #define PSA_ALG_PBKDF2_AES_CMAC_PRF_128         ((psa_algorithm_t) 0x08800200)
2132 
2133 #define PSA_ALG_IS_PBKDF2(kdf_alg)                                      \
2134     (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg) || \
2135      ((kdf_alg) == PSA_ALG_PBKDF2_AES_CMAC_PRF_128))
2136 
2137 #define PSA_ALG_KEY_DERIVATION_MASK             ((psa_algorithm_t) 0xfe00ffff)
2138 #define PSA_ALG_KEY_AGREEMENT_MASK              ((psa_algorithm_t) 0xffff0000)
2139 
2140 /** Macro to build a combined algorithm that chains a key agreement with
2141  * a key derivation.
2142  *
2143  * \param ka_alg        A key agreement algorithm (\c PSA_ALG_XXX value such
2144  *                      that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2145  * \param kdf_alg       A key derivation algorithm (\c PSA_ALG_XXX value such
2146  *                      that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
2147  *
2148  * \return              The corresponding key agreement and derivation
2149  *                      algorithm.
2150  * \return              Unspecified if \p ka_alg is not a supported
2151  *                      key agreement algorithm or \p kdf_alg is not a
2152  *                      supported key derivation algorithm.
2153  */
2154 #define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg)  \
2155     ((ka_alg) | (kdf_alg))
2156 
2157 #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg)                              \
2158     (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2159 
2160 #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg)                             \
2161     (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
2162 
2163 /** Whether the specified algorithm is a raw key agreement algorithm.
2164  *
2165  * A raw key agreement algorithm is one that does not specify
2166  * a key derivation function.
2167  * Usually, raw key agreement algorithms are constructed directly with
2168  * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
2169  * constructed with #PSA_ALG_KEY_AGREEMENT().
2170  *
2171  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2172  *
2173  * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2174  *         This macro may return either 0 or 1 if \p alg is not a supported
2175  *         algorithm identifier.
2176  */
2177 #define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg)                               \
2178     (PSA_ALG_IS_KEY_AGREEMENT(alg) &&                                   \
2179      PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
2180 
2181 #define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg)     \
2182     ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2183 
2184 /** The finite-field Diffie-Hellman (DH) key agreement algorithm.
2185  *
2186  * The shared secret produced by key agreement is
2187  * `g^{ab}` in big-endian format.
2188  * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2189  * in bits.
2190  */
2191 #define PSA_ALG_FFDH                            ((psa_algorithm_t) 0x09010000)
2192 
2193 /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2194  *
2195  * This includes the raw finite field Diffie-Hellman algorithm as well as
2196  * finite-field Diffie-Hellman followed by any supporter key derivation
2197  * algorithm.
2198  *
2199  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2200  *
2201  * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2202  *         This macro may return either 0 or 1 if \c alg is not a supported
2203  *         key agreement algorithm identifier.
2204  */
2205 #define PSA_ALG_IS_FFDH(alg) \
2206     (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
2207 
2208 /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2209  *
2210  * The shared secret produced by key agreement is the x-coordinate of
2211  * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2212  * `m` is the bit size associated with the curve, i.e. the bit size of the
2213  * order of the curve's coordinate field. When `m` is not a multiple of 8,
2214  * the byte containing the most significant bit of the shared secret
2215  * is padded with zero bits. The byte order is either little-endian
2216  * or big-endian depending on the curve type.
2217  *
2218  * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
2219  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2220  *   in little-endian byte order.
2221  *   The bit size is 448 for Curve448 and 255 for Curve25519.
2222  * - For Weierstrass curves over prime fields (curve types
2223  *   `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
2224  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2225  *   in big-endian byte order.
2226  *   The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2227  * - For Weierstrass curves over binary fields (curve types
2228  *   `PSA_ECC_FAMILY_SECTXXX`),
2229  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2230  *   in big-endian byte order.
2231  *   The bit size is `m` for the field `F_{2^m}`.
2232  */
2233 #define PSA_ALG_ECDH                            ((psa_algorithm_t) 0x09020000)
2234 
2235 /** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2236  * algorithm.
2237  *
2238  * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2239  * elliptic curve Diffie-Hellman followed by any supporter key derivation
2240  * algorithm.
2241  *
2242  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2243  *
2244  * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2245  *         0 otherwise.
2246  *         This macro may return either 0 or 1 if \c alg is not a supported
2247  *         key agreement algorithm identifier.
2248  */
2249 #define PSA_ALG_IS_ECDH(alg) \
2250     (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
2251 
2252 /** Whether the specified algorithm encoding is a wildcard.
2253  *
2254  * Wildcard values may only be used to set the usage algorithm field in
2255  * a policy, not to perform an operation.
2256  *
2257  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2258  *
2259  * \return 1 if \c alg is a wildcard algorithm encoding.
2260  * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2261  *         an operation).
2262  * \return This macro may return either 0 or 1 if \c alg is not a supported
2263  *         algorithm identifier.
2264  */
2265 #define PSA_ALG_IS_WILDCARD(alg)                            \
2266     (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                        \
2267      PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH :       \
2268      PSA_ALG_IS_MAC(alg) ?                                  \
2269      (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 :   \
2270      PSA_ALG_IS_AEAD(alg) ?                                 \
2271      (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 :  \
2272      (alg) == PSA_ALG_ANY_HASH)
2273 
2274 /** Get the hash used by a composite algorithm.
2275  *
2276  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2277  *
2278  * \return The underlying hash algorithm if alg is a composite algorithm that
2279  * uses a hash algorithm.
2280  *
2281  * \return \c 0 if alg is not a composite algorithm that uses a hash.
2282  */
2283 #define PSA_ALG_GET_HASH(alg) \
2284     (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
2285 
2286 /**@}*/
2287 
2288 /** \defgroup key_lifetimes Key lifetimes
2289  * @{
2290  */
2291 
2292 /* Note that location and persistence level values are embedded in the
2293  * persistent key store, as part of key metadata. As a consequence, they
2294  * must not be changed (unless the storage format version changes).
2295  */
2296 
2297 /** The default lifetime for volatile keys.
2298  *
2299  * A volatile key only exists as long as the identifier to it is not destroyed.
2300  * The key material is guaranteed to be erased on a power reset.
2301  *
2302  * A key with this lifetime is typically stored in the RAM area of the
2303  * PSA Crypto subsystem. However this is an implementation choice.
2304  * If an implementation stores data about the key in a non-volatile memory,
2305  * it must release all the resources associated with the key and erase the
2306  * key material if the calling application terminates.
2307  */
2308 #define PSA_KEY_LIFETIME_VOLATILE               ((psa_key_lifetime_t) 0x00000000)
2309 
2310 /** The default lifetime for persistent keys.
2311  *
2312  * A persistent key remains in storage until it is explicitly destroyed or
2313  * until the corresponding storage area is wiped. This specification does
2314  * not define any mechanism to wipe a storage area, but integrations may
2315  * provide their own mechanism (for example to perform a factory reset,
2316  * to prepare for device refurbishment, or to uninstall an application).
2317  *
2318  * This lifetime value is the default storage area for the calling
2319  * application. Integrations of Mbed TLS may support other persistent lifetimes.
2320  * See ::psa_key_lifetime_t for more information.
2321  */
2322 #define PSA_KEY_LIFETIME_PERSISTENT             ((psa_key_lifetime_t) 0x00000001)
2323 
2324 /** The persistence level of volatile keys.
2325  *
2326  * See ::psa_key_persistence_t for more information.
2327  */
2328 #define PSA_KEY_PERSISTENCE_VOLATILE            ((psa_key_persistence_t) 0x00)
2329 
2330 /** The default persistence level for persistent keys.
2331  *
2332  * See ::psa_key_persistence_t for more information.
2333  */
2334 #define PSA_KEY_PERSISTENCE_DEFAULT             ((psa_key_persistence_t) 0x01)
2335 
2336 /** A persistence level indicating that a key is never destroyed.
2337  *
2338  * See ::psa_key_persistence_t for more information.
2339  */
2340 #define PSA_KEY_PERSISTENCE_READ_ONLY           ((psa_key_persistence_t) 0xff)
2341 
2342 #define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime)      \
2343     ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
2344 
2345 #define PSA_KEY_LIFETIME_GET_LOCATION(lifetime)      \
2346     ((psa_key_location_t) ((lifetime) >> 8))
2347 
2348 /** Whether a key lifetime indicates that the key is volatile.
2349  *
2350  * A volatile key is automatically destroyed by the implementation when
2351  * the application instance terminates. In particular, a volatile key
2352  * is automatically destroyed on a power reset of the device.
2353  *
2354  * A key that is not volatile is persistent. Persistent keys are
2355  * preserved until the application explicitly destroys them or until an
2356  * implementation-specific device management event occurs (for example,
2357  * a factory reset).
2358  *
2359  * \param lifetime      The lifetime value to query (value of type
2360  *                      ::psa_key_lifetime_t).
2361  *
2362  * \return \c 1 if the key is volatile, otherwise \c 0.
2363  */
2364 #define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)  \
2365     (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2366      PSA_KEY_PERSISTENCE_VOLATILE)
2367 
2368 /** Whether a key lifetime indicates that the key is read-only.
2369  *
2370  * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2371  * They must be created through platform-specific means that bypass the API.
2372  *
2373  * Some platforms may offer ways to destroy read-only keys. For example,
2374  * consider a platform with multiple levels of privilege, where a
2375  * low-privilege application can use a key but is not allowed to destroy
2376  * it, and the platform exposes the key to the application with a read-only
2377  * lifetime. High-privilege code can destroy the key even though the
2378  * application sees the key as read-only.
2379  *
2380  * \param lifetime      The lifetime value to query (value of type
2381  *                      ::psa_key_lifetime_t).
2382  *
2383  * \return \c 1 if the key is read-only, otherwise \c 0.
2384  */
2385 #define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime)  \
2386     (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2387      PSA_KEY_PERSISTENCE_READ_ONLY)
2388 
2389 /** Construct a lifetime from a persistence level and a location.
2390  *
2391  * \param persistence   The persistence level
2392  *                      (value of type ::psa_key_persistence_t).
2393  * \param location      The location indicator
2394  *                      (value of type ::psa_key_location_t).
2395  *
2396  * \return The constructed lifetime value.
2397  */
2398 #define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2399     ((location) << 8 | (persistence))
2400 
2401 /** The local storage area for persistent keys.
2402  *
2403  * This storage area is available on all systems that can store persistent
2404  * keys without delegating the storage to a third-party cryptoprocessor.
2405  *
2406  * See ::psa_key_location_t for more information.
2407  */
2408 #define PSA_KEY_LOCATION_LOCAL_STORAGE          ((psa_key_location_t) 0x000000)
2409 
2410 #define PSA_KEY_LOCATION_VENDOR_FLAG            ((psa_key_location_t) 0x800000)
2411 
2412 /* Note that key identifier values are embedded in the
2413  * persistent key store, as part of key metadata. As a consequence, they
2414  * must not be changed (unless the storage format version changes).
2415  */
2416 
2417 /** The null key identifier.
2418  */
2419 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
2420 #define PSA_KEY_ID_NULL                         ((psa_key_id_t)0)
2421 /* *INDENT-ON* */
2422 /** The minimum value for a key identifier chosen by the application.
2423  */
2424 #define PSA_KEY_ID_USER_MIN                     ((psa_key_id_t) 0x00000001)
2425 /** The maximum value for a key identifier chosen by the application.
2426  */
2427 #define PSA_KEY_ID_USER_MAX                     ((psa_key_id_t) 0x3fffffff)
2428 /** The minimum value for a key identifier chosen by the implementation.
2429  */
2430 #define PSA_KEY_ID_VENDOR_MIN                   ((psa_key_id_t) 0x40000000)
2431 /** The maximum value for a key identifier chosen by the implementation.
2432  */
2433 #define PSA_KEY_ID_VENDOR_MAX                   ((psa_key_id_t) 0x7fffffff)
2434 
2435 
2436 #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2437 
2438 #define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2439 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2440 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
2441 
2442 /** Utility to initialize a key identifier at runtime.
2443  *
2444  * \param unused  Unused parameter.
2445  * \param key_id  Identifier of the key.
2446  */
mbedtls_svc_key_id_make(unsigned int unused,psa_key_id_t key_id)2447 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2448     unsigned int unused, psa_key_id_t key_id)
2449 {
2450     (void) unused;
2451 
2452     return key_id;
2453 }
2454 
2455 /** Compare two key identifiers.
2456  *
2457  * \param id1 First key identifier.
2458  * \param id2 Second key identifier.
2459  *
2460  * \return Non-zero if the two key identifier are equal, zero otherwise.
2461  */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2462 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2463                                            mbedtls_svc_key_id_t id2)
2464 {
2465     return id1 == id2;
2466 }
2467 
2468 /** Check whether a key identifier is null.
2469  *
2470  * \param key Key identifier.
2471  *
2472  * \return Non-zero if the key identifier is null, zero otherwise.
2473  */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2474 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2475 {
2476     return key == 0;
2477 }
2478 
2479 #else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2480 
2481 #define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2482 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
2483 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
2484 
2485 /** Utility to initialize a key identifier at runtime.
2486  *
2487  * \param owner_id Identifier of the key owner.
2488  * \param key_id   Identifier of the key.
2489  */
mbedtls_svc_key_id_make(mbedtls_key_owner_id_t owner_id,psa_key_id_t key_id)2490 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2491     mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
2492 {
2493     return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2494                                    .MBEDTLS_PRIVATE(owner) = owner_id };
2495 }
2496 
2497 /** Compare two key identifiers.
2498  *
2499  * \param id1 First key identifier.
2500  * \param id2 Second key identifier.
2501  *
2502  * \return Non-zero if the two key identifier are equal, zero otherwise.
2503  */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2504 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2505                                            mbedtls_svc_key_id_t id2)
2506 {
2507     return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
2508            mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
2509 }
2510 
2511 /** Check whether a key identifier is null.
2512  *
2513  * \param key Key identifier.
2514  *
2515  * \return Non-zero if the key identifier is null, zero otherwise.
2516  */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2517 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2518 {
2519     return key.MBEDTLS_PRIVATE(key_id) == 0;
2520 }
2521 
2522 #endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2523 
2524 /**@}*/
2525 
2526 /** \defgroup policy Key policies
2527  * @{
2528  */
2529 
2530 /* Note that key usage flags are embedded in the
2531  * persistent key store, as part of key metadata. As a consequence, they
2532  * must not be changed (unless the storage format version changes).
2533  */
2534 
2535 /** Whether the key may be exported.
2536  *
2537  * A public key or the public part of a key pair may always be exported
2538  * regardless of the value of this permission flag.
2539  *
2540  * If a key does not have export permission, implementations shall not
2541  * allow the key to be exported in plain form from the cryptoprocessor,
2542  * whether through psa_export_key() or through a proprietary interface.
2543  * The key may however be exportable in a wrapped form, i.e. in a form
2544  * where it is encrypted by another key.
2545  */
2546 #define PSA_KEY_USAGE_EXPORT                    ((psa_key_usage_t) 0x00000001)
2547 
2548 /** Whether the key may be copied.
2549  *
2550  * This flag allows the use of psa_copy_key() to make a copy of the key
2551  * with the same policy or a more restrictive policy.
2552  *
2553  * For lifetimes for which the key is located in a secure element which
2554  * enforce the non-exportability of keys, copying a key outside the secure
2555  * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2556  * Copying the key inside the secure element is permitted with just
2557  * #PSA_KEY_USAGE_COPY if the secure element supports it.
2558  * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2559  * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2560  * is sufficient to permit the copy.
2561  */
2562 #define PSA_KEY_USAGE_COPY                      ((psa_key_usage_t) 0x00000002)
2563 
2564 /** Whether the key may be used to encrypt a message.
2565  *
2566  * This flag allows the key to be used for a symmetric encryption operation,
2567  * for an AEAD encryption-and-authentication operation,
2568  * or for an asymmetric encryption operation,
2569  * if otherwise permitted by the key's type and policy.
2570  *
2571  * For a key pair, this concerns the public key.
2572  */
2573 #define PSA_KEY_USAGE_ENCRYPT                   ((psa_key_usage_t) 0x00000100)
2574 
2575 /** Whether the key may be used to decrypt a message.
2576  *
2577  * This flag allows the key to be used for a symmetric decryption operation,
2578  * for an AEAD decryption-and-verification operation,
2579  * or for an asymmetric decryption operation,
2580  * if otherwise permitted by the key's type and policy.
2581  *
2582  * For a key pair, this concerns the private key.
2583  */
2584 #define PSA_KEY_USAGE_DECRYPT                   ((psa_key_usage_t) 0x00000200)
2585 
2586 /** Whether the key may be used to sign a message.
2587  *
2588  * This flag allows the key to be used for a MAC calculation operation or for
2589  * an asymmetric message signature operation, if otherwise permitted by the
2590  * key’s type and policy.
2591  *
2592  * For a key pair, this concerns the private key.
2593  */
2594 #define PSA_KEY_USAGE_SIGN_MESSAGE              ((psa_key_usage_t) 0x00000400)
2595 
2596 /** Whether the key may be used to verify a message.
2597  *
2598  * This flag allows the key to be used for a MAC verification operation or for
2599  * an asymmetric message signature verification operation, if otherwise
2600  * permitted by the key’s type and policy.
2601  *
2602  * For a key pair, this concerns the public key.
2603  */
2604 #define PSA_KEY_USAGE_VERIFY_MESSAGE            ((psa_key_usage_t) 0x00000800)
2605 
2606 /** Whether the key may be used to sign a message.
2607  *
2608  * This flag allows the key to be used for a MAC calculation operation
2609  * or for an asymmetric signature operation,
2610  * if otherwise permitted by the key's type and policy.
2611  *
2612  * For a key pair, this concerns the private key.
2613  */
2614 #define PSA_KEY_USAGE_SIGN_HASH                 ((psa_key_usage_t) 0x00001000)
2615 
2616 /** Whether the key may be used to verify a message signature.
2617  *
2618  * This flag allows the key to be used for a MAC verification operation
2619  * or for an asymmetric signature verification operation,
2620  * if otherwise permitted by the key's type and policy.
2621  *
2622  * For a key pair, this concerns the public key.
2623  */
2624 #define PSA_KEY_USAGE_VERIFY_HASH               ((psa_key_usage_t) 0x00002000)
2625 
2626 /** Whether the key may be used to derive other keys or produce a password
2627  * hash.
2628  *
2629  * This flag allows the key to be used for a key derivation operation or for
2630  * a key agreement operation, if otherwise permitted by the key's type and
2631  * policy.
2632  *
2633  * If this flag is present on all keys used in calls to
2634  * psa_key_derivation_input_key() for a key derivation operation, then it
2635  * permits calling psa_key_derivation_output_bytes() or
2636  * psa_key_derivation_output_key() at the end of the operation.
2637  */
2638 #define PSA_KEY_USAGE_DERIVE                    ((psa_key_usage_t) 0x00004000)
2639 
2640 /** Whether the key may be used to verify the result of a key derivation,
2641  * including password hashing.
2642  *
2643  * This flag allows the key to be used:
2644  *
2645  * This flag allows the key to be used in a key derivation operation, if
2646  * otherwise permitted by the key's type and policy.
2647  *
2648  * If this flag is present on all keys used in calls to
2649  * psa_key_derivation_input_key() for a key derivation operation, then it
2650  * permits calling psa_key_derivation_verify_bytes() or
2651  * psa_key_derivation_verify_key() at the end of the operation.
2652  */
2653 #define PSA_KEY_USAGE_VERIFY_DERIVATION         ((psa_key_usage_t) 0x00008000)
2654 
2655 /**@}*/
2656 
2657 /** \defgroup derivation Key derivation
2658  * @{
2659  */
2660 
2661 /* Key input steps are not embedded in the persistent storage, so you can
2662  * change them if needed: it's only an ABI change. */
2663 
2664 /** A secret input for key derivation.
2665  *
2666  * This should be a key of type #PSA_KEY_TYPE_DERIVE
2667  * (passed to psa_key_derivation_input_key())
2668  * or the shared secret resulting from a key agreement
2669  * (obtained via psa_key_derivation_key_agreement()).
2670  *
2671  * The secret can also be a direct input (passed to
2672  * key_derivation_input_bytes()). In this case, the derivation operation
2673  * may not be used to derive keys: the operation will only allow
2674  * psa_key_derivation_output_bytes(),
2675  * psa_key_derivation_verify_bytes(), or
2676  * psa_key_derivation_verify_key(), but not
2677  * psa_key_derivation_output_key().
2678  */
2679 #define PSA_KEY_DERIVATION_INPUT_SECRET     ((psa_key_derivation_step_t) 0x0101)
2680 
2681 /** A low-entropy secret input for password hashing / key stretching.
2682  *
2683  * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2684  * psa_key_derivation_input_key()) or a direct input (passed to
2685  * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2686  * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2687  * the shared secret resulting from a key agreement.
2688  *
2689  * The secret can also be a direct input (passed to
2690  * key_derivation_input_bytes()). In this case, the derivation operation
2691  * may not be used to derive keys: the operation will only allow
2692  * psa_key_derivation_output_bytes(),
2693  * psa_key_derivation_verify_bytes(), or
2694  * psa_key_derivation_verify_key(), but not
2695  * psa_key_derivation_output_key().
2696  */
2697 #define PSA_KEY_DERIVATION_INPUT_PASSWORD   ((psa_key_derivation_step_t) 0x0102)
2698 
2699 /** A high-entropy additional secret input for key derivation.
2700  *
2701  * This is typically the shared secret resulting from a key agreement obtained
2702  * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2703  * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2704  * a direct input passed to `psa_key_derivation_input_bytes()`.
2705  */
2706 #define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
2707     ((psa_key_derivation_step_t) 0x0103)
2708 
2709 /** A label for key derivation.
2710  *
2711  * This should be a direct input.
2712  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2713  */
2714 #define PSA_KEY_DERIVATION_INPUT_LABEL      ((psa_key_derivation_step_t) 0x0201)
2715 
2716 /** A salt for key derivation.
2717  *
2718  * This should be a direct input.
2719  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2720  * #PSA_KEY_TYPE_PEPPER.
2721  */
2722 #define PSA_KEY_DERIVATION_INPUT_SALT       ((psa_key_derivation_step_t) 0x0202)
2723 
2724 /** An information string for key derivation.
2725  *
2726  * This should be a direct input.
2727  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2728  */
2729 #define PSA_KEY_DERIVATION_INPUT_INFO       ((psa_key_derivation_step_t) 0x0203)
2730 
2731 /** A seed for key derivation.
2732  *
2733  * This should be a direct input.
2734  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2735  */
2736 #define PSA_KEY_DERIVATION_INPUT_SEED       ((psa_key_derivation_step_t) 0x0204)
2737 
2738 /** A cost parameter for password hashing / key stretching.
2739  *
2740  * This must be a direct input, passed to psa_key_derivation_input_integer().
2741  */
2742 #define PSA_KEY_DERIVATION_INPUT_COST       ((psa_key_derivation_step_t) 0x0205)
2743 
2744 /**@}*/
2745 
2746 /** \defgroup helper_macros Helper macros
2747  * @{
2748  */
2749 
2750 /* Helper macros */
2751 
2752 /** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2753  *  regardless of the tag length they encode.
2754  *
2755  * \param aead_alg_1 An AEAD algorithm identifier.
2756  * \param aead_alg_2 An AEAD algorithm identifier.
2757  *
2758  * \return           1 if both identifiers refer to the same AEAD algorithm,
2759  *                   0 otherwise.
2760  *                   Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2761  *                   a supported AEAD algorithm.
2762  */
2763 #define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2764     (!(((aead_alg_1) ^ (aead_alg_2)) & \
2765        ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2766 
2767 /**@}*/
2768 
2769 /**@}*/
2770 
2771 /** \defgroup interruptible Interruptible operations
2772  * @{
2773  */
2774 
2775 /** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
2776  *  the maximum number of ops allowed to be executed by an interruptible
2777  *  function in a single call.
2778  */
2779 #define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
2780 
2781 /**@}*/
2782 
2783 #endif /* PSA_CRYPTO_VALUES_H */
2784